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Critical synchronization and 1/f 
noise in inhibitory/excitatory rich-
club neural networks
Daniel Aguilar-Velázquez & Lev Guzmán-Vargas

In recent years, diverse studies have reported that different brain regions, which are internally 
densely connected, are also highly connected to each other. This configuration seems to play a key 
role in integrating and interchanging information between brain areas. Also, changes in the rich-club 
connectivity and the shift from inhibitory to excitatory behavior of hub neurons have been associated 
with several diseases. However, there is not a clear understanding about the role of the proportion 
of inhibitory/excitatory hub neurons, the dynamic consequences of rich-club disconnection, and hub 
inhibitory/excitatory shifts. Here, we study the synchronization and temporal correlations in the 
neural Izhikevich model, which comprises excitatory and inhibitory neurons located in a scale-free 
hierarchical network with rich-club connectivity. We evaluated the temporal autocorrelations and global 
synchronization dynamics displayed by the system in terms of rich-club connectivity and hub inhibitory/
excitatory population. We evaluated the synchrony between pairs of sets of neurons by means of 
the global lability synchronization, based on the rate of change in the total number of synchronized 
signals. The results show that for a wide range of excitatory/inhibitory hub ratios the network displays 
1/f dynamics with critical synchronization that is concordant with numerous health brain registers, 
while a network configuration with a vast majority of excitatory hubs mostly exhibits short-term 
autocorrelations with numerous large avalanches. Furthermore, rich-club connectivity promotes the 
increase of the global lability of synchrony and the temporal persistence of the system.

In recent years, the structure (human connectome) and dynamics of human brain networks have started to be 
unveiled by means of numerous neuroimaging techniques. The structural properties of the human connectome 
are frequently described by a short average path-length between nodes1, high clustering2,3, hierarchical modular-
ity4, and a heavy-tailed distribution of connectivity, with highly connected brain regions or brain hubs5,6. Brain 
hubs are strongly interconnected among them, forming a rich-club7. Diverse studies have reported that brain 
hubs play a key role in integrating and interchanging information between diverse brain regions8. Two types of 
brain hubs are recognized: provincials and connectors. Provincial hubs show connections within a single cluster, 
while connector hubs are mostly connected with two or more clusters7. Connector hubs are involved in complex 
cognitive tasks, while provincial hubs are involved in specific tasks8. Many brain diseases are associated with a 
disruption in structural and functional connectivity: either alterations in the path-length average and clustering 
(small-world properties)9–12, or the affection of brain hub regions13–17. In addition, disturbed rich-club connectiv-
ity promotes several neural pathologies18–23. For instance, Bonifazi et al.24 found that the activity of hub neurons 
can perturb the entire network’s dynamics and the existence of highly connected neurons play a key role in the 
synchronization; these hubs neurons are commonly assumed to be inhibitory neurons (GABAergic interneu-
rons). Inhibitory neurons comprise the 15–20% of the population, while the majority 80–85% are excitatory neu-
rons (Glutamatergic cells)25,26. Inhibitory neurons offer stability to neural networks27, and facilitate the corrected 
routed of excitatory paths28. Moreover, they are involved in brain development, exciting immature neurons29,30. 
However, the mechanism that shifts the inhibitory/excitatory behavior in GABA neurons is not robust, a dysfunc-
tion in this neural mechanism may generate inhibitory neurons functioning as excitatory ones31. Besides, chronic 
stress can trigger this malfunction giving rise to epileptic seizures32.

On the other hand, two fundamental and dynamical properties of neural networks are 1/f fluctuations and 
synchronization. 1/f fluctuations (pink noise) represent the fractal temporal properties of neural networks that 
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exhibit long-range memory. 1/f fluctuations have been found for mental tasks and spontaneous fluctuations 
recorded by electroencephalograph (EEG)33,34, magnetoencephalograph (MEG)35 and functional magnetic res-
onance imaging36. Notably, deviations from 1/f fluctuations have been found in some patients for diverse brain 
disorders and aging37–45. In addition, neural networks are very sensitive to 1/f fluctuations46–48.

