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Inferring Gene Regulatory 
Networks from a population  
of Yeast segregants
Chen Chen1, Dabao Zhang1,3, tony R. Hazbun2,3 & Min Zhang1,3

Constructing gene regulatory networks is crucial to unraveling the genetic architecture of complex 
traits and to understanding the mechanisms of diseases. on the basis of gene expression and single 
nucleotide polymorphism data in the yeast, Saccharomyces cerevisiae, we constructed gene regulatory 
networks using a two-stage penalized least squares method. A large system of structural equations 
via optimal prediction of a set of surrogate variables was established at the first stage, followed by 
consistent selection of regulatory effects at the second stage. Using this approach, we identified 
subnetworks that were enriched in gene ontology categories, revealing directional regulatory 
mechanisms controlling these biological pathways. our mapping and analysis of expression-based 
quantitative trait loci uncovered a known alteration of gene expression within a biological pathway that 
results in regulatory effects on companion pathway genes in the phosphocholine network. In addition, 
we identify nodes in these gene ontology-enriched subnetworks that are coordinately controlled 
by transcription factors driven by trans-acting expression quantitative trait loci. Altogether, the 
integration of documented transcription factor regulatory associations with subnetworks defined by a 
system of structural equations using quantitative trait loci data is an effective means to delineate the 
transcriptional control of biological pathways.

Gene expression is a fundamental step in the flow of information from an organism’s genotype to phenotype. The 
genetic information encoded in an organism’s DNA is transferred into a functional gene product (e.g., protein) 
via the process of gene expression, and gene expression leads to the formation of the organism’s phenotype. Gene 
expression have been found to be associated with a broad range of complex traits and diseases1, and thus play an 
important role in determining an organism’s development. Numerous efforts have been made to map phenotypes 
to gene expression in order to dissect their genetic basis.

Genes rarely act in isolation; instead, they interact with each other and make up gene regulatory networks 
to function as a whole2. The study of this mechanism is crucial for understanding the properties and functions 
of genes, which help reveal the genetic architecture of complex traits and diseases. Although genetic experi-
ments can be conducted to discover interactions among genes, this approach can be costly and time consuming. 
Alternatively, measurements of gene expression levels reveal gene expression patterns in a specific condition 
and can be exploited to infer gene regulatory networks. Various approaches have been proposed to infer gene 
regulatory networks using gene expression data, such as relevance networks3–7, Bayesian networks8–11, Gaussian 
graphical models12–15, and many others.

Recent advances in sequencing technologies make it feasible to obtain both whole-genome genotype and gene 
expression for each individual, i.e., genetical genomics data16. Combining genetics with gene expression reveals 
additional information on genetic structure and holds great promise for improving the accuracy of gene regu-
latory network inference. Numerous genetical genomics experiments, such as the Genotype-Tissue Expression 
(GTEx) project17, have been conducted to collect genetical genomics data.

Much effort has been devoted to using genetical genomics data for genome-wide association (GWA) analysis 
of gene expression, i.e., expression quantitative trait loci (eQTL) mapping18. Mapping of eQTL intends to eluci-
date variation of expression traits attributed to genomic variation, and to identify chromosomal loci (i.e., eQTL) 
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of genetic polymorphisms associated to the expression of a gene under investigation. An eQTL located within 
the region of the gene under investigation is called a cis-eQTL, otherwise it is called a trans-eQTL. While the cis 
effects of a gene represent direct regulations, indirect regulations of trans-eQTL are likely caused by interactions 
among genes. These eQTL provide insight on the functional sequences of the gene expression, and thus an indi-
rect interrogation of the functional landscape of gene regulations19.

Gene regulatory networks can be characterized using a system of structural equations20, with each equation 
describing the causal effects of cis-eQTL and the regulatory effects of other genes on a given gene. Such a frame-
work makes it feasible to take a genome-wide survey and to directly reveal interactions among genes. Application 
of structural equations in genetical genomics studies have been previously demonstrated21–24. Two studies are 
applicable to constructing gene regulatory networks for a small number of genes21,22. However, genetical genom-
ics experiments usually collect whole-genome gene expressions for a very limited number of samples, therefore 
the number of genes is much larger than the sample size. For such consideration, another study23 proposed to 
apply the adaptive lasso25 to construct a sparse gene regulatory network. An additional approach instead pro-
posed to maximize a penalized likelihood for constructing a sparse gene regulatory network24.

