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An Equation Based on Fuzzy 
Mathematics to Assess the Timing 
of Haemodialysis Initiation
Ying Liu1,2,3, Degang Wang4, Xiangmei Chen5, Xuefeng Sun5, Wenyan Song6, Hongli Jiang7, 
Wei Shi8, Wenhu Liu9, Ping Fu10, Xiaoqiang Ding11, Ming Chang12, Xueqing Yu13, Ning Cao14, 
Menghua Chen15, Zhaohui Ni16, Jing Cheng17, Shiren Sun18, Huimin Wang19, Yunyan Wang20, 
Bihu Gao21, Jianqin Wang22, Lirong Hao23, Suhua Li24, Qiang He25, Hongmei Liu26, 
Fengmin Shao27, Wei Li28, Yang Wang28, Lynda Szczech29, Qiuxia Lv4, Xianfeng Han1,2, 
Luping Wang1,2, Ming Fang1,2,3, Zach Odeh1,2, Ximing Sun4 & Hongli Lin1,2,3

In order to develop an equation that integrates multiple clinical factors including signs and symptoms 
associated with uraemia to assess the initiation of dialysis, we conducted a retrospective cohort study 
including 25 haemodialysis centres in Mainland China. Patients with ESRD (n = 1281) who commenced 
haemodialysis from 2008 to 2011 were enrolled in the development cohort, whereas 504 patients who 
began haemodialysis between 2012 and 2013 were enrolled in the validation cohort comprised. An 
artificial neural network model was used to select variables, and a fuzzy neural network model was then 
constructed using factors affecting haemodialysis initiation as input variables and 3-year survival as 
the output variable. A logistic model was set up using the same variables. The equation’s performance 
was compared with that of the logistic model and conventional eGFR-based assessment. The area 
under the bootstrap-corrected receiver-operating characteristic curve of the equation was 0.70, and 
that of two conventional eGFR-based assessments were 0.57 and 0.54. In conclusion, the new equation 
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based on Fuzzy mathematics, covering laboratory and clinical variables, is more suitable for assessing 
the timing of dialysis initiation in a Chinese ESRD population than eGFR, and may be a helpful tool to 
quantitatively evaluate the initiation of haemodialysis.

Maintenance haemodialysis is the main renal replacement therapy used for patients with end-stage renal disease 
(ESRD). However, the optimal time of haemodialysis initiation remains a vital factor to reduce the morbidity of 
complications and mortality associated with dialysis1–4. The early initiation of haemodialysis leads to an acceler-
ated decline in residual renal function, poor quality of life, and waste of medical resources. In contrast, the late 
initiation of haemodialysis increases the incidence of complications, causes higher mortality, and increases treat-
ment costs. Over the past three decades, several studies have attempted to assess the initiation time of dialysis; 
however, no consensus has been reached.

From the 1970s to 1990s, studies have shown that a high initial KT/V level (K, dialyzer clearance of urea; t, 
dialysis time; V, volume of the distribution of urea) for urea can improve dialysis outcomes5–7. In the USA, the 
mean estimated GFR (eGFR) at dialysis initiation has gradually increased from 1996 until 2008. In particular, the 
proportion of patients beginning haemodialysis with an eGFR of >10 mL/min has increased from 20% to 52%, 
whereas those beginning haemodialysis with an eGFR of ≥15 mL/min has increased from 4% to 17%8. However, 
subsequent observational studies based on these registries included a large number of patients, but produced 
controversial results9–14. In particular, the IDEAL study in 2010 showed that survival did not significantly differ 
between ESRD patients with early and late dialysis initiation14.

One reason for the conflicting results was that the definitions of “early” and “late” were based on serum 
creatinine-based GFR estimations, including equations such as the Modification of Diet in Renal Disease 
(MDRD) study equation15. The equations for GFR estimation do not consider essential clinical factors such as 
nutrition, diabetes mellitus, and signs and symptoms of uraemia (e.g., volume overload, gastrointestinal tract 
symptoms, and anaemia), which may affect dialysis initiation. Therefore the updated 2015 Kidney Disease 
Outcomes Quality Initiative (KDOQI) guidelines recommend that the decision to initiate dialysis should be 
based on an assessment of multiple factors, such as signs and symptoms of, for example, uraemia, volume over-
load, and heart failure, and not only the eGFR level16. However, these clinical factors are subjectively assessed by 
doctors and depend on their individual experience. Hence, the quantitative assessment of these aforementioned 
clinical factors may enhance the accuracy of the assessment of the timing of haemodialysis initiation, especially 
for doctors who lack extensive clinical experience.

