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Integrative metabolomics reveals 
unique metabolic traits in Guillain-
Barré Syndrome and its variants
Soo Jin Park1, Jong Kuk Kim   2, Hyun-Hwi Kim3, Byeol-A. Yoon2, Dong Yoon Ji1, Chang-Wan Lee1, 
Ho Jin Kim4, Kyoung Heon Kim   5, Ha Young Shin6, Sung Jean Park3 & Do Yup Lee1

Guillain–Barré syndrome (GBS) is an acute fatal progressive disease caused by autoimmune mechanism 
mainly affecting peripheral nervous system. Although the syndrome is clinically sub-classified 
into several variants, specific biomarker and exact pathomechanism of each subtypes are not well 
elucidated yet. In current study, integrative metabolomic and lipidomic profiles were acquisitioned from 
cerebrospinal fluid samples of 86 GBS from three variants and 20 disease controls. And the data were 
systematically compared to our previous result on inflammatory demyelination disorders of central 
nervous system (IDDs) and healthy controls. Primary metabolite profiles revealed unique metabolic 
traits in which 9 and 7 compounds were specifically changed in GBS and IDD, respectively. Next, the 
biomarker panel with 10 primary metabolites showed a fairly good discrimination power among 3 GBS 
subtypes, healthy controls, and disease controls (AUCs ranged 0.849–0.999). The robustness of the 
biomarker panel was vigorously validated by multi-step statistical evaluation. Subsequent lipidomics 
revealed GBS variant-specific alteration where the significant elevations of lyso-phosphatidylcholines 
and sphingomyelins were unique to AIDP (acute inflammatory demyelinating polyneuropathy) and 
AMAN (acute motor axonal neuropathy), respectively. And metabolome-wide multivariate correlation 
analysis identified potential clinical association between GBS disability scale (Hughes score) and CSF 
lipids (monoacylglycerols, and sphingomyelins). Finally, Bayesian network analysis of covarianced 
structures of primary metabolites and lipids proposed metabolic hub and potential biochemical linkage 
associated with the pathology.

Guillain-Barre syndrome (GBS) is an acute inflammatory peripheral neuropathy. It is rare, but once it develops, a 
portion of patients is accompanied by a serious clinical course. Thus, optimal treatment following early diagnostic 
is critical for prognostic determination1. GBS typically occurs by an autoimmune response to a predisposing fac-
tor such as infection or vaccinations. Over the past decades, several types of GBS have been identified and recent 
studies have revealed that some of these subtypes were determined by specific anti-ganglioside antibodies2. It 
included acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), 
and Miller Fisher syndrome (MFS) according to clinical, electrophysiological, and immunological informa-
tion3–5. Although several biomarkers and pathogenesis have been recently proposed, precise patho-mechanisms 
still remain unknown6,7. Accordingly, disease specific therapies have not been developed yet, other than intrave-
nous immunoglobulin or plasma exchange8. Recently, novel predictive models for treatment options and prog-
nosis of GBS have been suggested based on cutting-edge technology such as microarrays and proteomics9–11. The 
high-throughput molecular profiling has proposed potential biomarkers and patho-mechanisms from CSF or 
blood samples. However, CSF metabolic profiles in GBS and its subtypes have not been investigated.
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Clinical studies on the metabolome are widely applied for discovering diagnostic and prognostic mark-
ers, and for uncovering underlying patho-mechanism of diseases including autoinflammatory syndromes12,13. 
Accordingly, our study aimed to investigate unique metabolic profiles of three GBS variants (AIDP, AMAN, and 
MFS) by applying multiplex instrumental analysis on CSF samples. Integrative profiles of primary metabolites 
were acquired by GC-TOF MS and NMR, and lipidomic readout was obtained by LC-Oribrap MS. In addition, 
comparative analysis following batch effect removal process was conducted against healthy controls and IDDs 
(multiple sclerosis and neuromyelitis optica spectrum disorder) obtained from our recent study12,14 in order to 
delineate disorders of peripheral nervous system from central nervous system.

Results
Demographic and clinical data of GBS patients and disease controls.  The total study subjects were 
106 patients with a mean age of 52.3 ± 17.7 years (male = 54 and female = 52) (Table 1). Case number of AIDP, 
AMAN, MFS, and disease control were 36 (53.4 ± 18.1, male: female = 21:15), 22 (60.9 ± 11.1, male: female = 7:15), 
28 (44.4 ± 16.0, male: female = 15:13) and 20 (52.1 ± 20.0, male: female = 11:9) respectively. Hughes scores were ret-
rospectively collected from the patients with AIDP (n = 25), AMAN (n = 18), and MFS (n = 21). Each final diagnosis 
of disease control group was idiopathic oculomotor nerve palsy (n = 8), brainstem or spinal cord ischemia (n = 5), 
idiopathic brachial plexopathy (n = 1), Wernicke encephalopathy (n = 1), Vernet’s syndrome (n = 1), motor neuron 
disease (n = 1), diabetic polyneuropathy (n = 1), nutrition deficiency syndrome (n = 1), and pineal gland tumor (n = 1). 
There was no age difference between the groups, but the MFS group was younger than the AMAN group (p = 0.007). 
Overall workflow was provided in Fig. 1, which included the sample collection, instrumental analysis (GC-TOF MS, 
LC-Orbitrap MS, and NMR), data processing, statistical analysis, and biomarker model construction.

AIDP (n, 36) AMAN (n, 22) MFS (n, 28) Other disease (n, 20) P-value

Age 53.4 (±18.1) 60.9 (±11.1) 44.4 (±16.0) 52.1 ( ± 20.0) 0.013

     Sex (Male, %) 58.3% 31.8% 53.6% 55.0% 0.224

     Hughes score 2.3 (±1.2) 3.8 (±0.9) 2.3 (±1.0) N/A <0.001

Antibody (%)

     IgG anti-GM1 0.0% 100.0% 7.1% 0.0%

     IgG anti-GQ1b 0.0% 0.0% 100.0% 0.0%

Table 1.  Demographic and clinical data of patients with GBS and disease controls. AMAN and MFS patients 
were selected according to positivity of each representing antibody (IgG anti-GM1 and IgG anti-GQ1b 
antibody, respectively) for their clear classification and comparison between groups. AIDP, acute inflammatory 
demyelinating polyneuropathy; AMAN, acute motor axonal neuropathy; MFS, Miller Fisher syndrome.