Synchronization is the spontaneous organization that gives rise to collective neuronal firing49–52; synchroni-
zation is also the fingerprint of communication and processing in neural networks. Several authors report that 
healthy neural networks display critical synchronization, where a negative power-law distribution of global phase 
changes (or neural avalanches sizes) is observed, indicating the presence of few global phase changes and many 
local ones53–58. Other studies focused on brain activity have reported variations in the levels of synchronization in 
neuropathologies, either a reduction or an oversynchronization59–64. In the context of brain models, simulations 
show that inhibitory and excitatory hub neurons can drive the system from desynchronized to fully synchronized 
states65–70.

In 1950, Alan M. Turing wondered if brain dynamics operate in a critical stability regime71. Four decades 
later, some authors indicated the strong relation between 1/f fluctuations and a power law distribution of global 
neural changes72,73; then others showed the relation between simulated neural avalanches and 1/f fluctuations in 
brain74,75. Recently, using EEG and EMG, Palva et al. found that neural avalanches are strongly correlated with 
1/f fluctuations76. Moreover, studies in simulated neural networks showed that 1/f signals are correlated with 
intermediate and critical synchronization, while Brownian or uncorrelated signals are related to either subcritical 
or supercritical states77–80. However, there is not a full understanding about the relation between dynamical and 
structural properties of neural networks, and the proportion of inhibitory and excitatory hub neurons in human 
brain networks. Here we study, by means of a hierarchical neural model, the interplay between inter-hub con-
nectivity and the number of excitatory and inhibitory hubs in order to measure the system dynamics in terms of 
temporal autocorrelation and global synchronization.

Methods
Hierarchical network and rich-club organization. The neurons are located in a hierarchical scale-free 
network proposed by Ravasz and Barabási81. The connectivity degree distribution P(k) of the model follows a 
negative power-law function ∼ γ−P k k( ) , with γ = .2 1. The first step consists in constructing a cluster of five 
linked nodes (a complete network); creating four replicas, and finally connecting four nodes of each replica clus-
ter to one node in the first cluster (hub node); this results in a network of 25 nodes including a hub. The second 
step consists in replicating the first step four more times, and connecting the resulting 16 peripheral nodes to the 
hub node proposed in step one; the output consists in a network with 125 nodes and 5 hubs (Fig. 1a). The algo-
rithm presented can be repeated indefinitely, where each step increases the number of nodes by a factor of 5. In 
this study, 5 network replicas, similar to the one created in step 2, were used to form a network with 625 nodes 
(see Fig. 1b). In our case, we consider that all edges are bidirectional. Specifically, we assumed that there are two 
weights for each bidirectional edge, one incoming and one outgoing link, and that each neuron sends an inde-
pendent synaptic potential. All excitatory outgoing links activate and all inhibitory outgoing links send negative 
potential, which is in accordance with Dale’s law82. We also performed simulations establishing only unidirec-
tional links to detect changes in the dynamics (see Supplementary Material). Next, each pair of hubs is connected 
with probability κ; such a deliberate setup allows hubs to communicate with each other. Two major types of hubs 
are defined: global hubs (with connections of ≥k 100 nodes) and local hubs (only connected to one group of 25 
nodes and the rest of the hubs ≤ ≤k20 44). A previous report has identified a lack of links between hubs in this 
network and its importance in modeling neural networks83. The rich-club organization is a main structural prop-
erty of neural network systems where nodes with high connectivity degree tend to connect each other7. In order 
to detect the rich-club phenomenon in our configuration, we use the normalized rich-club coefficient Φnorm

84, 
which is defined as the number of edges between pairs of hubs normalized by the number of edges in a null model 
network. The null model comprises the same degree distribution with random connectivity between pairs of 
nodes. For Φ > 1norm , the configurations show legitimate rich-club organization. Figure 1c shows rich-club coef-
ficients of the model for different values of κ and connectivity degree k.

