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In-Situ observation of local atomic 
structure of Al-Cu-Fe quasicrystal 
formation
Hadi Parsamehr1, Ying-Jiu Lu2, Tzu-Ying Lin3, An-Pang Tsai4,5 & Chih-Huang Lai   1

The phase and local environment, neighbouring atoms and coordination numbers (CN), for an Al-Cu-Fe 
multilayer were studied during heating (to 800 °C) and cooling (to room temperature) processes using 
in-situ X-Ray diffraction (XRD) and in-situ X-ray absorption spectroscopy (XAS) techniques to investigate 
the formation of Al-Cu-Fe quasicrystals (QCs). In-situ XRD clarified the transition of the ω-Al7Cu2Fe 
phase to a liquid state at the high temperature which transformed into the QC phase during cooling. 
The in-situ XAS showed a relatively small shift in distance between Cu-Al and Fe-Al during the phase 
evolution from RT to 700 °C. The distance between Cu-Cu, however, showed a significant increase from 
ω-phase at 700 °C to the liquid state at 800 °C, and this distance was maintained after QC formation. 
Furthermore, the CN of Fe-Al was changed to N = 9 during cooling. Through our observations of 
changes in CN, atomic distances and the atomic environment, we propose the local structural ordering 
of the quasicrystalline phase originated from a liquid state via ω-phase. In this study, we give a clear 
picture of the atomic environment from the crystalline to the quasicrystalline phase during the phase 
transitions, which provides a better understanding of the synthesis of functional QC nanomaterials.

Quasicrystals (QCs) lack translational symmetry but retain long-range order in the spatial arrangement of atoms, 
the pattern of which never repeats1. These unique materials were initially believed to only be formed in a metasta-
ble state as their internal energy lays in an intermediate state between a crystal and an amorphous solid2. Multiple 
examples of stable QCs have been found3, notably Al-Cu-Fe QCs4. The Al-Fe-Cu system has been extensively 
studied due to the availability and affordability of the system’s components5. However, the mechanism of local 
atomic ordering in the transition from a crystalline to a quasicrystalline state is not well understood. A more thor-
ough understanding of the formation, phase stability, structure, and the properties of this phase is necessary to 
exploit QC materials for industrial applications, such as coatings that can significantly increase surface corrosion 
durability, mechanical strength and wear resistance. Thus, structure characterisation throughout the formation 
of the QC is crucial to achieve these aims. Previous research has utilised techniques such as X-ray diffraction 
(XRD) and neutron scattering to study QC phases and structures4,6–9; however, due to their weak sensitivity, such 
techniques cannot capture the peculiarities of the local structure. Transmission electron microscopy (TEM) has 
also been used10–16, but this technique can only examine a small part of a specimen. On the contrary, the X-ray 
absorption spectroscopy (XAS) techniques can probe a much more substantial area. The main advantage of XAS 
over other techniques is that it provides a more detailed look at the number of neighbouring atoms, the type of 
atoms in the immediate environment of the absorbing atom, and the distances between central and neighbouring 
atoms. However, previous studies on QCs using XAS are quite limited and have been carried out in an ex-situ 
manner in which the changes to phase composition and structure under the heating and cooling conditions can-
not be observed17–22. The coordination numbers (CN) and atomic distances for QCs and other crystal structures 
for Al-Cu-Fe have been observed at room temperature23; however, due to the ex-situ nature of this study, the 
CNs and atomic distances of different phases during the phase evolution and during the liquid state preceding 
QC formation have yet to be determined. To understand the properties during these phase evolutions up to QC 
formation, we employed in-situ XAS techniques, which can contribute valuable information regarding structural 
characterisation throughout formation.
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In this paper, we apply the X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure 
(XANES) techniques in an in-situ study of QC thin film formation with the aim of determining the local mech-
anism responsible for the transition from a multilayer structure to a quasicrystalline state. Here, a multilayer 
Al-Cu-Fe structure (Si/SiO2/Al2O3/Al/Cu/Fe/SiO2) was annealed with a maximum temperature of 800 °C before 
being cooled back down to room temperature (RT). Thin films were used due to their notable advantages over 
bulk and powder samples, namely, their multilayer structure enables a clear picture of how the individual ele-
ments interact at different temperatures and how phases change during these temperature shifts24. Since anneal-
ing time and treatment methods have been shown to be crucial to the final phase evolution of the Al-Cu-Fe QC 
system2–4,25, EXAFS data were collected at different temperatures throughout the heating and cooling processes to 
capture the phase changes between Al, Cu and Fe. By combining the XANES and EXAFS data, we can determine 
interatomic distance, neighbouring atoms and CN for Cu and Fe as the QC forms.