Figure 1.  Summary of the sample collection, instrumental analysis (GC-TOF MS, LC-Orbitrap MS, and 
NMR), data processing, and statistical analysis (including model validation). * indicates the data source from 
the previous study.
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The comparative analysis of CSF metabolic profiles of GBS against healthy controls, disease 
controls, and IDDs.  The significance differences were measured in 22 metabolites between GBS patients 
and healthy controls. The most dramatic difference was observed in acetoacetate that was up to two-times higher 
in GBS. The next ones were monoacylglycerols (1-monopalmitin and 1-monostearin), 3-hydroxyisobutyrate, 
and glycolic acid. Among the down-regulated metabolites were methionine, threose, methanol, acetate, and cre-
atine that were present at the highest fold changes. Pathway over-representation analysis showed that glycolysis 
and amino acid metabolism were the metabolic process under the most significant alteration (Supplementary 
Fig. S1). The highest centrality was identified in ketone body metabolism by the topological analysis. For iden-
tifying the GBS-specific metabolic changes, pair-wise statistical comparison by Student t-test was first con-
ducted on GBS, IDDs, and disease controls against healthy controls (Fig. 2). Nine metabolites were attributed 
as GBS-specificity while 7 and 6 metabolites were categorized as IDD-unique or common between GBS and 
IDD, respectively. Unique metabolic features of GBS included acetoacetate, glucose, fructose, leucine, acetone, 
isobutyrate, 3-hydroxyisovalerate, choline, and acetate. Kruskal-Wallis test with Benjamini-Hochberg adjustment 
demonstrated acetoacetate and acetate were the most characteristic to the GBS group whereas other metabolites 
partially passed multiple comparison criteria (Fig. 2 and Supplementary Table S1). Acetone, 2-hydroxy butyrate, 
pyroglutamate, glucose, 3-hydroxypropionic acid, isoleucine, and butane-2,3-diol were specific to IDDs. Among 
them were acetone and 2-hydroxybutyrate that presented exclusive differences in the IDDs group.

Unique metabolic dys-regulation of the GBS subtypes.  We further investigated the metabolic 
dys-regulation focusing on uniqueness and similarity among the GBS subtypes (AIDP, AMAN, and MFS). The 
MFS group presented the widest range of primary metabolic alteration (t-test, p-value < 0.05) (Table 2). A total of 
43.7% of metabolites were present at different levels in MFS whereas 24.1% and 23.0% of metabolites presented 
the significant differences in AIDP and AMAN.

Pathway over-representation analysis showed characteristic metabolic dysfunction according to the GBS sub-
types (Supplementary Fig. S2). The MFS group showed the most significant alteration in Val-Leu-Ile metabolism, 
Arg-Pro metabolism, and central carbon metabolism (e.g. glycolysis and pyruvate metabolism). The AIDP group 
presented that glycolysis were the most significantly altered among the other subtypes followed by fatty acid 
biosynthesis. Ala-Asp-Glu metabolism, nitrogen metabolism, ketone body metabolism, and taurine metabolism 
were specific to the AMAN group whereas glycolysis and pyruvate metabolism were common to the MFS and 
AIDP groups.

Likewise, the most specific changes were found in MFS where 14 compounds were not shared by AIDP, and 
AMAN (Table 2). The metabolic dys-regulation of MFS was featured by the concomitant down-regulation in 
the nitrogenous compounds (creatinine, ornithine, leucine, ethanolamine, lysine, isoleucine, proline). Others 
were glycolic acid, gluconic acid, dimethyl sulfone, lyxose, pyruvate, trehalose, and cellobiose. The AIDP group 
showed exclusive feature, myristic acid, palmitic acid, and histidine whereas lauric acid, heptadecanoic acid, and 
tryptophan were unique to AMAN.

Considering multiple testing correction, Kruskal-Wallis test with Benjamini-Hochberg procedure and 
Man-Whitney test with Bonferroni correction were performed. Overall, the statistical result corresponded to 
the primary evaluation by Student’s t-test. Among them was acetate that presented the significant differences in 5 

Figure 2.  The metabolite list of differential abundances among GBS, IDDs, and disease controls against healthy 
controls (A). Red and blue colored metabolites indicate significant elevation or reduction compared to healthy 
control (p < 0.05). HC: healthy control; IDDs: inflammatory demyelinating disorder of CNS; GBS: Guillain–
Barré syndrome; DC: disease control. Relative abundances of the GBS-specific metabolites (B). Boxes show the 
interquartile range, and whiskers indicate the minimum and maximum of all of the data. Analysis of variance is 
performed based on Kruskal-Wallis test and subsequent posthoc analysis. * and ** indicate significance levels, 
p < 0.05 and <0.01, respectively.
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comparisons of all possible 6 combinations. Furthermore, potential confounding effects of age and gender were 
evaluated based on MANCOVA following normality and Kruskal-Wallis tests. After age correction, 78, 77, and 
104 were significantly different in AIDP, AMAN, and MFS groups, respectively. Similarly, 70, 74, and 92 metabo-
lites were present at different abundances following gender correction. The results implied the highest level of the 
primary metabolic perturbation in the MFS group relative to ones of the AIDP and AMAN groups.

AIDP AMAN MFS

Compound

T-TEST (HC vs AIDP) Kruskal-Wallis

Compound

T-TEST (HC vs AMAN) Kruskal-Wallis

Compound

T-TEST (HC vs MFS) Kruskal-Wallis

p-value FDR
Fold 
change p-value

Adjusted 
p-value 
(Benjamini/ 
Hochberg) p-value FDR

Fold 
change p-value

Adjusted 
p-value 
(Benjamini/ 
Hochberg) p-value FDR

Fold 
change p-value

Adjusted 
p-value 
(Benjamini/ 
Hochberg)

Unique 
features

Glycolic acid 3E-03 1E-02 1.9 2E-04 8E-04

Creatinine 1E-02 4E-02 0.9 1E-02 3E-02

Ornithine 3E-02 7E-02 0.8 6E-05 4E-04

Gluconic acid 2E-03 1E-02 0.8 3E-04 1E-03

Threonine 7E-03 2E-02 0.8 2E-02 4E-02

Histidine 2E-02 1E-01 1.3 2E-03 5E-03 Tryptophan 2E-02 1E-01 1.4 1E-02 2E-02 Ethanolamine 7E-03 2E-02 0.7 3E-03 6E-03