However, it is difficult to quantify these ‘fuzzy’ clinical factors, especially the non-linear relationships between 
these factors and outcomes, using traditional statistical methods17. In the present study, we adopted ‘fuzzy’ 
methods instead of traditional statistical methods. In past decades, the development of fuzzy mathematics has 
impacted the fields of modelling because it can describe vague statements18. Artificial neural networks (ANNs), 
as one of the widely used techniques of fuzzy mathematics, have the advantage of being able to detect complex, 
non-linear problems19. Generally, ANNs consist of multiple layers; hence the information transfers from the 
input layer to the output layer of the neuronal network layer by layer. They can be calibrated using almost any 
type of input data (i.e., assumed risk factors), and the output can be one-dimensional or high dimensional (i.e., 
outcomes) and can simultaneously consider all possible interactions between those risk factors. Therefore, ANNs 
have been used to predict technique survival for peritoneal dialysis, and the results showed ANNs have higher 
accuracy than logistic regression models20,21. Marshall et al. created an ANN model to predict GFR, which showed 
better results than algebraic formulas. These studies confirmed that ANNs could deal with dialysis datasets22. In 
our previous study, we established an improved ANN model termed the kernel logistic neural network-restricted 
Boltzmann machine (KLNN-RBM) to solve complex variable screening problems efficiently23.

Moreover, fuzzy neural networks combine the advantages of fuzzy logic in processing vague and uncertain 
information, and neural networks in good learning abilities. The Takagi–Sugeno (T-S) type fuzzy neural network 
is the most widely used modelling method among fuzzy neural networks24. This technique has been applied in 
biological and clinical fields for modelling, especially in the processing of time-delay datasets (i.e., risk factors and 
outcomes) and has produced satisfactory results25,26. Therefore, the KLNN-RBM and the T-S type fuzzy neural 
networks appear to be viable methods to select variables and for modelling for assessing dialysis initiation.

To the best of our knowledge, this is the first report of the use fuzzy mathematics to develop a novel equation 
to assess dialysis initiation, which we termed as the “dialysis initiation based on fuzzy mathematics equation” 
(DIFE). Furthermore, we compared the DIFE with the conventional eGFR-based assessment and showed that 
the DIFE is more accurate to evaluate dialysis initiation. Our results suggest that the DIFE offers a novel method 
to assess the initiation of dialysis, and may have implications for decision-making related to dialysis initiation in 
clinical practice.

Methods
Study design and participants.  This retrospective cohort study encompassed 25 haemodialysis centres 
covering seven geographical regions of Mainland China. All the study centres serve as quality control centres of 
blood purification or were recommended by these centres in each province, municipality, or autonomous region.

The protocols were approved by the Ethics Committee of the First Affiliated Hospital of Dalian Medical 
University; the Chinese PLA General Hospital; the First Affiliated Hospital of Xi’an Jiaotong University; 
Guangdong General Hospital; Beijing Friendship Hospital; Capital Medical University; West China Hospital 
of Sichuan University; Zhongshan Hospital; Fudan University; Dalian Municipal Central Hospital; the First 
Affiliated Hospital; Sun Yat-sen University; the General Hospital of Shenyang Military Area Command; 
the General Hospital of Ningxia Medical University; Renji Hospital; School of Medicine; Shanghai Jiaotong 
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University; Huashan Hospital; Fudan University; Xijing Hospital; the Fourth Military Medical University; the 
General Hospital of Benxi Iron and Steel Co., Ltd; Daping Hospital & Surgery Institute; the Third Military Medical 
University; the Affiliated Zhong Shan Hospital of Dalian University; Lanzhou University Second Hospital; the 
First Affiliated Hospital of Harbin Medical University; the First Affiliated Hospital of Xinjiang Medical University; 
Zhejiang Provincial People’s Hospital; An Steel Group Hospital; Henan Provincial People’s Hospital; and The 
People’s Hospital of Zhengzhou University. We obtained written informed consent from each patient, and per-
sonal information was protected during data collection. All the study methods were performed in accordance 
with relevant guidelines and regulations.

Patients with ESRD who began maintenance haemodialysis between January 1, 2008, and September 30, 2013, 
were enrolled. Patients were 18–85 years of age, were diagnosed with chronic kidney disease (CKD), had two 
successive eGFR measurements of ≤30 mL/min/1.73 m2 within 3 months before haemodialysis initiation, and 
had commenced haemodialysis for a minimum of 3 months. The exclusion criteria were as follows: patients who 
were diagnosed with acute kidney injury (AKI); those who underwent or were scheduled to undergo peritoneal 
dialysis or kidney transplantation; those with a malignancy that significantly affected survival (e.g., malignant 
tumours, hepatic cirrhosis); and those who experienced accidental death caused by unexpected reasons, includ-
ing traffic accidents and suicide.