Izhikevich neuron model. We use the integrate-and-fire neuron model presented by Izhikevich85. The prin-
cipal advantage of the model over others is that it reproduces many dynamic features of real neurons with low 
computational cost86. The model is a two-dimensional system of ordinary differential equations defined by the 
following equations:

= . + + − + +v h v v u I s(0 04 5 140 ) (1)2

= −u h a bv u( ( )) (2)

≥
←
← +{v v c

u u dif 30mV, then , (3)

where h is the size of the time step, v represents the membrane potential of the neuron, the notation =v dv dt/ , u 
represents a membrane recovery variable, which emulates the sodium – potassium pump. The parameters a and 
b represent the time scale and the sensitivity of the recovery variable u, respectively. The parameters c and d, rep-
resent the after-spike reset of v and u respectively. The value I represents a noisy thalamic input that is received for 
each of the neurons, and the value s represents the sum of the incoming potentials of its nearest neighbors when 
they fired. In our simulation, we consider a diverse repertoire of values for the parameters. For excitatory neurons: 
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= .a 0 02i , = .b 0 2i , =I 5i , = − +c r65 15i i and = −d r8 6i i, where ri is a random variable uniformly distributed 
on the interval [0, 1], and i is the neuron index. If =r 0i , the neurons exhibit regular spiking, and if =r 1i , the 
neurons display chattering behavior. For inhibitory neurons: = . + .a r0 02 0 08i i, = . − .b r0 25 0 05i i, =I 2i , 

= −c 65i  and =d 2i . Here, if =r 0i , the inhibitory neurons show a slow recovery with low-threshold spiking; 
however if =r 1i , the neurons show fast spiking.

In the hierarchical model, the hubs represent 4% of all nodes; we variate the proportion of excitatory-inhibitory 
hub neurons to observe its dynamics, so we set the 5 most connected neurons or global hubs as either inhibitory 
(case 1) or excitatory (case 2). Next, we variate the proportion of excitatory-inhibitory local hubs and define the 
value η as the probability of a local hub becoming inhibitory. For the rest of the nodes (96% of the total), we set 
80% of them as excitatory and 20% as inhibitory.

In order to generate a time series of the evolution, we define the state of the system as,

∑=
=

S t
N

v t( ) 1 ( ),
(4)i

N

i
1

where N is the total number of units. We consider time evolutions of the system comprising 625 neurons. After a 
transient period (8000 time steps) the state of the system is monitored for 104 additional time steps.

time resolution and synaptic weight. It is well known that the best individual accuracy of the Izhikevich 
model is reached for time steps, h, less than 0.5 ms87–89. However, the original Izhikevich model85 uses the forward 
Euler integration with time steps of 0.5 and 1 ms, and other authors have used similar time steps for achieving 
collective and critical dynamics77,80,90,91 (see Table 1). A very recent study by Pauli et al.92, focused specifically on 
the reproducibility of the Izhikevich model, demonstrates that the model is highly sensitive to the integration 
time step. Namely, they observed dynamic changes in network dynamics while they were decreasing the time 
resolution from 1.0 ms to 0.1 ms. The authors also offer a guide to reproduce global dynamics at time steps of 
0.1 ms, which is based on the increment of the synaptic weight s in relation to the corresponding average firing 
rate. Here we adopt Pauli et al.’s approach by looking for an average excitatory firing rate of 5 spikes per second 
(spks/s), which is an intermediate firing rate close to the ones used in the original Izhikevich model (2–7 spks/s)93. 

Figure 1. Representative plots of the hierarchical network model. (a) Network with 125 nodes at step 2 with a 
rich-club organization κ = .1 0. Size of nodes indicates degree connectivity. The color of the nodes indicates the 
five different clusters comprising 25 nodes each. We defined two types of hubs: global hubs ≥k 80, and local 
hubs, which are connected to only one cluster (25 nodes) and to the rest of the hubs. (b) 5 replicas of networks at 
step 2, connected by hubs κ = .1 0. The color of the nodes indicates the five different clusters comprising 125 
nodes each. (c) Normalized rich-club coefficients Φnorm in terms of the κ values.
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In addition, we use the 2nd-order Runge-Kutta (RK-2) method to implement the numerical integration of the dif-
ferential equations with a time resolution of 0.1 ms (see Results Section for additional discussion about other time 
resolutions). Using the RK-2 with a time resolution of 0.1 ms can be considered as a high-quality simulation89. 
We also provide an online source of the model’s implementation, where the time evolution, a simulation in mp4 
format, and the detrended fluctuation analysis can be obtained from a standalone script94.