Materials and Methods
Thin film preparation and characterization.  Thin film depositions were made in a sputtering system 
equipped with five targets including elemental targets of Al, Cu and Fe. The Al–Cu–Fe films were deposited 
using Al (99.99% purity), Cu (99.99% purity) and Fe (99.99% purity) with circular targets ø3 inches in size. The 
thickness of the Al and Cu targets was 5 mm; a thinner target of 1.6 mm thickness was used for Fe. The back-
ground pressure was approximately 6 × 10−8 Torr, and no heat was applied during the depositions. Ar (99.999% 
purity) was used as the sputtering gas in all depositions with a sputtering pressure of 3 mTorr for depositions on 
cleaned Si/SiO2 substrates. The substrates were rotated at a rate of 50 rpm to improve the deposition uniform-
ity. The deposition rates were 0.133 nm/s, 0.131 nm/s and 0.083 nm/s for Al, Cu and Fe, respectively. The layers 
were deposited with a total thickness of 1500 nm. The sequence of the samples used for both the in-situ XRD 
and in-situ EXAFS measurements was as follows: Si/SiO2/Al2O3/Al (1050 nm)/Cu (300 nm)/Fe (150 nm)/SiO2 
(Fig. 1a). The in-situ XRD (HTXRD 6000 Shimadzu) measurements were used to collect the phases transition 
from RT to 800 °C and after cooling at RT. An XRD-1500 High-Temperature Oven (ADC Inc.) was used as an 
in-situ XAS chamber. The sample was heated in a vacuum condition, which was produced by a turbo pump with 
the pressure decreased to 5 × 10−7 Torr to avoid sublimation and oxidation. The heating-cooling profile was same 
for the in-situ XAS and in-situ XRD (Fig. 1b) and the average heating rate was 20 °C/min while the cooling rate 
was 50 °C/min. We also carefully checked if the sample was oxidized after the heat treatment. XANES spectra for 
Cu and Fe (Supplementary Fig. 1) as well as XPS data (Supplementary Fig. 2) for all three elements all reveal that 
no significant oxidation was observed after annealing.

The in-situ XRD measurements showed different phase transitions during the heating and cooling. A sum-
mary of the in-situ XRD data and the appearance of the different phases at different temperatures are shown in 
Fig. 1b. These phase transitions will be discussed in the following section.

X-ray absorption measurements and analyses.  X-ray absorption measurements were carried out 
with synchrotron radiation using the EXAFS facilities installed at the National Synchrotron Radiation Research 
Center, Hsinchu, Taiwan. The XAS measurements above the K-edges of Cu (8979 eV) and Fe (7112 eV) were per-
formed with the BL17C1 beamline. In this study, the EXAFS spectra were analysed using the IFEFFIT26 software 
package for calculating amplitudes and phases. IFEFFIT, an interactive program for EXAFS analysis, corrects 
for instrumental effects, normalises unit edge steps, interpolates k-space, subtracts background interference and 
performs Fourier transformation27.

To have a better fitting, there are five variable internal parameters in EXAFS equation including N (coordi-
nation number), amplitude reduction factored (0.9 ≤ S0

2 ≤ 1), the mean square variation in path length known 
as disorder term (σ2), the change in energy from theoretical data (ΔE ≤ 3 eV) and the change in interatomic dis-
tance(ΔR). The first three parameters (N, S0

2 and σ2) known as the amplitude of the EXAFS oscillations and the 
ΔE and ΔR are the phase of oscillations28. The error bars for the atomic distance is related to the fitting parameter.