Here we construct gene regulatory networks in yeast via building up a large system of structural equations 
with the two-stage penalized least squares (2SPLS) method26. We applied the 2SPSLS method to an eQTL data-
set derived from a cross between a wild yeast vineyard strain and a laboratory strain27. Fitting one linear model 
for each gene at each stage, the 2SPLS method develops optimal prediction of a set of conditional expectations 
at the first stage, and consistent selection of regulatory effects from massive candidates at the second stage. It is 
computationally fast and allows for parallel implementation, outperforming the adaptive lasso based algorithm23, 
and the sparsity-aware maximum likelihood algorithm24, in terms of both accuracy and speed, for identifying 
regulatory effects in different network structures. This parallel implementation makes it feasible to evaluate the 
significance of regulatory effects via the bootstrap method. Using this approach we identified subnetworks that 
were enriched in gene ontology categories suggesting an extrinsic regulatory mechanism controlling these bio-
logical networks. Our eQTL predictions uncovered a known alteration of gene expression within a biological 
pathway that results in regulatory effects on companion pathway genes in the phosphocholine network. In addi-
tion, we delineate how nodes in these subnetworks are coordinately controlled by a transcription factor driven by 
trans-acting eQTL. For example, we detail how a proteasomal subnetwork is controlled by the RPN4 transcription 
factor, via a trans-acting eQTL, resulting in the coordinated expression of genes in this subnetwork.

Results and Discussion
Identified cis-eQTL. To investigate and demonstrate the utility of cis-eQTL to infer regulatory interactions 
among genes, we performed a genome-wide survey of the budding yeast, Saccharomyces cerevisiae. We used 
a well-established dataset that involved a cross between a laboratory strain (BY4716) and a wild yeast strain 
(RM11-1A) isolated from a California vineyard. At a significance level of 0.05, we identified 409 genes (out of a 
total of 5,727 genes), with significant cis-eQTL (Table S1 has each p-value listed). The set of cis-eQTL for each 
gene was filtered to control the pairwise correlation under 0.90, and then was further filtered to keep a maximum 
of three cis-eQTL that have the strongest association with the corresponding gene expression. Detailed results are 
provided in Supplementary Information (Table S1).

Constructed gene regulatory networks. The constructed network includes a total of 409 nodes and 
5,068 edges respectively (Table S2). Among 260 edges repeatedly identified in more than 80% of the 10,000 boot-
strap data sets, 258 edges, including 226 positive and 32 negative regulations, were in the 5,068 edges constructed 
from the original data set. The edges formed a number of subnetworks, among which 12 identified subnetworks 
have more than 5 genes (Table S3). We examined the 12 subnetworks for gene set enrichment using DAVID and 
found enrichments in gene ontology categories within each subnetwork (Table S4).

Figure 1 shows the largest subnetwork formed by these 260 edges, other constructed subnetworks are listed in 
Supplementary Information (Table S3). This large subnetwork (subnetwork 1) was subjected to YeastMine anal-
ysis to identify gene ontology enrichments and pathways28. This analysis revealed that 17 genes in subnetwork 1 
are involved in a variety of biosynthetic pathways (p-value = 4.17E-07) and synthesis of secondary metabolites 
(Table S5). Many genes within this subnetwork are involved in amino acid synthesis and we also observed a subset 
of connected genes that were closely associated with phosphocholine metabolism. The enrichment in gene ontol-
ogy terms for the subnetworks demonstrated that using the 2SPLS method of constructing regulatory cis-eQTL 
results in identification of clusters of genes with common biological function. The closely connected nodes with 
genes of common function suggest that genetic polymorphisms commonly result in compensating regulatory 
events of companion genes.

Comparison to existing databases (stRING and BioGRID). To investigate the constructed gene reg-
ulations with involvement of downstream protein-protein interactions, we compared the subnetworks to the 
known and predicted protein-protein interactions in the STRING database (http://string-db.org/)29. Developed 
by a consortium of institutions, the current version of STRING collects information of 9,643,763 proteins from 
2,031 organisms. The comparison demonstrated common and enriched processes that parallel the gene ontology 
enrichments detected via DAVID analysis. For example, subnetwork 6 yielded a highly connected set of nodes 
that involved proteasome subunits and associated proteins reflecting the molecular architecture of the protea-
some complex and this subnetwork is further analyzed in this report. Analysis of Subnetwork 1 with STRING 
database also revealed that CHO1, ITR1 and OPI3 are interconnected identically to the phosphocholine network 
discussed in the following section (highlighted in yellow of Fig. 1). Similar results were obtained when comparing 
to BioGRID using the YeastMine tool (Table S5)28,30. These striking examples of similar network organization 
observed in STRING with our predictions validated our approach and prompted the examination and integration 
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of these subnetworks with the literature and other functional genomics database information such as mRNA 
profiling.