Of the 1802 patients who began haemodialysis between January 1, 2008, and September 30, 2013, 17 patients 
with missing serum albumin and serum phosphate data were excluded. The enrolled patients were divided into 
two cohorts according to the start time of haemodialysis. A total of 1281 patients who started haemodialysis 
between January 1, 2008, and December 31, 2011, were included as the development cohort, whereas 504 patients 
who started haemodialysis between January 1, 2012, and September 30, 2013, were retained within the validation 
cohort (Fig. 1).

Data collection.  Data from the time spanning the initiation of haemodialysis to the outcomes were extracted 
from the inpatient/outpatient records at the haemodialysis centres by the investigators of each centre. To assess 
the precision of the determination of clinical signs and symptoms from the medical records, three nephrologists 
(Y.L., X.H., and L.W.) independently reviewed the data of a random sample of 100 records. The documenta-
tion used for abstraction included inpatient medical records for haemodialysis initiation, first-time haemodi-
alysis records, laboratory data, and surgical records for first access. Baseline demographic data and clinical data 
included sex, birth date, date of haemodialysis initiation, first access, death date, primary disease, and comor-
bidity. The clinical signs and symptoms at the time of haemodialysis initiation were grouped as follows: heart 
failure, vomiting, uremic encephalopathy, and oedema grade 2+ and 3+. Determinations of the clinical signs 
and symptoms were made based on the clinical guidelines by nephrologists during the outpatient or inpatient 
consultations16.

Laboratory data collected within 3 months prior to haemodialysis initiation included haemoglobin, serum 
albumin, blood urea nitrogen, serum creatinine, serum potassium, serum sodium, free calcium, and serum phos-
phorus levels. In all the clinical laboratories of the study centres, serum creatinine levels were measured using the 
sarcosine oxidase method. The eGFR (mL/min/1.73 m2) at the initiation of haemodialysis was computed using 
the Chinese modified MDRD study equation 7: eGFR = 170 × serum creatinine−0.999 × age−0.176 × blood urea 
nitrogen−0.170 × serum albumin0.318 (×0.762 if the patient is female; ×1.202 if the patient is of Chinese descent). 
All participating investigators were nephrologists and had received uniform study training.

Outcomes.  The primary outcome was all-cause mortality within 3 years after haemodialysis initiation. The 
dates and reasons of death were obtained from the medical records of the study centres. Survival, expressed as 
months, was defined as the time from the start date of haemodialysis to the date of death for the patient (within 3 
years after initiation) or 36 months for the surviving patients.

Figure 1.  Flowchart of the study.
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Development of the DIFE.  Equation variable selection using the KLNN-RBM model.  Based on the recom-
mendation of the timing of haemodialysis initiation in the 2015 KDOQI guidelines16 and our previous study27, 13 
candidate variables were considered for inclusion in the DIFE, including age, sex, serum creatinine level, blood 
urea nitrogen level, serum albumin level, blood haemoglobin level, serum potassium level, serum phosphorus 
level, heart failure, vomiting, oedema grade 2+ and 3+, uremic encephalopathy, and diabetes mellitus. Sex, dia-
betes mellitus, heart failure, vomiting, oedema grade 2+ and 3+, and uremic encephalopathy were used as binary 
variables, and were transformed using dummy variable encoding (e.g., female = 1, male = 0; yes = 1, no = 0).

Using the KLNN-RBM model, the variables adopted to establish the DIFE equation were detected in the 
development cohort. We initialized weight and bias parameters with the help of RBM first, and then optimized 
the parameters using a modified maximum likelihood estimation and stochastic gradient descent method to 
obtain higher classification accuracy. The structure of the KLNN-RBM model is shown in Fig. 2. The inputs of 
the KLNN-RBM model included the candidate variables, whereas the output included the patient survival time 
after haemodialysis initiation (<12 months, 12–36 months, and >36 months). In other words, the development 
cohort was subjected to a three-classification condition. To determine reproducibility, twenty different numeri-
cal simulations were processed independently, and for each numerical simulation, 10-fold cross-validation was 
employed. Both the number of iterations from RBM and the stochastic gradient descent iterations were set as 100. 
Moreover, the mean of the simulation results indicated the classification accuracy for different combinations of 
the candidate variables. Through selection and comparison, according to the best classification accuracy, the final 
variables combination was settled.