Detrended Fluctuation Analysis. Detrended fluctuation analysis (DFA) is a reliable method to detect 
long-range time correlations in nonstationary time series95. DFA considers the following steps. First, the signal (in 
this case the state of the system, S(t)) is integrated; the resulting series (yi) is divided into windows of size n and 
for each window, a straight line is fitted to the points (yn). Next, the root-mean-square fluctuation is computed of 
the detrended sequence within each window: 


= ∑ −=F n y y( ) [ ]i i n

1
1

2 . If a scaling function of the form 
= αF n n( )  is present, then the correlation exponent α characterizes the original signal. It is known that α = .0 5 

corresponds to white noise (uncorrelated signal), α = .1 5 corresponds to Brownian noise, and α = 1 corresponds 
to a long-range correlated process or 1/f noise. In this work, we obtain F(n) and α for the state of the system S(t) 
under different configurations.

Global Lability of synchronization. The aim of this work is to measure the avalanche activity among sets 
in the system in terms of excitatory/inhibitory hub proportion and rich-club connectivity. Here, we use the global 
lability of synchronization method53, which is suitable for the detection of local and global events of synchrony. 
An advantage of this measure over the standard avalanche analysis is that the definition of the avalanche size is 
based on a quiescent initial condition in the network, so some kinds of sustained firing or supercritical behaviors 
are difficult to measure using the avalanche analysis. Moreover, the lability of global synchronization allows us to 
detect a wide range of stability regimes. This measure is based on the rate of change in the number of phase-locked 
signals pairs between successive time steps. We generate 125 signals from the average local state (of membrane 
potentials vi) of clusters of 5 nodes. As in the original lability work, we assume that two signals are synchronized 
at certain time step if they satisfy two conditions: the absolute value of the phase difference, θ∆ t( )i j, , must be 
smaller than π/4; an index synchronization parameter, γ t( )i j, , must indicate similar frequencies (γ >t( ) 1/2i j, ). 
The phase difference between two signals si(t) and sj(t) is given by96
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where s t( )i  and 
s t( )j  represent the Hilbert transform of si(t) and sj(t), respectively. The Hilbert transform is defined 

as96:
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where P.V. indicates the Cauchy principal value. The phase synchronization index is used to meet the second 
condition96,97:
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where v is the size of the time window. We set ν = 50 time steps. For γ = 0i j, , there is a large frequency difference 
during the time window, while for γ = 1i j, , the phase difference is constant during the whole interval, indicating 
full synchronization. Next, we count the number of pairs of signals that are synchronized at time t:

∑ θ π γ= |∆ | < > .
<

M t t and t( ) [ ( ) /4 ( ) 1/2 ]
(8)i j

i j i j, ,

Finally, from the statistics represented by M(t), we calculate the square of the difference in the number of syn-
chronized pairs between two successive time steps, representing the lability of global synchrony53:

Authors Model time step Indegree Synaptic strength (mV)

Izhikevich85 2003 1 ms 1000 E = [0.0, 0.5], I = −[0.0, 1.0]

Izhikevich93 2006 1 ms 100 E = 6, I = −5

Lombardi et al.80 Integrate and fire 4 ms 3–100, scale-free E = [0.15, 0.3], I = −[0.15, 0.3]

Massobrio et al.90 Izhikevich (2003) 1 ms 20–100, scale-free E = 10, I = −6

Poil et al.77 Integrate and fire 1 ms 8–48 E = 0.011, I = −2

Wiles et al.107 Izhikevich (2003) with autapses 0.2 ms 100 E = 7, I = −6

Pauli et al.92 Izhikevich (2006) 0.1 ms 100 E = [50, 85], I = −[50, 85]

Table 1. Parameters of spiking neuron models that reproduce global neural dynamics. We listed the values of 
integration time step, average indegree and synaptic strength.
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= | + − | . t M t M t( ) ( 1) ( ) (9)2

A large value of  indicates a global synchronization/desynchronization process, whereas a small value indi-
cates a local change in synchronization. Previous studies reported that systems operating at critical regimens, 
such as Ising and Kuramoto models, show negative power-law distributions of  values53,98, and similar distribu-
tions were also found for human brain functional signals53.