the phosphocholine subnetwork. All of the genes in the phosphocholine subnetwork (highlighted in 
yellow of Fig. 1), except for OPT1, have similar patterns of regulation and are repressed by the presence of inositol 
or choline in yeast growth medium. The majority of the genes (MHO1, ITR1, CHO1 and OPI3) are involved in 
lipid metabolism and are subject to transcriptional regulation by the Opi1 repressor31. Strikingly, two of these 
genes are in a linear metabolic pathway converting cytidine diphosphate diacylglycerol (CDP-DAG) to phos-
phocholine (CHO1 and OPI3) (Fig. 2)32. ITR1 encodes a transporter that imports exogenous inositol from the 
growth media. The function of MHO1 is unclear, but the gene has been shown to be synthetic lethal with PLC1, 
an enzyme involved in the production DAG and inositol trisphosphate (IP3)33. The eQTL-based prediction of 
reciprocal positive regulation between genes within the DAG-phosphocholine pathway indicates a regulatory 
interdependence of these genes (MHO1, ITR1, CHO1 and OPI3). Interestingly, these genes are coordinately 
controlled by the Ino2-Ino4 transcription factor complex via the inositol sensitive upstream activating element 
(UAS-INO) but additional regulation may be exerted based on mRNA abundance level of pathway components. 
For example, CHO1 mRNA stability increased in response to respiratory deficiencies leading to increased phos-
phatidylserine levels and activities of other CDP-DAG pathway enzymes34. The regulatory mechanisms involved 
for phospholipid synthesis are complex and include biochemical regulation by several phospholipid precursors 
and products including phosphatidic acid (PA) and CDP-DAG35. PA helps to sequester the Opi1 repressor away 
from the nucleus36 and elevated levels of CDP-DAG favors the Opi1-mediated repression of genes under control 
of the UAS-INO element35, shown in Fig. 2.

In addition, inositol-based regulation has been observed to control various metabolic pathways involved in 
membrane biogenesis including the activation of OPT1, an oligopeptide and glutathione transporter encoding 
gene31. The prediction that OPI3 negatively regulates OPT1 expression is consistent with the opposite effects 
of inositol on these two genes. An examination of the expression pattern of OPT1 and OPI3 shows the strong 
anti-correlated expression pattern between these genes (Fig. 3A). The inferred gene-gene relationships for this 
phosphocholine subnetwork demonstrate the utility of our eQTL analysis to delineate biologically relevant path-
ways. In addition, our analysis implicated that a poorly characterized gene, MHO1, may have a functional role in 
the phosphocholine pathway.

Examination of the sequence of the RM and BY parental strains for the genes in the phosphocholine subnet-
work revealed a lack of nonsynonymous polymorphisms within the OPI3 gene and the presence of four single 
nucleotide polymorphisms (SNPs) in the upstream promoter region (500 bp from the ATG). The identical amino 
acid sequence of Opi3 present in the RM and BY strains suggests that the differences between strains is due to 
expression level of the protein but not due to any differences in protein stability or activity. One of the SNPs was 