Equation development using the T-S type fuzzy neural network.  The final variables were used to establish a T-S 
type fuzzy neural network in the development cohort. The weighting function multiplier W was introduced for 
numerical indicators to establish a new haemodialysis initiation evaluation equation. After removing the outli-
ers, 10-fold cross-validation was used for network training, and the parameters of the model were adjusted by 
particle swarm optimization (PSO)28. Based on a survival time of more or less than 36 months, patients in the 
development cohort were divided into two groups to determine the threshold and to evaluate the performance of 
the equation. Patients who survived for ≥36 months were assigned to the good survival group, whereas patients 
who survived for <36 months were assigned to the poor survival group. The sensitivity, specificity, and diagnostic 
accuracy of the 3-year mortality prediction after haemodialysis initiation were used to evaluate the equation’s per-
formance. The candidate threshold with the best performance was determined as the final threshold. Meanwhile, 
we developed a logistic model with the same variables as the DIFE using the development cohort.

Equation validation.  We divided the patients of the validation cohort into predicted timely and late start groups 
based on the DIFE threshold and plotted the Kaplan–Meier curves. Kaplan–Meier curves stratified by different 
eGFR thresholds (5, 6, 7, 8, and 9 mL/min/1.73 m2) were also created. The performance of the DIFE was validated 
based on the bootstrap-corrected Receiver-operator characteristic (ROC) area of the 3-year mortality prediction 
after haemodialysis initiation, and by comparing this with the logistic model and the conventional eGFR-based 
measurements, wherein eGFR was calculated by both the Chinese modified MDRD study (C-MDRD) equation 

Figure 2.  The structure of the kernel logistic neural network-restricted Boltzmann machine (KLNN-RBM) 
model.
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and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Furthermore, we calculated 
the sensitivity, specificity, and diagnostic accuracy rate of the C-MDRD equation at various eGFR thresholds (5, 
6, 7, 8, and 9 mL/min/1.73 m2) for 3-year mortality in the validation cohort.

Statistical analysis.  Continuous variables are expressed as the mean ± standard deviation or interquartile 
range. Categorical variables are expressed as frequencies (percentages). For the comparison of patient baseline 
data between the two cohort groups, continuous variables were evaluated using the Mann-Whitney U test, and 
categorical variables were evaluated using the χ2 test.

Statistical analysis was conducted using SPSS software (version 19.0; IBM, Armonk, NY, USA). All statis-
tical tests were two-sided. Statistical significance was set at p < 0.05. All ANN models were constructed using 
MATLAB software (version 2011b; The MathWorks Inc., Natick, MA, USA), whereas R (version 3.4.1) open 
source software (R Foundation for Statistical Computing; www.Rproject.org) was used for validation.

Results
Cohort description.  The baseline characteristics of the development cohort (n = 1281) and the validation 
cohort (n = 504) are presented in Table 1. Significant differences were observed in the body mass index (BMI), 
heart failure, vomiting, diabetes mellitus, haemoglobin level, blood urea nitrogen level, serum creatinine level, 
potassium level, calcium level, and phosphate level at the time of haemodialysis initiation between the two 
cohorts.

Within the first 3 years of haemodialysis, 156 patients died in the development cohort, and 57 patients died in 
the validation cohort. The 3-year mortality rate in the development cohort was 12.2 deaths per 100 patient-years, 
whereas the corresponding rate in the validation cohort was 11.3 deaths per 100 patient-years.

Equation variable selection using the KLNN-RBM model.  A total of 13 candidate variables were con-
sidered as the input variables in the KLNN-RBM model, including five variables (age, sex, serum creatinine level, 
blood urea nitrogen level, and serum albumin level) as part of the MDRD study equation 729 and eight poten-
tial clinical factors (i.e., blood haemoglobin level, serum potassium level, serum phosphorus level, heart failure, 
vomiting, oedema grade 2+ and 3+, uraemia, encephalopathy, and diabetes mellitus). Classification accuracies 
obtained by the combination of different candidate variables are listed in Appendix Table 1. The best classification 
accuracy (64.30%) was achieved by using the following nine candidate variables: age, sex, serum creatinine level, 

Development cohort 
(n = 1281)

Validation cohort 
(n = 504) P

Sex (male, %) 59.9 62.5 0.307

Age (years) 54.0 ± 13.8 53.1 ± 15.1 0.221

Body mass index (kg/m2) 16.7 ± 23.5 16.8 ± 11.2 0.002

Symptoms at the beginning of haemodialysis (yes, %)