Palmitic acid 2E-02 1E-01 1.1 7E-05 4E-04 Lauric acid 4E-03 3E-02 1.4 4E-04 1E-03 Lysine 2E-03 8E-03 0.7 9E-05 4E-04

Myristic acid 3E-02 1E-01 1.1 1E-03 3E-03 Heptadecanoic  
acid 3E-02 1E-01 1.2 1E-03 4E-03 Dimethyl  

sulfone 2E-02 5E-02 0.7 2E-03 5E-03

Isoleucine 4E-04 3E-03 0.6 2E-04 8E-04

Proline 6E-04 4E-03 0.5 3E-06 2E-05

Lyxose 2E-02 6E-02 0.4 2E-02 3E-02

Pyruvate 0E + 00 0E + 00 0.3 4E-10 4E-08

Trehalose 4E-02 8E-02 0.1 5E-07 7E-06

Cellobiose 2E-02 6E-02 0.1 7E-07 8E-06

Common 
features

Acetoacetate 3E-05 3E-04 2.7 3E-08 8E-07

1- 
monostearin 2E-04 2E-03 1.7 3E-08 8E-07

3- 
hydroxyisobut 
yrate

6E-06 8E-05 1.5 8E-05 4E-04

1- 
monostearin 2E-05 3E-04 2.0 3E-08 8E-07 1- 

monostearin 2E-06 9E-05 2.7 3E-08 8E-07 Galactonic  
acid 2E-02 6E-02 1.4 4E-03 9E-03

1- 
monopalmitin 2E-03 2E-02 1.6 5E-05 3E-04 Acetoacetate 2E-04 3E-03 2.6 3E-08 8E-07 1- 

monopalmitin 1E-03 6E-03 1.4 5E-05 3E-04

3- 
hydroxyisobut 
yrate

5E-03 5E-02 1.4 8E-05 4E-04 1- 
monopalmitin 2E-05 4E-04 1.9 5E-05 3E-04 Formate 1E-02 3E-02 1.3 3E-07 5E-06

Stearic acid 1E-02 8E-02 1.1 3E-04 1E-03
3- 
hydroxyisobut 
yrate

5E-05 1E-03 1.6 8E-05 4E-04 Glucose 1E-04 1E-03 1.1 1E-06 1E-05

Glucose 5E-05 8E-04 1.1 1E-06 1E-05 Formate 4E-04 4E-03 1.6 3E-07 5E-06 Myo-inositol 4E-03 1E-02 0.9 2E-02 4E-02

Isobutyrate 2E-02 1E-01 0.9 8E-02 1E-01 Galactonic  
acid 1E-02 8E-02 1.4 4E-03 9E-03 Glutamine 1E-02 3E-02 0.9 1E-03 3E-03

Fructose 4E-02 2E-01 0.8 2E-02 4E-02 Stearic acid 4E-03 3E-02 1.2 3E-z04 1E-03 Valine 4E-02 8E-02 0.8 1E-03 3E-03

Leucine 8E-03 7E-02 0.8 2E-02 3E-02 Glutamine 1E-02 7E-02 0.9 1E-03 3E-03 Choline 2E-02 6E-02 0.8 1E-01 2E-01

Lactate 2E-06 6E-05 0.8 2E-08 8E-07 Myo-inositol 2E-02 1E-01 0.9 2E-02 4E-02 Lactate 6E-12 3E-10 0.8 2E-08 8E-07

3- 
hydroxyisoval 
erate

6E-03 6E-02 0.8 1E-03 3E-03 Phenylalanine 4E-02 2E-01 0.8 8E-04 3E-03 Isobutyrate 5E-03 2E-02 0.8 8E-02 1E-01

Creatine 6E-04 9E-03 0.8 2E-06 2E-05 Alanine 3E-02 1E-01 0.8 2E-05 1E-04 Leucine 9E-03 3E-02 0.8 2E-02 3E-02

Inosine 1E-02 7E-02 0.8 2E-02 3E-02 Isobutyrate 2E-02 9E-02 0.8 8E-02 1E-01 Fructose 3E-03 1E-02 0.8 2E-02 4E-02

Choline 4E-02 2E-01 0.8 1E-01 2E-01 Acetate 1E-05 4E-04 0.8 7E-08 1E-06
3- 
hydroxyisoval 
erate

1E-03 7E-03 0.8 1E-03 3E-03

Acetate 2E-06 9E-05 0.8 7E-08 1E-06 Creatine 2E-06 2E-04 0.7 2E-06 2E-05 Inosine 3E-04 2E-03 0.7 2E-02 3E-02

Phenylalanine 9E-03 7E-02 0.7 8E-04 3E-03 Valine 1E-04 2E-03 0.7 1E-03 3E-03 Phenylalanine 3E-05 3E-04 0.7 8E-04 3E-03

Methanol 2E-02 1E-01 0.7 5E-03 1E-02 Methanol 3E-04 3E-03 0.6 5E-03 1E-02 Creatine 2E-11 6E-10 0.7 2E-06 2E-05

Methionine 2E-02 1E-01 0.6 2E-05 1E-04 Threose 6E-04 5E-03 0.6 8E-05 4E-04 Methanol 3E-03 1E-02 0.7 5E-03 1E-02

Threose 5E-07 4E-05 0.6 8E-05 4E-04 Alanine 1E-08 2E-07 0.6 2E-05 1E-04

Acetate 6E-11 1E-09 0.6 7E-08 1E-06

Threose 7E-06 9E-05 0.6 8E-05 4E-04

Methionine 1E-03 6E-03 0.4 2E-05 1E-04

Table 2.  The list of metabolites that present GBS subtype-specific changes (upper panel) and common features. 
Statistical evaluation is first done based on Student’s t-test against healthy controls. Common features are the 
metabolites that are present at different levels (with same direction of fold change) at least two comparisons. Analysis 
of variance is conducted for additional evaluation by Kruskal-Wallis test with Benjamini/Hochberg analysis.
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Biomarker signature discriminative of the GBS subtypes.  The metabolites were pre-selected for con-
structing biomarker recomposite using PLS-DA prior to validation statistics, ROC analysis. The PLS-DA model 
with seven-fold cross validation demonstrated the high levels of an explained variance (R2Y) of 0.628 and pre-
dictability (Q2Y) of 0.444 (Fig. 3A).