Figure 1. The largest gene regulatory subnetworks in yeast. While the dotted, dash-dotted, dashed, and solid 
lines implied the corresponding connections were constructed respectively in [80%, 90%), [90%, 95%), [95%, 
100%), and 100% of the bootstrapping data sets, the blue arrow- and red bar-headed lines indicate up and down 
regulations, respectively. Highlighted in yellow is the Inositol subnetwork in which several genes involved in 
the CDP-DAG/phosphocholine pathway are coordinately repressed by exogenous inositol. Within the amine 
biosynthetic process subnetwork highlighted in green, LEU2, LPD1, YGR012W, LYS14, ILV6, and ARO4 are 
involved in multiple biosynthetic processes (as shown in Table S5).
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located at the -1 position upstream to the start codon, which is a position demonstrated to affect gene expression 
level. The adenine nucleotide in the BY strain favors a higher expression level compared to guanine for the RM 
parent based on large scale analysis of variant nucleotides at the -3 to -1 position relative to the start codon37. This 
is reflected in the overall expression levels observed for mRNA levels in the eQTL expression data set from Serial 
Pattern of Expression Levels Locator (SPELL) database38: ~1.5 fold lower expression for 12 RM parent values 
compared to a BY reference pool (see Tables 1 and S4). The CHO1 gene exhibited an expression difference of 1.2 
fold or lower between the RM and BY parents. Genes with similar mRNA levels between the parent strains do not 
harbor SNPs that are driving the expression differences evident in the segregant progeny strains suggesting the 
presence of trans-acting SNPs as discussed in the proteasome subnetwork section below. In addition to SNPs in 
the promoter region, the other genes in the network exhibited nonsynonymous polymorphisms using the Variant 
Viewer analysis tool39, as shown in Table 1.

Figure 2. The pertinent features of the phosphocholine pathways. The CDP-DAG phosphocholine pathway 
shows the involvement of genes implicated in the eQTL–based phosphocholine subnetwork (Blue font) - CHO1, 
OPI3 and ITR1 (transport of external inositol). PA inhibits the Opi1 repressor translocation to the nucleus. 
Low levels of PA result in translocation of Opi1 to the nucleus and the association and repression of the Ino2/
Ino4 heterodimeric transcription factor. Low levels of inositol result in activation of transcription of several 
phosphocholine pathway genes and MHO1 and repression of OPT1.
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Figure 3. Correlation of expression for genes in the phosphocholine network. (A) Pairwise correlation plot 
between the 6 genes in the phosphocholine subnetwork for the eQTL expression data from parental strain 
replicates27. (B) Pairwise correlation plot between the 6 genes involved in phosphocholine subnetwork for 
independent expression datasets from SPELL39. The color indicates the direction of the correlations (blue 
indicates positive and red indicates negative) and the shape represents the strength of correlation.
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Validation of expression patterns using independent datasets. From the SPELL database, we input 
all 6 genes from the phosphocholine subnetwork to identify expression profiling experiments that had correlated 
data for the query genes. This approach resulted in 7 datasets with relevance weighting larger than 1.0% compared 
to all other experimental datasets. Among these, several datasets had missing data or very low levels of expression 
for the 6 genes of interest with the exception of 3 datasets, which were subjected to further analysis. We calcu-
lated the pairwise correlation between these 6 genes and visualized the correlation matrix using the R package 
“corrplot” (https://cran.r-project.org/web/packages/corrplot/index.html) for one of these data sets that focused 
on hypo-osmotic shock40. The pairwise correlation plot41 is presented in Fig. 3B. This independent expression 
data set demonstrated the strong anti-correlation between OPT1 and the other genes within the phosphocholine 
subnetwork, which is consistent with the prediction of negative regulation of OPT1 by OPI3. Other genes in the 
network demonstrated similar correlation plots to the eQTL data from parental replicates with the exception 
of the THI7-OPT1 pair, which appears to be regulated differently in hypo-osmotic conditions. The THI7 gene 
encodes a transporter that facilitates the uptake of thiamine and is upregulated in the hypo-osmotic experiment 
whereas it is down-regulated in the RM strain compared to the BY parent strain. The regulatory relationship 
between THI7-OPT1 pair appears complex and is altered depending on environmental conditions and stress.