Results
Integration time step, firing rate and synaptic weight. To determine how robust our results are, first 
we address the question about the effects of changes of integration time steps on firing rate and on synaptic 
weight. Figure 2 shows the average firing rate of the network (Fig. 1b) vs. the synaptic weight for case 1 (κ = .0 5 
and η = 0), for different time resolutions. The value of the parameter η was selected to have a balanced inhibition/
excitation hub activity, where all global hubs are inhibitory and all local hubs are excitatory. We observe that as the 
size of the time step increases, the model needs less synaptic weight in order to display the same firing rate. For 
instance, for time steps of 0.1 ms, a firing rate of 5 spks/s is reached approximately at 40 mV of synaptic weight. It 
is important to mention that the injected current is applied for a single time step. For this reason, the different 
curves are scaled versions of each other, with a scaling factor given by the ratio of the time resolutions. Thus, for 
h = 0.1 ms, the synaptic weight needs to be large to recover the dynamics of the original model.

Furthermore, other studies have found that synaptic strength and connectivity (degree) play a key role in 
driving the system toward criticality. As the synaptic strength increases, the system shows more synchroniza-
tion90, and more connectivity is associated with more activity in the system90. Lastly, in order to achieve critical 
dynamics, synaptic weight and connectivity have to be large enough, otherwise, the system shows subcritical 
behavior90. In Table 1 we present the main characteristics of representative spiking neuron models, which are able 
to reproduce either global or critical dynamics.

For the first two models presented by Izhikevich, we notice that the decrease of incoming connectivity in the 
2006 model was replaced by an increase in synaptic strength. A similar strategy is used in Massobrio’s study. In 
general, it is observed that for smaller time steps, the synaptic weight is bigger. A high time resolution reduces 
global activity, however, more incoming connectivity and more synaptic strength have been used to increase 
global activity.

time evolution and temporal autocorrelation. In order to characterize the signature of dynamical 
evolutions of specific configurations cases, where the hub activity plays an important role, first we investigate the 
time evolution of the hierarchical network model at step 1 governed by the Izhikevich model.

In Fig. 3 we show representative time evolutions of the simplest configuration in our model. The network com-
prises 1 cluster with 25 units (one cluster in Fig. 1a). Each network posses 5 randomly selected inhibitory neurons, 
19 excitatory neurons and 1 hub. For the case when the hub is inhibitory (Fig. 3a,b), we observe that the activation 
of neurons is transmitted to the hub, and the hub sends a negative feedback and rapidly stops the propagation 
of the firings. In contrast, for the case when the hub is excitatory (Fig. 3c,d), the activation of the excitatory hub 
promotes the activation of all units, giving rise to fully synchronized states.

Figure 2. Firing rate vs. synaptic strength for different time resolutions. The plots correspond to the case 1, 
where all global hubs are inhibitory and all local hubs are excitatory (κ = .0 5 and η = 0). The shaded green bar 
indicates that by increasing the resolution (smaller h) to obtain a firing rate close to 5 spks/s, an approximate 
value of 40 for the synaptic weight is required.
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Next, we investigate the time evolution of the hierarchical network model at step 2 governed by the Izhikevich 
model. Figure 4a depicts the time evolution of the neural model where the most-connected node (node 125) and 
two local hubs (node 50 and 100) are inhibitory. In the figure, dash lines surround the temporal evolution of hubs, 
and also divides the 5 clusters of 25 neurons. For example, neuron 25 is a local excitatory hub which is connected 
with 20 neurons with the neuron indexes in the range 1–24.

We observe that the avalanche activity is present in terms of temporal activity of clusters, which are not stable 
and this fact contributes to the emergence of 1/f fluctuations in the S(t) dynamics (Fig. 4b,c). Previous findings 
indicate that there are several real and simulated systems operating at critical regimes which exhibit 1/f dynamics. 
The majority of these systems do not posses a long-tail connectivity distribution to show 1/f dynamics. However, 
the evidence of functional and structural connectivity suggest that the real topology of brain networks is charac-
terized by the presence of hub regions, thus it is important to study the emergence of 1/f dynamics in the context 
of hub interconnectivity and functionality.