To examine the level of overfitting, which is determined by trade-off between fit (R2) vs prediction (Q2), ran-
dom permutation test with 999 iterations was conducted. It provides the statistical significance of the estimated 
prediction power of the models by comparing R2Y and Q2Y values between the original model and the randomly 
re-ordered model15. The result showed that Y-axis intercepts of R2 and Q2 were below 0.3 and 0.05 (Fig. 3B), 
which met the general criteria of R2 <0.3 and Q2 <0.05. The validation was also evidenced by the result that all 
permuted R2 and Q2 values (the left on x-axis) were lower than the original values on the right16,17.

Based on the model, 10 metabolites that most contributed to the discrimination were ranked by VIP anal-
ysis. Prioritized metabolites were lactate, formate, acetate, glucose, 1-monopalmitin, 1-monostearin, histidine, 
creatinine, threose, and lysine. The metabolites were transformed into a single value (T1 vector) by the PLS-DA, 
and the predictability of the metabolic signature was evaluated using ROC analysis (Fig. 4). The AUC values were 
significantly high for all comparison (three GBS subtypes and healthy controls). The AUC was 0.937 (95% con-
fidence interval 0.870–0.976) for MFS against the others (AIDP, AMAN, and healthy controls). The AUCs were 
0.849 (0.763–0.913) and 0.904 (0.828–0.954) for AIDP and AMAN. For additional validation of the ROC model, 
data set was randomly split into discovery (50%) and validation data (50%) sets. This step was repeated twice, 
and the result was presented in Supplementary Fig. S3. The biomarker re-composite also showed the highest 
levels of sensitivity and specificity against disease controls (AUC = 0.972, SN = 85.00, SP = 95.92). Likewise, the 
ROC curve analysis was also conducted on all pair-wise comparison between individual group. The AUCs of all 
three comparisons showed fairly good prediction power (Fig. 4). The AUC was 0.904 (95% confidence interval 
0.798–0.966) between AIDP and AMAN. The AUCs were 0.954 (0.871–0.991, between AIDP and MFS) and 
0.948 (0.846–0.991, between AMAN and MFS), respectively. Subsequently, the biomarker panel was evaluated for 
the discrimination power between GBS and other clinical status (healthy controls, disease controls, and IDDs). 
Indeed, the metabolic markers showed the highest level of predictability as proposed by the AUCs that ranged 
0.978–1 (Supplementary Fig. S4). Among the ten biomarkers, lysine and histidine were unique to MFS and ADIP 
shared by none of the other types.

Next, we examined if the ten metabolic markers can be linearly formulated, and if the multivariate model 
equally performs good predictability. This allows straightforward mathematical model, and in turn more ade-
quate clinical interpretation and application18. Accordingly, binary logistic regression with enter method was 
applied to derive a linear function based on the ten metabolic markers. Indeed, the linear algorithm showed 
the discriminant power equivalent to the PLS-DA model. The highest odds ratio (OR) was identified with for-
mate (OR = 3.1, p = 0.002) from the linear algorithm (AIDP and AMAN), which resulted in the AUC of 0.962 
(SN = 90.9 and SP = 91.7). Similarly, the linear combination resulted in good discrimination power between 
AIDP and MFS (AUC = 0.991). The linearly-recomposed metabolic marker also showed good discriminant per-
formance (AMAN vs MFS, AUC = 0.984) (Supplementary Fig. S5).

Characteristic phospholipid profiles of the GBS subtypes and its association with GBS disabil-
ity.  Un-targeted lipid profiling was conducted on the GBS subtypes to characterize the differential modula-
tion of lipid metabolism. To effectively discriminate variant-specific lipidomic changes, we applied the Pattern 
Searching algorithm implemented in MetaboAnalyst that identified correlation between group (the GBS vari-
ants) and variables (lipid molecules). The Pattern Searching analysis is an application of correlation analysis that 

Figure 3.  Distinctive metabolic phenotypes among different types of GBS variants and the healthy controls. 
(A) Score scatter plot based on multivariate statistical model by PLS-DA. HC: healthy control. (B) Random 
permutation plot (999 times) on the datasets of the four groups. The vertical axis presents R2 (blue points) and 
Q2 (red points) values of the model. The horizontal axis shows the correlation coefficient between the original 
and the permuted Y-variable.
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captures feature or pattern that is pre-determined by numerical order according to the relative abundances by the 
computation of linearity, hence it identifies metabolites presenting “template matching” expression pattern (abun-
dance) similarly with more common statistical approach, Pavlidis Template Matching (PTM)19. Consequently, 
the analysis designated the lipids showing the highest contents and the lowest contents in each GBS subtype 
compared to the others (Fig. 5A–C), and the results were further validated based on Kruskal-Wallis test with 
Benjamini-Hochberg adjustment (Fig. 5D–F). The AIDP group was mainly characterized by the highest contents 
of 5 lyso-phosphatidylcholines (lysoPCs) (Fig. 5A) whereas the highest contents of five SMs were unique to the 
AMAN group (Fig. 5B). Among others were fatty acid esters of hydroxy fatty acid (FAHFA 18:0 and FAHFA 24:0) 
that were specific to the AMAN group. On contrary, the lipid profiles of the MFS group were featured by the low-
est contents in 21 lipids compared to other GBS variants.

We sought a potential association of CSF metabolites with a clinical parameter, Hughes scoring system indic-
ative of GBS disability scale. Among the GBS subtypes were the AMAN group that showed the significant linear 
linkage in which the distance and the direction from origin of coordination were linearly synchronized (Fig. 6). 
The metabolites included lactate and monoacylglycerols that were constituents of the metabolic marker panel. 
Others were sphingomyelins, SM 32:1 and SM 34:1. On contrary, the AIDP group presented moderate level of 
the association between CSF metabolome and the Hughes scale whereas the MFS group showed no correlation.