Figure 1.  (a) Multilayer structure (Si/SiO2/Al2O3/Al/Cu/Fe/SiO2; (b) Heating-cooling profile for in-situ 
measurements vs phase evolution for Al-Cu-Fe from in-situ XRD.
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Results and Discussion
A multilayered Al-Cu-Fe thin film was studied by in-situ XRD to observe the phase evolutions at specific tem-
peratures during the heat treatment and cooling process. In addition, in-situ XAS was used to understand the 
local environment of Cu and Fe when these different phases were present. A single multilayer sample structure 
was prepared, and this sample was divided into several identical pieces for the in-situ XAS and the in-situ XRD 
experiments. The paper reports the results of a single in-situ XAS and a single in-situ XRD experiment with all 
data collected continuously at different temperatures. The data are quite reproducible as long as the thicknesses, 
heat treatment and layer sequences are same as detailed in the present work. For the in-situ XAS experiment, five 
scans were made at one temperature of the same sample within a single experiment, and the data from these scans 
were averaged to ensure accurate results at each of the temperature points.

The XANES-EXAFS spectrum related to the Cu K-edge (8979 eV) and Fe K-edge (7112 eV) were taken 
to observe the numbers of neighbouring atoms for Cu and Fe, the types of atoms in their local environments, 
and the distances between central and neighbouring atoms. The particulars of the EXAFS procedure used here 
have been described in detail elsewhere29,30. Throughout the in-situ XRD analysis, the phase transitions can be 
observed, as shown in Fig. 1b. Here, to clarify the interactions between Al, Cu and Fe, we divided these phase 
transitions into the following stages: RT to 350 °C, 350 °C to 470 °C, 470 °C to 700 °C, 700 °C to 800 °C, and the 
cooling from 800 °C to RT.

FDMNES simulation.  The XAS spectra of all the phases, identified by in-situ XRD, were simulated by Finite 
Difference Method (FDM) in FDMNES to verify the XAS experimental data. The FDM, introduced by Yves Joly 
to calculate the potential in the interstitial region31, is based on the Schröodinger equation to calculate X-ray 
absorption near-edge structure (XANES) spectra in the EXAFS. This method can be used to find the best fit for 
XANES. With FDMNES, the spectra of real and virtual absorption can be calculated. The crystal structure and 
symmetry for each phase for Cu and Fe K-edges with the range of 3 Å to 8 Å in the cluster radius were calculated 
by FDMNES to find the optimum cluster radius size from the simulation which can be used to compare to the 
experimental data from XAS. The optimum cluster size can be achieved when the trend of the graph with increas-
ing the size of the cluster remains unchanged. The radius of the cluster needs to be sufficiently large in order 
to accurately calculate the final photo-excited state32,33. The optimum cluster sizes for the Cu K-edge from the 
FDMNES simulation for Cu, η-AlCu, θ-Al2Cu, β-Al (Cu, Fe) and ω-Al7Cu2Fe phases are 6 Å, 5 Å, 5 Å, 6 Å and 3 Å, 
respectively. As for the Fe K-edge, the optimum cluster sizes for Fe, β-Al (Cu, Fe) and ω- Al7Cu2Fe phases are 6 Å, 
5 Å, and 3 Å, respectively (see Supplementary Fig. 1).

Formation of Al-Cu binary phase.  The phase evolution of the Al-Cu-Fe multilayer in the initial stage 
of the heating process, from RT to 350 °C, was captured by in-situ XRD (Fig. 2a). At this stage, both η-AlCu 
and θ-Al2Cu are present. From the graph, we can observe that the Al, Cu and Fe lattices started to expand at 
200 °C. This expansion enabled an interaction between Al and Cu as well as the formation of η-AlCu and θ-Al2Cu 
with different orientations at 300 °C. θ-Al2Cu appeared in (110), (200), (211), (310) and (202) orientations, and 
the intensity of these orientations increased when the temperature reached 350 °C. Besides θ-Al2Cu, η-AlCu 
was also seen in (110) and (020) orientations, and these orientations grew as the temperature increased. The 
insert in Fig. 2a provides a schematic diagram of η-AlCu (space group: 12, PEARSON mC20; lattice parameters: 