The activation of clusters (comprising 25 nodes) is mainly initiated by small clusters (comprising 5 nodes) 
with no hub nodes, then the activation is transmitted and amplified to other small clusters by excitatory hubs. 
This qualitative behavior is quite similar to the findings reported by Luccioli et al.68, where the excitatory hubs are 

Figure 3. Time evolution and state of the system. (a) Time evolution of the system for the case where the local 
hub (neuron 25) is inhibitory. (b) The evolution of the state of the system S(t). (c) Time evolution for the case 
where the local hub (neuron 25) is excitatory. (d) The state of the system S(t).

Figure 4. Time evolution and quantification of autocorrelations. Colored semicircles indicate either excitatory 
(red) or inhibitory (blue) behavior. (a) Time evolution of the system for the case where the most-connected 
node (#125) and two local hubs (node #50 and #100) are inhibitory, while node hubs #25 and #75 are excitatory; 
with a rich-club probability κ = .0 5. The network size is =N 125. Dash lines surround the temporal evolution 
of hubs. (b) State of the system for the evolution shown in (a). (c) Log-log plot of the fluctuation F(n) vs. the 
time scale n. Here the exponent α represents the type of correlations displayed by the system and it is related to 
the exponent β of the power spectrum of the fluctuations, ∝ βS f f( ) 1/ , by means of the relation β α= −2 1. 
The evolution of S(t) shown in (b) yields the scaling exponent α ≈ .1 1, indicating the presence of long-range 
correlations.
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reminiscent of connector and provincial hubs8. It is noteworthy that during the time evolution, the firing activity 
between the different clusters is correlated, suggesting that excitatory hubs play a central role in information 
transmission between clusters. Besides, we observe diverse activity patterns. In the literature, critical dynamics 
are related to high information transmission and the existence of many attractor states8,55,99. On the other hand, 
the global inhibitory hub controls the occurrence of large avalanches (Fig. 4a), suggesting the important role 
that inhibitory hubs (GABA neurons) play in giving rise to critical dynamics. To our knowledge, there is some 
evidence that integrate-and-fire neurons can display 1/f fluctuations100–102. Here Fig. 4 shows that a mixed popu-
lation of inhibitory and excitatory hubs and an intermediate rich-club connectivity promote the deployment of 
1/f fluctuations.

In order to test the robustness of the dynamics with respect to the number of neurons in the network, we 
repeat the temporal analysis with a set of 5 clusters with 125 units each. Now 5 replicas of the hierarchical network 
at step 2 with 625 nodes are considered, where 5 of them are global hubs and 20 are local hubs (see Fig. 1b). Two 
different cases are considered: global hubs are inhibitory (case 1) and global hubs are excitatory (case 2). The time 
evolution of case 1, where global hubs are inhibitory (κ = .0 75 and the fraction of local inhibitory hubs η = .0 75) 
is shown in Fig. 5a. The time evolution shows that the activation of big clusters (comprising 125 nodes) is corre-
lated with other big clusters within and outside the 5 replicas (see Supplementary Material for the behavior of the 
correlation exponents in terms of the number of clusters). Interestingly, the state of the system exhibits 1/f fluctu-
ations (Fig. 5b,c). We observe that the dynamics corresponding to a mixed population of inhibitory and excitatory 
local hubs with inhibitory global hubs is reminiscent of the case 1 with 1 cluster.

The time evolution of case 2, where global hubs are excitatory (κ = .0 15 and η = .0 9) is shown in Fig. 6a. We 
observe a global correlated behavior, where the vast majority of neurons in the big clusters are synchronized. We 
also observe that 1/f fluctuations get destroyed and the state of the system S(t) displays Brownian-like noise with 
α ≈ .1 38 (Fig. 6b,c).