Lastly, the covarianced matrix of primary metabolites and lipids were constructed among the three GBS sub-
types by Bayesian correlation network. Primarily, the network topology analysis identified potential key linkages 
between primary and lipid metabolism based on integrative interrogation on betweenness centrality (BC) and 
maximal clique centrality (MCC), which revealed the nodes with key positions in the correlation network20. 
Network topology analysis showed the greater levels of MCC in the AIDP group compared to AMAN and MFS 
with higher degree of connectivity (node and edge number) (Supplementary Fig. S6D). The highest level of the 
centralization (BC) was found in a range of primary metabolites in the AIDP group (Supplementary Fig. S6A). 
It included acetone, a ketone body produced during ketoacidosis. Others were acetate, citrate, lactate, amino 
acids (glutamine, leucine, and threonine), and free fatty acids (myristic acid, palmitic acid, heptadecanoic acid, 

Figure 4.  Validation of discrimination power for biomarker cluster in combination of 10 metabolites by receive 
operating characteristic (ROC) analysis. (A) ROC curves for AIDP, AMAN, MFS, and healthy controls against 
the other group, respectively. (B–D) ROC curves for individual group comparison among the GBS subtypes. 
The biomarker cluster includes: lactate, formate, acetate, glucose, 1-monopalmitin, 1-monostearin, histidine, 
creatinine, threose, and lysine.

https://doi.org/10.1038/s41598-018-37572-w


www.nature.com/scientificreports/

7Scientific Reports |          (2019) 9:1077  | https://doi.org/10.1038/s41598-018-37572-w

Figure 5.  Identification of the GBS variant-specific lipid molecules. The lists included the metabolites with the 
highest (pink) and lowest (blue-sky) contents in AIDP (A), AMAN (B), and MFS (C), respectively compared 
to the other groups. The metabolites were selected based on Pattern Searching algorithm, which computed 
the fitness to pre-determined patterns in metabolite abundances based on Pearson’s correlation coefficients. 
For validation, analysis of variance was conducted among the three groups based on Kruskal-Wallis test with 
Benjamini/Hochberg adjustment. See more details in material and method.

Figure 6.  The putative correlation of CSF metabolome and GBS disability score (Hughes scoring system) 
among the GBS subtype. Groups and variables are mapped on loading scatter plot based on the PLS-DA model. 
The relative association among the GBS subtype, metabolites (primary metabolites and lipid molecules), 
and Hughes scores are plotted according to x-axis and y-axis, which indicate pc(corr)[1] and pc(corr)[2], 
respectively. Distance and direction among data points imply the level of association.
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and stearic acid). Among lipids, lysoPCs (C18:0 and C18:1) were highly centralized in the AIDP group. The 
key modules in MFS network were identified in such primary metabolites as acetate, benzoic acid, octadecanol, 
heptadecanoic acid, nitrogenous compounds (alanine, valine, ornithine, creatinine, and choline), and xylose 
(Supplementary Fig. S6C). On contrary, the AMAN network presented the lowest levels of both centralities (BC 
and MCC) with relative scarcity in the connectivity (Supplementary Fig. S6B).

Discussion
Identification of biomarkers and patho-mechanistic understanding of GBS is critical given that early and pre-
cise diagnosis helps proper treatment and prognostic procedure, which may significantly reduce severe dis-
ease course, pain, and residual deficits21. Diagnosis by clinical judgement in combination with examination on 
anti-ganglioside antibodies is possible2,5, but clear clinical decision cannot be always achieved, in particular for 
young patients in early stage22,23.

Accordingly, high-throughput molecular profiling such as metabolomic analysis can be an attractive and com-
plementary option for biomarker discovery. More importantly, metabolomics can generate working-hypothesis, 
which allows the discovery of novel patho-mechanisms of disease without prior knowledge24. Accordingly, our 
primary goal was to metabolically characterize the GBS subtypes associated with different pathological mecha-
nisms (e.g. AIDP vs AMAN) and targets (e.g. peripheral nerve vs cranial nerve). At the same time, we extended 
our investigation to defining universal properties between different autoimmune diseases (e.g. inflammatory 
disorder of central nerves Vs peripheral nerves), which has not been previously reported.

Here, we reported the most comprehensive study on the CSF metabolome of common clinical subtypes of 
GBS (AIDP, AMAN, and MFS) by applying and integrating analytical approaches, GC-MS, LC-MS, and NMR. 
For exclusively identifying and evaluating disease-specific metabolites, a comparative analysis was performed 
based on multiple baselines (healthy controls, disease controls, and samples from patients with inflammatory 
disorders of central nervous system). The comprehensive statistical validation characterized unique metabolic 
features of GBS, and consequently proposed robust biomarker panel. Moreover, metabolome-wide multivari-
ate correlation analysis determined hypothetical linkage between disability scale (GBS Hughes score) and CSF 
metabolites (lactate, 1-monopalmitin, 1-monostearin, and sphingomyelins), particularly in the AMAN group. It 
should be noted the singular value derived from 10-metabolite recomposite, which were multivariate-statistically 
transformed or linearly re-formulated, allowed simultaneous discrimination of all different immune statuses in 
different comparison combination. The robustness may come from the highest level of data quality (e.g. confirma-
tive identification process in combination with manual inspection), and systematic and unbiased feature selection 
although it led to the relatively smaller number of identified metabolite in our study.

There have been investigations on the syndrome based on high-throughput molecular profiling by pro-
teomic and microarray analyses that suggested potential molecular mechanisms and biomarkers for GBS based 
on CSF and blood samples9–11. More recently, an untargeted metabolomic approach proposed a disturbance of 
lipid metabolism and molecular indicators for the syndrome and its variants based on blood plasma25. However, 
CSF metabolomic investigation on GBS and its variants has not yet been reported. To analyze CSF metabolome 
is important because CSF interfaces directly with myelin sheath and nerve exon that are primarily damaged 
by post-infectious autoimmune response. Accordingly, we identified a unique metabolic phenotype that distin-
guishes GBS from healthy controls, disease controls, and IDDs (MS and NMOSD).

The metabolic distinctiveness was featured by the alteration of glucose and acetoacetate. The elevated levels 
of glucose and the ketone body are a typical clinical symptom in diabetics. Hyperglycemia and ketoacidosis have 
been reported in blood of GBS patients26–29, but it has not been reported that this clinical finding also manifests in 
the CSF metabolome. On contrary, decreased glucose content was observed in IDDs. Likewise, lactate has been 
proposed as a common attributor to a range of diseases including inflammation12; however, the significantly lower 
level of lactate was found in GBS but not in IDDs in our experiment. Acetate is a precursor for myelin lipid bio-
synthesis in neurolemmocyte and oligodendrocytes30. Consistent with our result, the reduced level of acetate sug-
gested the abnormality of myelin lipid biosynthesis possibly caused by aspartoacylase dys-function (ASAP)31–33.