Figure 2.  In-situ XRD graph form RT to 350 °C and the schematic of η-AlCu and θ-Al2Cu that formed from 
interaction of Al and Cu (a); the modulus of the Fourier transform |F(R)| of the EXAFS function of FCC Cu, 
BCC Fe, η-AlCu and θ-Al2Cu for the local environment of Cu (b) and Fe (c); experimental EXAFS function 
χ(k)k2, measured from RT to 350 °C above the Cu (d) and Fe (e) K-absorption edges.
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a = 12.15076 Å, b = 4.06235 Å, c = 6.90084 Å and β = 55.083°) and θ-Al2Cu (space group: 140, PEARSON tI12; 
lattice parameters: a = b = 5.57416 Å, c = 4.77381 Å).

The XAS analysis for Al-Cu binary phase.  The Fourier Transforms (FT) of the EXAFS signals for Cu 
and Fe are illustrated in Fig. 2b,c, respectively. The EXAFS oscillations, k2χ (k), obtained after standard data 
reduction, are shown in Fig. 2d,e as a function of the photoelectron wave vector k (the normalised experimental 
EXAFS spectra). The FTs of k2χ (k) were obtained in the wavelength range from 1 to 11 Å−1 for the Cu and Fe 
K-edges. The FT peak position is related to the distance between the target atom and its respective neighbours, 
while the peak area corresponds to the occupation of the neighbouring shells. A distinguished peak around 2 Å 
can be seen in both graphs from the first neighbour shell. Other peak positions are related to the neighbours in 
shells beyond the first shell. An FEFF model was then applied to the EXAFS data. To compare the CN, and the 
atomic distances, R, in the first coordination shell around Cu and Fe atoms in the different phases, the model 
within the 1.5–4.7 Å range were back-transformed to k-space. By using the best fit to match the XAS experimental 
data, the average distance of neighbouring atoms and the CNs for the principal shells of the atomic neighbours 
surrounding Cu and Fe could be collected for the different phases at different temperatures. The XAS data for the 
sample during the heating process for the FCC Cu, BCC Fe, η-AlCu and θ-Al2Cu from RT to 350 °C is shown in 
Fig. 2b–e. Notably, our results correspond with reference data at specific temperatures (Supplementary Table 1).

Formation of Al-Cu-Fe ternary phase.  As the temperature increased from 350 °C to 470 °C, additional 
phases were observed. A β-Al (Cu, Fe) phase formed between Al, Cu and Fe in (100) and (110) orientations when 
the temperature reached 470 °C. During this stage, an XRD scattering was collected at 415 °C. At this tempera-
ture, the phases were almost identical to those seen at 350 °C except for two new orientations of η-AlCu phase 
((401) and (311) orientations). However, θ-Al2Cu phase completely disappeared when the temperature reached 
470 °C, and just a (211) orientation of η-AlCu phase remained. β-Al (Cu, Fe) phase remained until the temper-
ature reached 580 °C, at which point a ω- Al7Cu2Fe phase appeared. Besides ω- Al7Cu2Fe phase, η-AlCu phase 
was also seen in (116) and (020) orientations, and the Fe peak completely disappeared (Fig. 3a). β-Al (Cu, Fe) 
phase is reported to have a CsCl structure at room temperature with a = 29.09Å34 and PEARSON cP2 (221). The 
schematic diagram can be seen in Fig. 3a.

The XAS analysis for the Al-Cu-Fe ternary phase (470 °C to 700 °C).  To compute the distance 
between the environment atoms and target atoms, specifically the local environment and CN for β-Al (Cu, Fe) 
phase, XAS data was collected at 470 °C. Figure 3 shows the radial distance for Cu and Fe with neighbouring 
atoms as well as the normalised experimental EXAFS spectra at 470 °C for Cu and Fe. From Fig. 3b, we can see 
a sharp intensity of β-Al(Cu, Fe) phase at 470 °C compared to 350 °C for the Cu K-edge. Extracting the param-
eters from the fitting of the experimental data at 470 °C requires the reference of the specific crystal structure, 
which is undocumented for the β-phase at 470 °C. Thus, we used the database of the cubic CsCl but changed the 
lattice parameters to the β- phase (29.09 Å) to start our simulations. In addition, we calculated the cell volume 
and density of the β-phase for the specific composition (Al50Cu40Fe10)35, and these parameters were used to 
establish the best fit for the model (Fig. 3b–e). After making these modifications, the XAS data were analysed by 
the aforementioned method. The CN and the distance of atomic neighbours surrounding Cu and Fe centres are 
shown in Table 1.