  Heart failure 29.1 41.3 <0.001

  Vomiting 26.5 47.2 <0.001

  Oedema (II° and above) 45.0 49.6 0.077

  Uraemic encephalopathy 2.6 4.0 0.119

Diabetes (%) 22.4 29.2 0.003

Laboratory test levels at initiation

  Haemoglobin (g/dL) 8.5 ± 2.1 8.2 ± 2.1 0.033

  Albumin (g/dL) 3.5 ± 0.7 3.5 ± 0.6 0.148

  Blood urea nitrogen (mg/dL) 85.7 ± 5.7 91.5 ± 1.5 0.001

  Serum creatinine (mg/dL) 10.1 ± 4.5 10.0 ± 4.2 0.778

  Uraemia (µmol/L) 467.1 ± 163.1 449.7 ± 157.7 0.143

  Potassium (mmol/L) 4.8 ± 0.9 4.9 ± 0.9 0.012

  Sodium (mmol/L) 138.9 ± 4.3 139.1 ± 4.2 0.063

  Calcium (mmol/L) 2.05 ± 0.32 1.97 ± 0.30  < 0.001

  Phosphate (mmol/L) 2.0 ± 0.70 2.1 ± 0.70 0.028

eGFR (mL/min/1.73 m2)* 7.8 ± 3.9 7.6 ± 3.5 0.287

  ≤5 (%) 20.1 22.4

  5–10 (%) 61.1 60.7

  >10 (%) 18.8 16.9

Died within 3 years of haemodialysis initiation (%) 12.2 11.3 0.969

Table 1.  Baseline characteristics of the development cohort and validation cohort. Note:The conversion factor 
for the serum creatinine level in mg/dL to µmol/L is × 88.4; the conversion factor for the blood urea nitrogen 
level in mg/dL to mmol/L is × 0.357; the conversion factor for the haemoglobin and serum albumin levels in 
g/dL to g/L is ÷10. Abbreviation: eGFR, estimated glomerular filtration rate. *Calculated using the Chinese 
modified Modification of Diet in Renal Disease equation 7.

https://doi.org/10.1038/s41598-018-37762-6
http://www.Rproject.org


6Scientific Reports |          (2019) 9:5871  | https://doi.org/10.1038/s41598-018-37762-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

serum albumin level, haemoglobin level, heart failure, diabetes mellitus, blood urea nitrogen level, and serum 
phosphorus level. All the aforementioned variables were retained in the DIFE.

Equation development using a T-S type fuzzy neural network model.  A T-S type fuzzy neural 
network model was established in the development cohort using the nine selected variables. W in the equation 
was a function of six numerical variables (i.e., serum creatinine level, age, serum albumin level, haemoglobin 
level, blood urea nitrogen level, and phosphorus level), and served as a multiplier representing the effects of these 
variables on the patients’ outcomes.

= + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅

+ ⋅ + ⋅ +

= + + + + + + −

Y P P W P P e

P e P e P

W T T T T T T P

( Scr (ln(age)) Alb Hb (ln(BUN)) P

)

(1 exp( Scr Alb 4Hb ln(BUN) ))

P P P P P P
15 1 2 9

HF

10
DM

11
female

16

1 2 3 5 6
1

3 4 5 6 7 8

The parameters of the equation variables are shown in Appendix Table 2.1, and the variable parameters of 
the multiplier are shown in Appendix Table 2.2. The candidate thresholds and the equation performance in the 
development cohort under every candidate threshold are shown in Appendix Table 3, and the threshold was 
considered to be 30. The logistic model was set up with the same nine variables, with a calibration value of 8.06 
(P = 0.428) (shown in Table 2).

Performance of the equation in the validation cohort.  We tested the accuracy of the equation in the 
validation cohort. The diagnostic accuracy rate of the equation was 72.42%, the specificity was 75.84%, and the 
sensitivity was 45.61%, with a threshold of 30, which remained the best among the different candidate thresh-
olds. The 3-year mortality rates in the good survival group and poor survival group were 8.38 deaths per 100 
patient-years and 19.40 deaths per 100 patient-years, respectively. The validation accuracies were similar to those 
in the development cohort and showed robust performance with the DIFE (listed in Table 3). Moreover, we eval-
uated the performance of the C-MDRD equation in the validation cohort based on the eGFR thresholds (5, 6, 7, 8, 
and 9 mL/min/1.73 m2). The best sensitivity, specificity, and diagnostic accuracy rates for the conventional assess-
ment of 3-year mortality in the validation cohort were 19.3%, 77.0%, and 70.6% respectively, when the eGFR was 
5 mL/min/1.73 m2; however, the values were all lower compared with those obtained using the DIFE (Table 3).