In addition, the inflammatory diseases of peripheral and central nervous systems shared common metabolic 
disorder. For instance, the higher level of glycolic acid was common feature for both GBS and IDDs. We also 
identified common metabolic dys-regulation in all disease status (GBS, IDDs, and disease controls). The metab-
olite list included threose, methionine, inosine, 1-monopalmitin, and 1-monostearin. The uncommon monoa-
cylglycerols (1-monopalmitin and 1-monostearin) were present at the elevated levels, which may be involved in 
common pathogenesis among neurological illness12.

Next, we mined unique biochemical trait and biomarker signature focusing on the GBS subtypes. It has been 
suggested that the pathological mechanism was similar between AMAN and MFS (e.g. Anti-ganglioside anti-
bodies attack nerve axon primarily.)34,35 whereas AIDP and AMAN shared common clinical symptom (e.g. limb 
motor weakness)2,36. The primary metabolic profiles coincided the comparable clinical symptom between AIDP 
and AMAN while the MFS was clearly distinctive from the two subtypes. First, the hypermetabolic activity was 
characteristic to the MFS group in which CSF glucose was present at significantly higher levels compared to 
healthy controls. A previous report on the MFS involvement with hypermetabolism in the central nervous sys-
tem suggested GQ1b associated acute inflammatory process as a mechanism of this autoimmune disorder37. The 
differential levels of acetoacetate, creatinine7,25,38, and pyruvate39 further supported the hypermetabolic activity 
of MFS. In addition, the reduced levels of proteinogenic amino acids (leucine, lysine, isoleucine, phenylalanine, 
alanine, and proline) may correspond to elevated levels of CSF protein in most of the patients with MFS40.

On contrary, differential regulation in saturated fatty acid (SFA) metabolism was identified in AIDP and 
AMAN. The both subtypes presented the elevated level of stearic acid (C18:0). AIDP presented additional changes 
in myristic acid and palmitic acid whereas AMAN showed increased levels of lauric acid and heptadecanoic acid. 
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The increased pool sizes in the fatty acids may correspond to a recent report on depleted levels in a range of phos-
pholipids and sphingomyelin, indicative of more significant dysfunction of myelin lipid biosynthesis or severer 
demyelination process in AIDP and AMAN relative to MFS41. Based on our findings, we proposed a biomarker 
model that allowed simultaneous discrimination of individual subtype from each other, and also healthy and 
disease controls. The robustness of the biomarker panel was further proved by different combination of statis-
tical validation. For instance, the comparison by pair-wise discrimination between individual group (e.g. AIDP 
vs AMAN) also showed the equivalent levels of prediction power. Besides, binary logistic regression analysis 
successfully re-formulated linear functions with the metabolic markers, which may lead to more direct clinical 
application via simple mathematical model. The metabolites panel composed of 10 CSF metabolites represented 
quantitative distinctiveness, and implied putative biochemical linkage to the pathology. The compositional differ-
ences were characterized as follows: Monoacylglycerols (1-monopalmitin and 1-monostearin), threose, methio-
nine, and inosine contributed to the discrimination of all disease groups from healthy. The depleted contents of 
creatine and lysine were specific to MFS whereas aberrant level of histidine was exclusively observed in AIDP. The 
metabolites of major energy metabolism, glucose and lactate were common feature in AIDP and MFS.

We further investigated on lipidomic profiles focusing on the GBS subtypes. Phospholipids (PLs) are impor-
tant components of biological membranes and precursors of numerous signaling molecules42. Neurological dys-
function in GBS patients is attributed as reduced conductance associated with demyelination and/or axonal loss, 
which couples with membrane lipid composition. The CSF lipidome of AMAN was primarily characterized by 
significantly higher levels in SMs, indicative of accelerated loss in myelin structure43, which was not observed 
in the AIDP and MFS groups. Interestingly, the elevated FAHFAs was found unique to patients with AMAN. 
FAHFAs, formed in adipose tissue, have shown anti-inflammatory activity and glucose tolerance improve-
ment44,45. The over-production of the endogenous lipid may represent the distinctive protective mechanism 
in AMAN or may play a pivotal role like arachidonic acid that is metabolized to both proinflammatory and 
anti-inflammatory eicosanoids during and after physical activity to promote growth46. The AIDP group was char-
acterized by the highest contents of lysoPCs compared to other GBS variants. The elevated levels of lysoPCs have 
been proposed as a potent demyelination reagent via rapid influx of T cells47.

Moreover, we identified potential clinical association of the CSF metabolome. The highly-coordinated dis-
tribution was determined among the AMAN group, Hughes score, and metabolites (lactate, 1-monopalmitin, 
1-monostearin, SM 32:1, and SM 34:1). The strongest linearity in the AMAN group was plausible considering 
higher levels in Hughes score compared to the AIDP group, and differential disability mechanism in the MFS 
group. Of particular interest, the monoacylglycerols have been consecutively implicated in dysregulated immune 
system48 and related disabling symptom12,49. Likewise, elevated level in CSF lactate has been reported for acute 
attack in neuromyelitis optica spectrum disorder (NMOSD) during remission50.

Finally, network topological analysis suggested key metabolic modules, indicative of potentially important 
role in biochemical network51. For instance, metabolites in cliques (clusters) are under identical relation with 
all other members, which may indicate their synchronous co-regulation to the remaining metabolic modules20. 
Particularly, metabolites connecting between clusters may function as branch points of known or unknown bio-
chemical linkage or paths bridging different metabolic cycles20. Indeed, our result showed palmitic acid, identi-
fied as unique metabolic feature to AIDP, showed high centrality in both betweenness and maximal clique. The 
most abundant circulating fatty acid has been suggested as system activator in immune system52. Also, stearic 
acid was identified as a key module with significant increase in the AIDP group. The distinct association with a 
broad range of lipid metabolism in AIDP was further remarked by lysoPCs (C18:0 and C18:1) that also showed 
the AIDP-specific expression pattern. In addition, acetone, a byproduct of ketoacidosis, was shown high central-
ity and connectivity in the subtype. And β-hydroxybutric acid, a ketone body confirmatively implied aberrant 
metabolic activity in the AIDP group. On contrary, creatinine, ornithine, and cardiolipin, which of all were also 
exclusively dys-regulated in the MFS group, were found highly centralized in the network. Abnormal expression 
levels in creatinine and ornithine may reflect dysfunction of creatine kinase, which has been associated with 
GBS7,53. Creatine, found in significantly reduced contents across all GBS variants, has been suggested as the hall-
mark of mitochondrial dysfunction54,55, which was further inferred from dys-regulation in cardiolipin, a major 
constituent of the mitochondria inner-membrane. In addition, anti-cardiolipin antibodies have been reported in 
the association with autoimmune diseases56.