the proteasome subnetwork. Analysis of the genes in subnetwork 6 indicated enrichment in 
ubiquitin-dependent protein catabolic processes (p-value = 1.25E-04 which is adjusted to 0.014 by applying the 
Bonferroni method), shown in Table S4. This subnetwork included 4 genes that encode proteasomal subunits. 
The network structure indicated extensive reciprocal regulation between proteasomal genes (Fig. 4A). The pro-
teasome has key roles in cellular homeostasis and is subject to multiple regulatory mechanisms42. This reciprocal 
regulation predicted by our eQTL analysis is consistent with a proposed feedback circuit in which the RPN4 tran-
scription factor upregulates proteasomal genes but is also degraded by the proteasome. A similar feedback mecha-
nism exists in higher eukaryotes because deletion of the regulatory S5a/Rpn10/p54 subunit results in extreme and 
coordinate upregulation of other proteasomal genes43. Additional studies with RNA interference in Drosophila 
indicate that knockdown of gene expression of a proteasomal subunit results in upregulation of the companion 
subunit mRNAs44,45. A mechanism underlying mRNA upregulation in higher eukaryotes appears to be dependent 
upon the 5′ untranslated mRNA region46. These and other studies have culminated in a model where factors such 
as proteotoxic stress, proteasome inhibitors and proteasomal gene mutations have been documented to upregu-
late proteasome levels via RPN4 -mediated transcription. RPN4 is a transcription factor that specifically binds to 
the Proteasome Associated Control Element (PACE) found in most proteasome genes47,48 resulting in coordinate 
regulation of many proteasome genes (Fig. 4B). The positive regulation predictions between proteasome genes 
outlined in subnetwork 6 (Fig. 4A) may reflect this coordinate regulation. The RM and BY parent strain gene 
expression data, 6 BY parent strains and 12 RM parent strains, indicated similar expression levels27 between the 
proteasomal genes (Fig. 4C) suggesting that trans-acting polymorphisms are driving the expression differences 
evident in the segregant progeny strains. The other three genes in this network (CCT2, SEN1 and SMF1) have 
differing expression levels between RM and BY parent strains. The prevalence of trans-acting eQTL has been 
documented and previously reported for this dataset between 22–48%49. The regulatory events observed in sub-
network 6 maybe controlled by RPN4 because six nodes (RPN6, CDC53, RPN5, SPT16, RPN1 and RPT5) have 
documented regulations by RPN4 based on the YEASTRACT database50, shown in Table S7. The edges in this 
network may reflect the timing of expression driven by RPN4 and not the direct regulation of one proteasomal 
gene by another proteasomal gene. Further examination of all the subnetworks using the YEASTRACT database 
shows several networks that are controlled by one or more transcription factors (Table S7). In total, this protea-
some subnetwork example demonstrates that interpretation of eQTL regulatory information must be integrated 
with heterologous information such as transcription factor activity. This integrated approach recapitulates the 
biological networks controlled by transcription factors.

Conclusions
In this work, we constructed gene regulatory networks in yeast via establishing a large system of structural equa-
tions. By integrating genomic information into gene regulatory network construction, we identified subnetworks 
that were enriched in gene ontology categories revealing regulatory mechanisms controlling these biological 
pathways. Our eQTL predictions uncovered a known alteration of gene expression within a biological path-
way that results in regulatory effects on companion pathway genes in the phosphocholine network. In addition, 
we delineate how nodes in these subnetworks are coordinately controlled by a transcription factor driven by 

Gene
Nonsynonymous 
SNPS SNPS in Promoter REGIONa

RM/BY Fold 
Change P-Valueb

CHO1 A9T; L234F 6 (−78; −79; −213; −228; −375; −451) 1.24* 0.02

ITR1 C521F 2 (−211; −286) 0.98 ns

MHO1 A331T; F164I 4 (−141; −169; −224; −285) 1.11** 0.002

OPI3 None 4 (−1; −389; −395; −450) 1.51** 0.008

OPT1 A200V; V439I 4 (−108; −142; −143; −333) 0.98 ns

Table 1. Summary of SNPs and gene expression difference between RM and BY strains for genes in the 
phosphocholine network. aThe total number of SNPs in the promotor region within 500 bp upstream of the gene 
start. bP-value calculated by comparing 12 RM parent strains to 6 BY parent strains (ns = not significant).
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Figure 4. Proteasomal subnetwork is subject to feedback regulation. (A) Subnetwork 6 contains four 
proteasomal genes and other genes enriched for ubiquitin-dependent protein catabolic processes. (B) Feedback 
regulation model depicting the control of proteasomal gene transcription. The RPN4 transcription factor binds 
to the promoter of proteasomal genes via the PACE DNA site and initiates proteasomal gene transcription. 
The RPN4 transcription factor is modified by ubiquitin (Ub) and degraded by the proteasome. Mutations to 
proteasomal genes, SNPs or proteotoxic activity result in the inhibition of RPN4 degradation. (C) Heat map 
depicting the expression level of each strain (6 BY parent strains and 12 RM parent strains27) for genes in 
the proteasomal subnetwork. Six genes within the network have evidence of regulation by RPN4. The RPN4-
regulated genes do not exhibit any difference between BY and RM parent strains suggesting that trans-acting 
eQTL are impacting expression in segregant strains. Note other genes in the network do demonstrate different 
expression levels between the parent strains.
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trans-acting eQTL. Hence, directionality of the edges in the subnetworks may reflect the timing of transcription 
control of these related genes. We expect that it is possible to build regulatory networks with increased size and 
accuracy with more extensive datasets of eQTL. For example, several studies have used additional quantitative 
traits, multi-parent crosses and also integrated other phenotypic markers such as metabolite levels in probing 
yeast biological networks51–54. This study demonstrates that 2SPLS analysis provides insight on understanding 
regulatory relationships among genes, which reveal the genetic architecture of complex traits and diseases.