Figure 3.  In-situ XRD graph form 350 °C to 580 °C and the schematic of the β-Al(Cu, Fe) that formed from 
the θ-Al2Cu and the η-AlCu with Fe interaction (a); the modulus of the Fourier transform |F(R)| of the EXAFS 
function of η-AlCu, θ-Al2Cu and β-Al(Cu, Fe) for the local environment of Cu (b) and Fe (c); experimental 
EXAFS function χ(k)k2, measured from 350 °C to 470 °C above the Cu (d) and Fe (e) K-absorption edges.
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The observation of phase changes continued as the sample entered the final stage of the heat treatment to the 
maximum temperature of 800 °C. When the temperature was increased to 650 °C, the intensity of ω- Al7Cu2Fe 
with (215) and (214) orientations grew, and η-AlCu with (020) orientation disappeared. Although η-AlCu with 
(116) orientation was still present at 650 °C, it also completely disappeared at 700 °C. At 700 °C, the only phase 
observed was ω- Al7Cu2Fe with (215) and (214) orientations. XAS data were collected at 700 °C (Fig. 4) to charac-
terise the atomic environment of the ω-phases that were present in the XRD data at this point. The same methods 
described above were used to analyse the R-space (Fig. 4b,c) and k-space (Fig. 4.d,e). From these graphs, we can 
see the changes in R-space and k-space for Cu and Fe at 700 °C. The distance, the neighbouring environment and 
CN for the ω-phases can be seen in Table 2. Our fitting correlates well with the experimental data at 700 °C.

Liquid state and formation of quasicrystal during cooling down.  As the temperature reached 
750 °C, no metallic phases appeared in the XRD graph, with the exception of the substrate material (Al2O3) 
(Fig. 5a). This could be indicative of the sample having reached a liquid state, as has been observed in a previous 
study36. EXAFS has been reported to be an ideal technique to examine the sample in the liquid phase for investi-
gating the environment of specific elements in a liquid37,38. EXAFS has been utilised to investigate the structure of 
amorphous systems and liquid state by measuring and comparing the EXAFS spectra in terms of the existence of 
considerable short-range order39–42. To fit the EXAFS spectra of the liquid state, the crystalline counterparts have 
been used to fit the atomic distance and atomic environment around the center atoms of the liquid state.

XAS analysis for the Liquid state and quasicrystal.  The XAS data collected during the final stage of 
the heat treatment and the cooling process are presented in Fig. 5. A decrease in the amplitude of the maxima of 
|F(R)| was observed for the sample at 800 °C compared to ω-Al7Fe2Cu at 700 °C in the range 1.0–2.8 Å around 
Cu atoms (Fig. 5b), which is suggestive of structural disordering of the nearest environment of Cu. Despite this 
difference in amplitude, the k-space graphs are similar (Fig. 5d). On the other hand, the amplitude around Fe did 
not change significantly in |F(R)|; the graphs in k-space were similar (Fig. 5b,e). To extract the XAS parameters in 
the liquid state obtained at 800 °C, we used the ω-phase crystal structure as a fitting model to discern the R* and 
N in the liquid state. The distance, neighbouring and CNs for Cu and Fe for the ω-Al7Fe2Cu at 700 °C (ω-phase) 
and 800 °C (liquid state) are shown in Table 2.