Comparison of the equation with the logistic model and the conventional eGFR-based assess-
ments in the validation cohort.  We found that the area under the receiver-operating characteristic curve 
(AUC) was 0.70 (95% confidence interval [CI], 0.64–0.76) for the DIFE and 0.60 (95% CI, 0.53–0.68) for the 
logistic model; the P value was 0.021 after 2000 times bootstrapping. When compared with the conventional 
eGFR-based assessments, the AUC was 0.55 for the C-MDRD study equation (95% CI, 0.47–0.63) and 0.53 for the 
CKD-EPI equation (95% CI, 0.45–0.62); the P values were 0.013 and 0.006 after 2000 times bootstrapping (Fig. 3). 
Furthermore, the Kaplan–Meier curves for the predictive timely and late start groups, based on the DIFE thresh-
old, indicated a greater cumulative incidence of death in the predicted late start group (χ2_ = 212.1, P < 0.001; 
Fig. 4). Moreover, there was no significant difference between the two groups, regardless of the eGFR threshold 
(P > 0.05; Appendix Fig. 1).

Discussion
The GFR is commonly used to assess renal function and was also considered as a critical factor to evaluate the 
dialysis initiation time. However, eGFR alone is not sufficient to assess the dialysis initiation time16,30,31. Hence, we 
developed a novel equation, termed the DIFE, based on fuzzy mathematics and ANNs, which integrated multiple 
affecting factors, to assess dialysis initiation.

In this nation-wide prospective cohort, all the participants were enrolled from major haemodialysis centres 
in Mainland China. Nephrologists at these centres have considerable clinical experience and can make precise 

Variables β-coefficient P value
Hazard Ratio (95% 
Confidence Interval)

Serum creatinine, per 1 mg/dL 0.022 0.451 1.023 (0.965, 1.083)

Age, per 1 y 0.016 0.022 1.016 (1.002, 1.030)

Serum albumin, per 1 mg/dL −0.153 0.317 0.858 (0.653, 1.129)

Haemoglobin, per 1 g/dL 0.013 0.774 1.013 (0.927, 1.107)

Blood urea nitrogen, per 1 mg/dL −0.007 0.046 0.993 (0.985, 1.000)

Phosphate, per 1 mmol/L 0.161 0.286 1.174 (0.874, 1.578)

Heart failure 0.183 0.364 1.201 (0.809, 1.783)

Diabetes −0.104 0.620 0.902 (0.599, 1.358)

Male Sex 0.326 0.083 1.386 (0.958, 2.004)

Table 2.  Hazard Ratios for the Logistic Model in the Development Cohort. Note: The conversion factor for the 
serum creatinine level in mg/dL to µmol/L is × 88.4; the conversion factor for the blood urea nitrogen level in 
mg/dL to mmol/L is × 0.357; the conversion factor for the haemoglobin and serum albumin levels in g/dL to g/L 
is ÷ 10.
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subjective judgments regarding dialysis initiation. Therefore, the new equation developed based on data from 
these centres, would ensure the optimum and precise assessment of dialysis start time in China.

Some observational studies and meta-analyses suggested that several clinical factors at dialysis initiation (e.g., 
haemoglobin value, serum phosphorus level, and heart failure) were associated with the prognosis of patients 
with ESRD, and some of these variables were already present in certain predictive models for CKD, renal failure, 
and risk of death32–40. Moreover, the KDOQI guidelines recommended that the decision to initiate dialysis should 
be based on an assessment of multiple clinical factors, including demographic factors, renal function, nutritional 
status, clinical signs and symptoms, and comorbidity16. Hence, we included these factors in the KLNN-RBM 
model as candidate variables, among which the signs and symptoms variable was the most frequently docu-
mented and routinely obtained.