To strengthen our results, we systematically calculate the scaling temporal exponent α in terms of the rich-club 
connectivity κ and the excitatory/inhibitory hub proportion η. The phase space of the scaling temporal exponent 
α is shown in Fig. 7. For the hierarchical network in case 1 (Fig. 7a), the phase space mainly exhibits 1/f noise 
(α ≈ .1 0). However, for η < .0 3 and κ > .0 4, we observe a region where the scaling exponent is α > .1 3, indicat-
ing Brownian-like fluctuations. When the number of excitatory hubs is dominant (low value of η) and the 
rich-club connectivity increases, the system becomes more activated, which is reflected in the increment of the α 
exponent. For intermediate values of both κ and η, global inhibitory hubs control the production of global ava-
lanches and this fact is reflected in the deployment of 1/f noise, also in agreement with the results described in 
Fig. 4. In contrast, for case 2 (Fig. 7b), the phase space mostly exhibits exponent values close to Brownian noise 
(α ≈ .1 5). Notably, when the hierarchical network structure is destroyed but the same incoming degree distribu-
tion is preserved, the model still displays a variety of dynamical behaviors, but with a more widespread presence 
of Brownian-like noise, indicating a more activated behavior with short-range correlations (see Supplementary 
Material). In addition, considering only unidirectional links promotes the decrement of α exponents values and 
more presence of 1/f noise (see Supplementary Material). The fact that the phase space gets slightly altered by 

Figure 5. Time evolution and quantification of correlations for a network with 625 nodes. (a) Evolution of the 
case where the most connected nodes are inhibitory (case 1), with the fraction of local inhibitory hubs η = .0 75 
and a rich-club probability κ = .0 75. (b) State of the system S(t) for the evolution in (a). (c) DFA analysis of S(t) 
yields a scaling exponent close to 1, indicating long-range correlations.

https://doi.org/10.1038/s41598-018-37920-w


www.nature.com/scientificreports/

8Scientific RepoRts |          (2019) 9:1258  | https://doi.org/10.1038/s41598-018-37920-w

destroying the clustering structure or considering unidirectional links reinforces the importance of the rich-club 
connectivity and the inhibitory/excitatory ratio.

Global lability of synchrony. Figure 8 shows the probability density of lability values for case 1 and differ-
ent values of η and κ. We observe that the probabilities follow a power-law ∼ δ−

 G( ) , with exponent values 
within the range δ. ≤ ≤ .0 5 0 9. For the estimation of the power-law exponent, we used the method proposed by 
Hanel et al.103, which is suitable for the estimation of power-law exponents that are located within the range 

δ< ≤ .0 1 0. For example, when κ = .1 0 and η = .0 25, the synchronization exponent is δ = . ± .0 88 0 04, where 
±0.04 indicates the mean square error of the power-law fit103; while for κ = .1 0 and η = .0 25, the corresponding 
exponent is δ = . ± .0 83 0 08. Interestingly, for these intermediate values of κ and η we also observe long-range 
correlated temporal dynamics in Fig. 7a. Moreover, as the fraction of inhibitory neurons increases (a larger η), the 
frequency of lability events decreases, indicating a reduction in the occurrence of local and global synchroniza-
tion changes. For η = 0 (mostly excitatory hubs) and high values of κ, the δ exponents lie within the range from 
0.66 to 0.58, indicating a legitimate power-law behavior. These values of κ and η correspond to Brownian fluctua-

Figure 6. Time evolution and quantification of autocorrelations. (a) Representation of time evolution for case 
2, κ = .0 15 and η = .0 9. (b) State of the system S(t) for the evolution shown in (a). (c) Log-log plot of the 
fluctuation F(n) vs. the time scale n. Data shown in (b) yields the exponent value α ≈ .1 38.

Figure 7. Phase space κ vs. η for scaling temporal exponents α. (a) Case 1: global hubs are inhibitory. (b) Case 
2: global hubs are excitatory. Each pixel value is an average over 50 independent runs.
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tions in Fig. 7a. Although there is not a specific range for δ-values directly associated to critical states, there have 
been reported critical synchronization exponents within the range δ. ≤ ≤ .0 5 1 053,78,98

In Fig. 9, we show the probability density of lability values for case 2. We observe that for low hub interconnec-
tivity, κ = .0 25, the majority of distributions follow a power-law function with exponent δ ≈ .0 5. These distribu-
tions are similar to the ones found in case 1 (η = .0 0 and κ ≥ .0 75), suggesting that for these configurations the 
synchronization exponent δ ≈ .0 5 is associated with Brownian fluctuations in the state of the system (see Fig. 7a). 
Moreover, when the majority of hubs are excitatory and the rich-club connectivity is high (κ = .1 0 and η = .0 0), 
the lability distribution displays an almost flat behavior with exponent δ ≈ . ± .0 24 0 06, where local and global 
phase changes take place with similar probabilities.