A comparison of these data shows that, in the first shell, Cu has the nearest distance with Al (2.533 Å) in 
ω- Al7Cu2Fe at 700 °C. At 800 °C, the distance of Al-Cu decreased to 2.441 Å, which indicates a stronger bond 

K-edge type of atom N R*(Å) K-edge type of atom N R*(Å)

β-phase 
470 °C 
(Cu)

Cu-Al 8 2.582 ± 0.0104 β-phase 
470 °C 
(Fe)

Fe-Al 8 2.582 ± 0.0104

Cu-Fe 6 2.950 ± 0.0106 Fe-Cu 6 2.950 ± 0.0107

Cu-Fe 12 4.059 ± 0.0123 Fe-Cu 12 4.059 ± 0.0123

Table 1.  Average bond distances for the β-Al (Cu, Fe) and CN s for the principal shells of atomic neighbours 
surrounding Cu and Fe centers. (R*: atomic distance to neighbouring atom from the experimental data, N: CN).

Figure 4.  In-situ XRD graph form 580 °C to 750 °C and the schematic diagram of ω- Al7Cu2Fe that formed from 
the β-Al(Cu,Fe) (a); the modulus of the Fourier transform |F(R)| of the EXAFS function of β-Al(Cu,Fe) and ω- 
Al7Cu2Fe e for the local environment of Cu (b) and Fe (c), respectively; experimental EXAFS function χ(k)k2, 
measured from 470 °C to 700 °C above the Cu (d) and Fe (e) K-absorption edges.
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between Cu and Al in the first shell. In the second shell, the Cu-Cu atomic distance with N = 2 increased from 
2.545 Å (at 700 °C) to 2.648 Å (at 800 °C). Moreover, the Cu-Cu bonding was in the second shell for the ω- 
Al7Cu2Fe at 700 °C, but when the sample reached the liquid state, a significant change in atomic distance was 
observed, and the Cu-Cu bonding was relocated to the forth shell. This observation suggests a weaker interaction 
between Cu-Cu in the liquid state compared to the crystal phase. Besides the relocation of the Cu-Cu shell, the 
Cu-Al in the third shell for ω- Al7Cu2Fe at 700 °C had an atomic distance of 2.579 Å with the CN 4 (N = 4), which 
split into two shells (second and third) at 800 °C with the equal CNs (N = 2) and distances of 2.575 Å and 2.590 Å, 
respectively.

A similar change in the atomic distances were also observed for Fe. At 700 °C, the Fe-Al in ω- Al7Cu2Fe had 
two groups in the first and second shells with N = 5 and N = 4 and distances of 2.441 Å and 2.473 Å, respectively. 
At 800 °C, these distances between Fe-Al changed to 2.589 Å and 2.713 Å, but the CNs did not change. After 
observing the liquid state at 800 °C, the heat was terminated, and the sample was cooled in the ultra-high vacuum 
to RT with a 50 °C/min cooling rate. At RT, the XRD graphs revealed new peaks—specifically, the QC phase. To 
better understand the process of QC formation during cooling, XAS data was collected at RT around the Cu 
and Fe K-edges. The results of the XAS measurements for R-space and k-space are shown in Fig. 5b–e. These 
data show radical changes to the structure of the local environment of Cu and Fe. Compared to the liquid state 
at 800 °C, the R-space at RT experienced a notable increase in the amplitude of |F(R)| (Fig. 5b,c), which could be 
explained as a crystallisation from liquid. The XAS data showed that from 800 °C to RT, the distance of the Cu-Al 
bond and Cu-Cu bond decrease around Cu atoms, which means that these two bonds have a stronger interaction 
at RT compared to the sample at liquid state. It also shows that the environment atoms around Cu at RT follow the 
same sequins shells as the liquid state at 800 °C (Table 2).

A comparison of these data shows that, in the first shell, Cu has the nearest distance with Al (2.533 Å) in 
ω- Al7Cu2Fe at 700 °C. At 800 °C, the distance of Al-Cu decreased to 2.441 Å, which indicates a stronger bond 
between Cu and Al in the first shell. In the second shell, the Cu-Cu atomic distance with N = 2 increased from 
2.545 Å (at 700 °C) to 2.648 Å (at 800 °C). Moreover, the Cu-Cu bonding was in the second shell for the ω- 
Al7Cu2Fe at 700 °C, but when the sample reached the liquid state, a significant change in atomic distance was 
observed, and the Cu-Cu bonding was relocated to the forth shell. This observation suggests a weaker interaction 
between Cu-Cu in the liquid state compared to the crystal phase. Besides the relocation of the Cu-Cu shell, the 
Cu-Al in the third shell for ω- Al7Cu2Fe at 700 °C had an atomic distance of 2.579 Å with the CN 4 (N = 4), which 