There are some limitations of our study. GBS is a rare autoimmune disorder, thus our exploratory conclusion 
was limited by relatively small study size, which requires the expansion of observation and additional examina-
tion for the validity. In addition, the syndrome involves acute pathological progress and requires such immediate 
and non-specific therapies as intravenous immunoglobulin or plasma exchange. The circumstances hindered 
long-term and subsequent examination (e.g. prognostic application). Besides, CSF sampling is generally accom-
panied by invasive procedure (lumbar puncture), and the amount of the samples is not sufficient for a range of 
baseline test. It may cause limited availability of some clinical data, contrast to blood sampling, which is relatively 
feasible to acquire (e.g. white blood cell count, protein contents, and cholesterol contents).

Nonetheless, to our knowledge, this is the first and the most comprehensive study on integrative profiles of 
primary metabolites and lipids from CSF samples with GBS patients. We performed the exclusive evaluation 
based on multiple baseline (healthy controls, disease controls) and comparative analysis with inflammatory dis-
order of central nervous system (e.g. IDDs). The integrative metabolomic approach systematically characterized 
metabolic dysfunction reflected in the CSF of the GBS subtypes. The unique metabolic features of primary met-
abolic dysfunction and aberrant lipid metabolism may lead to better understanding, and to discovery of unique 
biomarker signature and new therapeutic strategy for future clinical application.
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Methods
Patient information and clinical manifestations.  CSF samples were obtained from the patients with 
AIDP, AMAN, MFS, and disease controls during the acute stage within 2 weeks from onset of symptom but 
before any specific medication or treatment. The collection was done by Dong-A University Neuroimmunology 
Team for anti-ganglioside antibody study (from 2010 to 2015). CSF samples were consecutively collected from the 
patients who were suspected to have IDDs by National Cancer Center registry for inflammatory diseases of the 
CNS from May 2005 to April 2015. The detailed information on demographic and clinical data of healthy controls 
and the IDD patients were available from our previous report12.

CSF samples from 86 patients were analyzed for diagnosis of GBS subtyping. CSF samples of disease controls 
were obtained from 20 cases who underwent lumbar puncture to rule out autoimmune neuropathy or meningitis 
vice versa, but turned out to have other neurological illness than GBS or associated variants. All CSF samples were 
stored at −80 °C until analysis. The demographic and clinical data of the patients, including age, gender, dates 
of sampling, and GBS subtype, were retrospectively collected. Diagnosis of GBS was based on the current crite-
ria57 and each subtype was determined by the electrophysiological, immunological and clinical information by 
each referring specialists. The AMAN and MFS groups were further classified by positive anti-ganglioside body 
(anti-GM1 and anti-GQ1b antibodies in each group) for more accurate classification. The patients with exclusive 
anti-GM1 positive outcome were included in the AMAN group whereas the patients with exclusive anti-GQ1b 
positive result were categorized as the MFS group in the current study. Hughes score was categorized as follows: 
0, A healthy state; 1, Minor symptoms and capable of running; 2, Able to walk 10 m or more without assistance 
but unable to run; 3, Able to walk 10 m across an open space with help; 4, Bedridden or chair bound; 5, Requiring 
assisted ventilation for at least part of the day; 6, Dead58.

This study was approved by the research ethics committee of Dong-A University Hospital (No. 10-10-7). 
All the procedures were carried out in accordance with the Institutional Review Board of Dong-A University 
Hospital, and written informed consent was obtained from all subjects.

Extraction.  The extraction, derivatization, mass-spectrometry analysis, and NMR spectroscopic analysis 
were performed in random order on all samples. CSF samples were thawed on ice at 4 °C and 100 µL CSF sam-
ple was aliquoted and extracted with 650 µL of extraction solvent (methanol:isopropanol:water, 3:3:2, v/v/v). 
The mixture was sonicated for 10 minutes and centrifuged at 13,200 rpm for 5 minutes at 4 °C. Each supernatant 
(700 µL) was transferred into a new 1.5-mL tube. The aliquots were concentrated and completely dried in a speed 
vacuum concentrator (SCANVAC, Korea). The dry extracts were stored at −80 °C until derivatization and gas 
chromatography time-of-flight mass spectrometry (GC-TOF MS) analysis.

For NMR analysis, 400 μl of CSF sample was mixed with 100 μl stock solution of NMR buffer containing 
550 mM sodium phosphate buffer. The final NMR samples contained 100 mM sodium phosphate buffer (pH 7.0), 
2 mM of trimethylsilyl-propanoic acid (TSP), and 10% D2O.

For lipid profiling, the extraction procedure was conducted based on the Folch method with minor modifica-
tion59,60. 250 μL of CSF sample was mixed with 225 μL MeOH and vortexed for 10 s. 450 μL chloroform (CHCl3) 
was then mixed and incubated for 1 hr. Phase separation was done by adding 187.5 μL of H2O. The lower phase 
was transferred to new vial, dried, and stored until MS analysis.

Derivatization for GC-TOF MS analysis.  The dried extracts were mixed with 5 µL of 40 mg/mL meth-
oxyamine hydrochloride (Sigma-Aldrich, St. Louis, MO, USA) in pyridine (Thermo, USA) and then incubated for 
90 min at 200 rpm and 30 °C for methoxyamination. After the first derivatization process, 2 µL of a mixture of inter-
nal retention index (fatty acid methyl esters [FAMEs]) and 45 µL of N-methyl-N-trimethylsilyltrifluoroacetamide 
(MSTFA + 1% TMCS; Thermo, USA) were added for trimethylsilylation (1 h at 200 rpm and 37 °C). The FAME 
mixture was composed of C8, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26, C28, and C30.

GC-TOF MS analysis.  The derivatives (0.5 µL) were injected using an Agilent 7693 ALS (Agilent Technologies, 
Wilmington, DE, USA) in splitless mode. Chromatographic separation was carried out using an Agilent 7890B 
gas chromatograph (Agilent Technologies) equipped with an RTX-5Sil MS column (Restek, Gellefonte, PA, USA). 
The oven temperatures were programmed at 50 °C for 1 min, ramped at 20 °C/min to 330 °C, and held constant 
for 5 min. Mass spectrometry analysis was performed on a Leco Pegasus HT time of flight mass spectrometer 
controlled by ChromaTOF software 4.50 version (LECO, St. Joseph, MI, USA). Mass spectra were acquired in the 
mass range of 85–500 m/z at an acquisition rate of 20 spectra/s.