Materials and Methods
eQTL analysis. We analyzed a yeast data set with 112 segregants from a cross between two strains BY4716 
and RM11-la27. The study measured mRNA expression combined with genotyping data (2,956 SNPs) from the 
112 haploid segregant progeny from the BY4716 and RM11-la cross. The data were obtained from the Gene 
Expression Omnibus55 (GEO; http://www.ncbi.nlm.nih.gov/projects/geo/) with a GEO accession number of 
GSE1990. A total of 5,727 genes were measured for their expression values, and detailed procedure of normali-
zation was previously described27. Briefly, base 2 logarithm transformation of the gene expression ratio (sample/
BY4716 reference) was calculated and averaged over duplicated samples. The data were then normalized using 
MAANOVA package56. As previously described27, the missing genotype information of the available 2,956 mark-
ers was imputed using sample mean prior to analysis. To identify eQTL for each gene, the expression of each gene 
was regressed against all markers in the gene and within 500 bp upstream of the genetic region, using a simple 
linear regression model.

Network construction. Denoting the expression values of p genes as Y = (Y1, …, Yp) and the genotypic 
values of q polymorphisms as X = (X1, …, Xq), we characterized the gene regulatory network using a system of 
structural equations,

= Γ + Ψ + ΕY Y X , (1)

where the p × p matrix Γ has zero diagonal elements and contains gene regulatory effects, the q × q matrix Ψ 
contains causal genomic effects from cis-eQTL, and E is an n × p matrix of error terms. We assume that X and E 
are independent of each other, and each component of E is independently distributed as normal with zero mean 
while its rows are identically distributed.

With the expression levels of the 409 genes and the genotypes of the selected cis-eQTL for each of 112 seg-
regants, we applied the 2SPLS method26 to establish the system (1) for constructing a gene regulatory network 
in yeast. Fitting a single regression model for each endogenous variable at each stage, 2SPLS employs the ridge 
regression at the first stage to obtain consistent estimation of a set of conditional expectations, and the adaptive 
lasso25 at the second stage to consistently identify regulatory effects among a huge number of candidates.

To evaluate the reliability of constructed gene regulations, we generated a total of 10,000 bootstrap data sets 
(each with 112 segregants) by randomly sampling the original data with replacement, and applied 2SPLS to each 
data set to infer the gene regulatory network.

SPELL - S. cerevisiae. To validate the results using independent datasets, we searched the SPELL database 
(http://spell.yeastgenome.org/)38. The phosphocholine subnetwork genes were entered into SPELL and exper-
imental datasets were identified that had expression data for all genes and were highly ranked with relevance 
weighting larger than 1.0%. Using this approach, we identified three datasets for analysis and demonstrated inde-
pendent validation of the predicted phosphocholine subnetwork structure.

Identification of controlling transcription factors. A curated database of yeast transcription factors 
was used to identify transcription factors that are associated with regulating genes within subnetworks. The Yeast 
Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT) database includes over 163,000 
regulatory associations curated from the literature50. Genes within each subnetwork were used as the input gene 
list to search for transcription factors that are documented or potentially regulate gene within the list. Genes were 
considered to have a regulatory association with the transcription factor if there was documented DNA binding 
evidence plus expression evidence. The transcription factors were ranked by percentage of genes regulated by the 
respective transcription factor and the output for each subnetwork was included in the Supporting Information.

Data Availability
While the gene expression information can be found at Gene Expression Omnibus database with accession no. 
GSE1990, the genotype data are provided in the Supplemental Material with permission from Leonid Kruglyak. 
The gene expression of 12 RM and 6 BY parent strains are collected from Serial Pattern of Expression Levels 
Locator (SPELL) database (http://spell.yeastgenome.org/)38. The gene expression from the hypo-osmotic shock 
experiment39 can be downloaded from https://spell.yeastgenome.org/search/dataset_details/1002.
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