Figure 5.  In-situ XRD graph from 700 °C to RT (a); the modulus of the Fourier transform |F(R)| of the EXAFS 
function of ω-Al7Fe2Cu, liquid phase and QC for the local environment of Cu (b) and Fe (c); experimental 
EXAFS function χ(k)k2, measured from 700 °C to RT above the Cu (d) and Fe (f) K-absorption edges.

K-edge
Type of 
atom N R*(Å) K-edge

Type of 
atom N R*(Å) K-edge Type of atom N R*(Å)

ω- phase at 700 °C (Cu)

Cu-Al (1) 2 2.533 ± 0.003

Liquid phase 
800 °C (Cu)

Cu-Al (1) 2 2.441 ± 0.009

QC- phase 
at RT (Cu)

Cu-Al (1) 2 2.412 ± 0.019

Cu-Cu (2) 2 2.545 ± 0.007 Cu-Al (2) 2 2.575 ± 0.011 Cu-Al (2) 2 2.489 ± 0.027

Cu-Al (3) 4 2.579 ± 0.019 Cu-Al (3) 2 2.590 ± 0.023 Cu-Al (Fe) (3) 2 2.590 ± 0.010

Cu-Al (4) 2 2.668 ± 0.022 Cu-Cu (4) 2 2.648 ± 0.017 Cu-Cu (4) 2 2.619 ± 0.021

— — Cu-Al (5) 2 2.875 ± 0.030 Cu-Al (5) 2 2.721 ± 0.036

ω- phase at 700 °C (Fe)
Fe-Al (1) 5 2.441 ± 0.016 Liquid phase 

800 °C (Fe)
Fe-Al (1) 5 2.589 ± 0.015 QC at RT 

(Fe) Fe-Al (1) 9 2.489 ± 0.016
Fe-Al (2) 4 2.473 ± 0.027 Fe-Al (2) 4 2.713 ± 0.023

Table 2.  Average bond distances and CNs for the principal shells of Cu and Fe in the ω-phase at 700 °C, liquid phase 
at 800 °C and QC phase at RT. (R*: atomic distance to neighbouring atom from the experimental data, N: CN).
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split into two shells (second and third) at 800 °C with the equal CNs (N = 2) and distances of 2.575 Å and 2.590 Å, 
respectively.

A similar change in the atomic distances were also observed for Fe. At 700 °C, the Fe-Al in ω- Al7Cu2Fe had 
two groups in the first and second shells with N = 5 and N = 4 and distances of 2.441 Å and 2.473 Å, respectively. 
At 800 °C, these distances between Fe-Al changed to 2.589 Å and 2.713 Å, but the CNs did not change. After 
observing the liquid state at 800 °C, the heat was terminated, and the sample was cooled in the ultra-high vacuum 
to RT with a 50 °C/min cooling rate. At RT, the XRD graphs revealed new peaks—specifically, the QC phase. To 
better understand the process of QC formation during cooling, XAS data was collected at RT around the Cu 
and Fe K-edges. The results of the XAS measurements for R-space and k-space are shown in Fig. 5b–e. These 
data show radical changes to the structure of the local environment of Cu and Fe. Compared to the liquid state 
at 800 °C, the R-space at RT experienced a notable increase in the amplitude of |F(R)| (Fig. 5b,c), which could be 
explained as a crystallisation from liquid. The XAS data showed that from 800 °C to RT, the distance of the Cu-Al 
bond and Cu-Cu bond decrease around Cu atoms, which means that these two bonds have a stronger interaction 
at RT compared to the sample at liquid state. It also shows that the environment atoms around Cu at RT follow the 
same sequins shells as the liquid state at 800 °C (Table 2).