The kernel logistic regression models and restricted Boltzmann machines are both proven techniques to han-
dle feature selection and dimensionality reduction, and to determine the initial value of the model in classification 
situations. These two techniques have been used in disease diagnosis, gene screening, and other biological/ clini-
cal studies41–45. However, to optimize the initial parameters and promote the classification capability of the logistic 
model, we combined a kernel logistic neural network with RBM and established the KLNN-RBM model. In our 
previous study, we validated KLNN-RBM in a single centre prospective cohort of dialysis patients. The results 
showed that the KLNN-RBM achieved higher accuracy compared with traditional logistic regression27. We also 
used six University of California Irvine (UCI) Machine Learning Repository datasets to test the performance of 
KLNN-RBM. The UCI Machine Learning Repository is a widely used primary source of machine learning data 
sets for the empirical analysis of machine learning algorithms, which has some biological and clinical datasets. 
The results also showed that the KLNN-RBM could achieve higher accuracy for the binary classification and 
multi-class classification problems23. These suggested that the KLNN-RBM model is an appropriate method for 
candidate variable screening.

In the present study, the results showed that the combination of sex, age, serum creatinine, blood urea nitro-
gen, serum albumin, haemoglobin, serum phosphorus, diabetes mellitus, and heart failure as equation variables 
resulted in the best accuracy. The clinical factors employed within the DIFE equation were consistent with those 
in the clinical guidelines and other cohort studies10,16,34,35. Based on these studies, we successfully determined 
the quantitative combination of these clinical factors for the first time. We initially compared the results of DIFE 
with a logistic model that had the same variables as the DIFE, and the DIFE demonstrated better model dis-
crimination (the AUC of the DIFE was 0.70 vs. the AUC of the logistic model of 0.60). This result indicated that 
when integrating multiple variables, especially including some subjective judgments, fuzzy mathematics could 
be a more appropriate modelling method than traditional statistical methods. We also compared the AUC of the 
DIFE with those of two conventional eGFR-based assessments, and neither result was better than that of the DIFE 
(0.55 for the C-MDRD equation and 0.53 for the CKD-EPI equation). Therefore, the DIFE was more accurate to 
assess dialysis initiation than the conventional eGFR-based assessments. Furthermore, the Kaplan–Meier curves 
between the predictive timely and late start groups showed a significant difference based on the DIFE equation 
(P < 0.001); however, the C-MDRD equation and the CKD-EPI equation did not show any difference in the 
start time of dialysis for any eGFR value (P > 0.05). This result indicated that the DIFE could be a more suitable 
assessment method for the timing of dialysis initiation compared with the eGFR based conventional assessment.

The following example shows the manner in which the DIFE can provide a quantified assessment of dialysis 
initiation. The decision for haemodialysis initiation was unclear in two ESRD patients with the same eGFR of 

Candidate 
thresholds

Poor quality of 
life groupa N

Good quality 
of life groupb N Sensitivity % Specificity %

Diagnostic 
accuracy rate %

Mortality ratec in 
the poor quality of 
life group

Mortality ratec in 
the good quality of 
life group

The DIFE

29.00 93 411 29.82 83.00 76.98 18.28 9.73

30.00 113 370 45.61 75.84 72.42 19.40 8.38

31.00 185 319 59.65 66.22 65.48 18.38 7.21

32.00 239 265 77.19 56.38 58.73 18.41 4.91

33.00 299 205 87.72 44.30 49.21 16.72 3.41

eGFRdthresholds Early start 
groupeN

Late start 
groupfN Sensitivity % Specificity % Diagnostic 

accuracy rate %
Mortality ratecin the 
early start group

Mortality ratecin 
the late start group

The conventional 
eGFR-based 
assessment

5 391 113 19.3 77.0 70.6 11.8 9.7

6 320 184 31.6 62.9 59.3 12.2 9.8

7 252 252 42.1 49.0 48.2 13.1 9.5

8 200 304 49.1 38.3 39.5 14.5 9.2

9 134 370 66.7 25.7 30.4 14.2 10.2

Table 3.  Performance of the DIFE and the conventional eGFR-based assessment in the validation cohort 
Abbreviations: DIFE, dialysis initiation based on the fuzzy mathematics equation; eGFR, estimated glomerular 
filtration rate. aPatients who survived <36 months were assigned to the poor survival group. bPatients who 
survived ≥36 months were assigned to the good survival group. cMortality rate was reported as the rate per 
100 patient-years. dCalculated using the Chinese modified Modification of Diet in Renal Disease equation 7. 
ePatients scheduled to undergo dialysis with eGFR greater than or equal to the threshold were assigned to the 
early start group. fPatients scheduled to undergo dialysis with eGFR less than the threshold were assigned to the 
late start group.
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Figure 3.  Receiver-operator characteristic (ROC) curves comparing the performances of the DIFE, the 
Logistic model and the estimated glomerular filtration rate (eGFR)-based conventional assessments in the 
validation cohort. (A) The DIFE compared with the Logistic Model. The area under ROC curve (AUC) for 
the DIFE equation was 0.70 (95% CI, 0.64–0.76), and the AUC for the Logistic Model was 0.60 (95% CI, 
0.53–0.68). (B) The DIFE compared with the C-MDRD. The AUC for the C-MDRD equation was 0.55 (95% CI, 
0.47–0.63). (C) The DIFE compared with the CKD-EPI. The AUC for the CKD-EPI was 0.53 (95% CI, 0.45–
0.62). Abbreviations: DIFE, dialysis initiation based on the fuzzy mathematics equation; C-MDRD, Chinese 
modified Modification of Diet in Renal Disease equation; CKD-EPI, the Chronic Kidney Disease Epidemiology 
Collaboration equation.