Discussion
Our current understanding of brain function is directly linked to network topology and dynamics occurring 
within the brain, which have been explored in detail by network neuroscience. However, limitations imposed by 
recording tools - which provide low quality readings of the brain - continue to generate gaps of our understanding 
of how brain networks operate. Our simple neural model with scale-free topology is able to display a variety of 
dynamical patterns, levels of synchronization and temporal autocorrelation in terms of a hub’s inter-connectivity 
and excitatory/inhibitory proportions. Our results show that 1/f fluctuations are closely related to a power-law 
distribution of global phase changes, which emerge when there is a mixed population of inhibitory and excitatory 
hubs for broad interval values of rich-club connectivity. However, when the majority of hubs are excitatory and 
the rich-club connectivity is high enough, the system displays Brownian fluctuations, indicating a high frequency 
of global phase changes. These results are consistent with previous findings about the fact that identified hub neu-
rons in Human and C. elegans neural networks are principally inhibitory (GABA interneurons)24,104. It is worth 
mentioning that similar critical behavior displaying 1/f noise, critical avalanche distribution and critical synchro-
nization have been also detected in regular and small-world configurations78,105,106, and that in many cases the 

Figure 8. Probability density function of lability values for case 1 and different values of κ and η. Each function 
represents the result of 100 independent runs.
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existence of 1/f noise depends on the balance between excitatory and inhibitory interaction77,80. However, much 
evidence suggests that real neural networks posses units that exert more influence than others, and that this influ-
ence is reflected in the connectivity of the units and synaptic strength. Our study based on the high resolution 
Izhikevich model comprises large synaptic weights that are higher than those reported in real electrophysiological 
recordings. Further works should incorporate the problem of the duration of synaptic release in order to reduce 
the weights and generate a model with more realistic parameter values.

Furthermore, our results are concordant with previous findings about the fact that a scale-free distribution 
of degree connectivity promotes critical distribution of avalanches; configurations with only excitatory hubs are 
unable to show criticality90 and 1/f noise appears when a mixed population of inhibitory and excitatory hubs are 
present77. Moreover, the disruption of rich-club connectivity promotes the desynchronization of the system and 
the reduction of the temporal autocorrelation exponent, while the total shift from inhibitory to excitatory behav-
ior of hubs destroys 1/f fluctuations and power-law synchronization. Our results also show that the disruption of 
the hierarchical connectivity promotes the increase of global activity and the presence of Brownian fluctuations, 
on the other hand, the unidirectional link configuration facilitates the decrement of α exponents and the exist-
ence of 1/f noise.

Although different mechanisms and models have been proposed to generate 1/f noise72–75, it is important 
to remark that few models are able to generate long-range correlations with critical power-law synchronization 
based on large number of communicating units or neurons77,78. In these models, the topology and a balanced 
excitation/inhibition population of units seem to play a important role for an efficient functional communica-
tion between different parts of the network80,90. In the context of neurophysiological systems, mental illnesses 
like epilepsy, schizophrenia and Alzheimer have been associated to alterations in the rich-club connectivity or 
the failure of hub responses. In addition, we demonstrate that, in the context of our model, ingredients like 
rich-club connectivity, inhibitory global hubs and excitatory local hubs are relevant to generate a vast repertoire of 
spatio-temporal patterns, including 1/f fluctuations and critical synchronization. In the context of brain studies, 

Figure 9. Probability density function of lability values for case 2 and different values of κ and η. Each function 
represents the result of 100 independent runs.
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which focus on network topology and dynamics, our results indicate that the rich-club connectivity and the hub 
inhibitory/excitatory population are important properties, which may help to understand the variety of temporal 
correlations and synchronization levels reported in brain dynamics.
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