The fluctuation in atomic distance for Fe is more significant from 800 °C to RT. The XAS data collected at 
RT around Fe showed that at some point during the cooling process, the first (N = 5, 2.589 Å) and second shells 
(N = 4, 2.713 Å) had combined into a single shell with N = 9 and the atomic distance in the first shell was 2.489 Å. 
Increasing in the CN in the first shell from N = 4 to N = 9 and the shorter bond length at RT is evidence that 
Fe-Al has a stronger bond. Based on a study of X-ray photoemission, Belin et al.43 demonstrated that the Cu(3d) 
states shift the densities of Al(3p) and Fe(3d) states toward higher and lower binding energies, respectively; this is 
favourable for the Fe 3d–Al 3p hybridisation, leading to a strong bonding of Fe-Al.

The increased amplitude of the maxima of |F(R)| and shifting of k-space at RT compared to that at 800 °C 
show the formation of QCs (Fig. 5b–e). We can clearly see that the changes in the atomic distances and CNs are 
significant at RT and cannot be explained by crystalline approximation. These significant changes are the result 
of QC formation. In fact, in line with our results, previous works have demonstrated through simulations of the 
experimental K-Fe EXAFS function that the first coordination shell with N = 9 around Fe is an icosahedron23,44.

Yamamoto et al.45 showed the structure refinements of icosahedral Al-Cu-Fe QC using 6-dimensional clus-
ter models and synchrotron radiation data from the least-squares refinements method46. They proposed that 
the first shells of Mackay-like clusters are highly disordered. In an illustration of the second and third shells of 
Mackay-like clusters, they demonstrated that one atom in the second shell is the center of the other cluster, while 
there are five atoms simultaneously located as a part of the third shell in another cluster (shown in Fig. 2 of ref.45). 
Our in-situ XAS results confirm this model. We show the precise atomic distance of Cu-Al(Fe) and Fe-Al bond-
ing in QC at RT (Table 2). Using the atomic distances, CN and the atomic environment of QC, we were able to 
schematically illustrate each part of the second shell of Mackay-like clusters, as shown in Supplementary Fig. 3. 
Supplementary Fig. 3a,d show the atomic environment with CN = 9 around the Fe atom and the atomic environ-
ment around the Cu atom, respectively. A similar drawing of simulated Mackay-like clusters was also presented 
in Yamamoto et al., which clearly demonstrates the strong agreement between our experimental observation and 
the model proposed by Yamamoto et al.45.

Conclusion
This study provides a dynamic perspective of the phases that evolve during the heating and cooling of an Al-Cu-Fe 
ternary thin films through in-situ XRD and XAS techniques. XAS techniques were used to give a clear picture 
of the atomic distance, CN and atomic environments of Cu and Fe. To verify the experimental data, the energy 
spectra for Cu and Fe K-edges were calculated by FDMNES simulation. The simulation confirmed the XAS data 
for η-AlCu θ-Al2Cu, β-Al(CuFe) and ω- Al7Cu2Fe phases at different temperatures. Based on the observation of 
the local rearrangement of atoms upon the formation of an icosahedral structure and by using a combination of 
in-situ XRD and in-situ XAS, we have proposed a model for the phase transition and QC formation mechanism 
during heating and cooling. We have demonstrated the important role that Cu-Cu and Fe-Al distance plays in the 
formation of the QC.

XAS data showed that to achieve the QC phase, the system needs to be heated to a liquid state, after which Cu 
relocates in the system at a high temperature. The EXAFS-XANES data shows that up until the sample was heated 
to 700 °C the shift of the atomic distance for the Cu and Fe K-edges were small. However, between 700 °C and 
800 °C we observed a dramatic increase in atomic distance between Cu-Cu, in which Cu in the second shell relo-
cated to the fourth shell. After reaching the maximum temperature of 800 °C, the liquid was cooled down to RT. 
It was during this cooling process that the QC phase formed by changing the atomic distances, CNs and atomic 
environments of Cu and Fe. When the QC was formed, significant changes were observed around Fe, specifically 
two shells combined into a single shell with smaller atomic distances. This study provides insight into the forma-
tion of the QC phase from a liquid state and offers a better understanding of the atomic arrangement involved in 
forming a QC phase, which can be useful in fine-tuning the synthesis of QC materials for industrial applications.
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