Figure 4.  Kaplan–Meier survival curves of the patients in the validation cohort for initiating time to predictive 
death in 3 years separated by the DIFE threshold 30, P < 0.01 by log-rank test. Abbreviation: DIFE, dialysis 
initiation based on the fuzzy mathematics equation.

Patient A, 65-year-old man with 
eGFR* 10 mL/min/1.73 m2

Patient B, 25-year-old man with 
eGFR* 10 mL/min/1.73 m2

Laboratory data

  BUN (mg/dL) 80.0 60

  Scr (mg/dL) 6.6 9.0

  Alb (g/dL) 3.0 4.0

  Hb (g/dL) 8.0 8.0

  P (mmol/L) 2.2 2.2

Clinical signs and symptoms

  Heart failure No No

  Diabetes Yes No

  DIFE value 29.35 42.16

  Decision Should start haemodialysis at once Prepare and wait for haemodialysis

Table 4.  Assessment of two hypothetical patients with the same eGFR. Note:The conversion factor for the 
serum creatinine level in mg/dL to µmol/L is × 88.4; the conversion factor for the blood urea nitrogen level in 
mg/dL to mmol/L is × 0.357; the conversion factor for the haemoglobin and serum albumin levels in g/dL to 
g/L is ÷ 10. Abbreviation: eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; Scr, serum 
creatinine; Alb, serum albumin; Hb, haemoglobin; P, serum phosphorus; DIFE, dialysis initiation based on 
the fuzzy mathematics equation. *Calculated by the Chinese modified Modification of Diet in Renal Disease 
equation 7.
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10 mL/min/1.73 m2 (clinical data shown in Table 4). If the other clinical factors were not considered, the eGFR 
value alone could not be used to make this decision. However, the DIFE equation yielded significantly differ-
ent values: the value was 29.35 in patient A and 42.16 in patient B. Thus, the DIFE could directly identify that 
patient A required haemodialysis immediately, whereas patient B could undergo some preparation (e.g., vascular 
access placement) and undergo haemodialysis later. Liu reported that the major challenge for the management of 
patients with CKD in China is the lack nephrology specialists46. Patients with ESRD in China are usually treated 
by primary physicians who lack specialist training in nephrology and patients may receive inappropriate deci-
sions on dialysis initiation. The Chinese government is implementing reforms in the medical education system 
to produce well-trained primary health-care providers; however, this will take time given the country’s vast need. 
The DIFE could help primary physicians to quantitative assess the initiation of dialysis through the DIFE value. 
Furthermore, to be applied conveniently, we developed a mobile phone application of the DIFE. The physician 
can get the DIFE value directly by entering the variables into a mobile phone.

The present study had certain limitations. First, the DIFE included retrospective data from patients who had 
already undergone haemodialysis and may have excluded patients who died prior to haemodialysis initiation, 
which could lead to survivor bias. Second, because of some incomplete data in the retrospective cohorts, some 
clinical indicators, such as malnutrition symptoms and subjective global assessment (SGA), could not be included 
as candidate variables. We are conducting a prospective, multicentre, randomized, controlled trial concerned 
nutrition status, including SGA and malnutrition symptoms, to verify and improve the equation (the clinical-
Trials.gov ID is NCT 03385902). Although neural network techniques have been developed in a wide range of 
applications in recent years, and are proven to be superior to conventional statistical models to assess initiation of 
dialysis, how to optimize the structure and parameters in neural networks remains a challenge.

In the present study, we developed a novel fuzzy neural network model to evaluate the optimal time of hae-
modialysis initiation in a Chinese ESRD population. The variables in the equation included the clinical indicators 
of haemodialysis initiation, and the performance of the equation was found to be more precise than conven-
tional eGFR-based assessments. This equation may be a helpful tool to quantitatively evaluating the initiation of 
haemodialysis.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable re-
quest.
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