Using ChromaTOF software, data including apex mass, full spectrum, retention time, signal-to-noise ratio, 
and peak purity, were exported to our own server computer. Pegasus files (.peg) were converted to text files (.txt) 
and netCDF files for further data evaluation. Based on Binbase algorithm, raw data files (text files) were processed 
using the criteria as follows; a) <10 peaks with intensity >107 counts s−1 for chromatogram validation, b) spectra 
similarity >800 for RI detection, c) 5th order polynomial regression-based retention index calculation, d) reten-
tion time window of ±2 s, e) validation of unique mass against apex mass18,61. A quantification data based on peak 
height of single quant ion was generated for database entries (Fiehn library and NIST library). Missing values that 
did not pass the primary criteria were imputed by post-matching and replacement using raw data as previously 
described62. To check the analytical stability, a mixture of 19 pure reference compounds was analyzed every 10 
samples. The data for the quality control is provided in Supplementary Fig. S7A.

UPLC-Orbitrap MS analysis.  The dried samples were re-constituted with 50 µl of 70% acetonitrile for lipid 
profiling. The samples were chromatographically separated with a 150 × 2.1 mm UPLC BEH 1.7-μm C18 col-
umn (Waters, USA) equipped with 5.0 mm × 2.1 mm UPLC BEH 1.7 μm C18 VanGuard Pre-Column (Waters, 
USA) controlled by Ultimate-3000 UPLC system (Thermo Fisher Scientific, USA). The mobile phase was 10 mM 
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ammonium formate, 0.2% formic acid in water (buffer A) and 0.2% formic acid in acetonitrile (buffer B). LC 
condition was as follows: equilibration in 10% buffer B for 1 min, 10–75% buffer B gradient over 7.5 min, 75–95% 
buffer B gradient over 7.6 min, 95% buffer B for 2.8 min and re-equilibration in 10% buffer B for 5.5 min. Injection 
volume of sample was 10 µl for both full scan (MS1) and MS/MS analysis. Mass spectra were acquisition in nega-
tive ionization using Q-Exactive Plus Orbitrap (Thermo Fisher Scientific, USA). Data-dependent MS/MS analysis 
were conducted with 14 samples for first collecting the list of putatively annotated lipids (collision energy, 30 eV) 
against the Lipid blast63 and Lipid search library (Thermo Fisher Scientific, USA) in which relatively lower thresh-
old (MS1 tolerance, 0.005 Da; MS2, 0.05 Da) was set to reduce false negative discovery rate. A total of 89 retention 
time-exact mass pairs (i.e. features) were putatively annotated, and further considered for quantitative evaluation 
after redundancy and peak quality check using Tracer Finder (Thermo Fisher Scientific, USA) (Supplementary 
dataset 1). Among them, the identification of 57 lipids were validated by manually inspecting MS/MS spectra.

NMR spectra acquisition and analysis.  To analyze metabolites, one-dimensional 1H-NOESY NMR spec-
trum was obtained at 298 K on a Bruker ASCEND III 600 spectrometer equipped with a cryoprobe. The NOESY 
pulse sequence (noesygppr1d) was applied with presaturation to suppress the residual water signal. 1H-NMR 
spectrum for each sample consisted of 256 scans with following parameters: spectral width = 12,019.2 Hz, spec-
tral size = 65,536 points, pulse width (90) = 12.2 μs, relaxation delay (RD) = 5.0 s, and a mixing time of 10 ms.

For quantitative profiling of CSF samples, spectra were processed and analyzed with Bruker topspin 3.1 
(Bruker GmbH, Karlsruhe, Germany) and Chenomx NMR suite 7.7 (Chenomx Inc., Edmonton, Canada). Each 
free induction decay (FID) was zero-filled to 64,000 points and transformed with line broadening (LB) = 0.3 Hz. 
NMR spectra were initially phased in Bruker topspin 3.1 and the final baseline was corrected using Chenomx 
NMR suite 7.7. The baseline model was built in each spectrum using the algorithm of multipoint baseline cor-
rection. The chemical shifts were referenced against the resonance of TSP as 0.0 ppm. Metabolites were identified 
using the database stored in Chenomx NMR suite 7.7 and were quantified from the comparison of the internal 
standard (TSP). A total of 31 metabolites identified from the CSF samples. The identified metabolites were evalu-
ated in 1H-13C HSQC and 2D 1H-TOCSY spectra.

Data transformation and batch effect removal.  The number of metabolites identified from two studies 
was summarized as follows: 83 and 31 metabolites were identified from the GBS metabolic profiles by GC-TOF 
MS and NMR, respectively. Likewise, 85 and 32 metabolites were acquired from IDDs study (Supplementary 
Fig. S8A). A total of 100 metabolites were commonly detected in both studies. For constructing compatible data 
matrix acquired from GC-TOF MS, the batch effects between the GBS study and published data (IDDs and 
healthy controls) from previous study12 were removed using COMBAT algorithm (SVA package) in R environ-
ment (version 3.1.3). Primary PCA scores matrix (P1) were computed for numericalizing the expression values 
of integrative metabolite panels. The PCA scatter plot proved that data normalization successfully removed the 
batch effect (principal component 1), so they were directly comparable (Supplementary Fig. S8B,C).

Statistical analysis.  Statistical analyses were conducted on all continuous variables collected from GC-TOF 
MS, LC-MS, and NMR. The metabolites detected both in GC-TOF MS and NMR were further speculated. In gen-
eral, the relative abundances were comparable between the two analytical platforms (Supplementary Fig. S9). The 
ones analyzed by NMR were selected for further statistical analysis since NMR is more adequate for quantitative 
analysis64 and the reproducibility is better in NMR (Supplementary Fig. S9). After removing duplicate metabolites 
between GC-TOF MS and NMR, a total of 87 metabolites among primary metabolites were confirmatively identi-
fied and further used for normalization. Processed data was normalized by the sum of identified peaks (GC-TOF 
MS), the sum of selected features of each chromatogram (LC-MS) within each group65, or the sum of quantifica-
tion values (NMR) across all groups (Supplementary dataset 1 and 2). The raw and processed data are available 
at the website (https://lms2.kookmin.ac.kr:446/index.php?hCode=PAPER_LIST&publication_name=inter_
paper). P-values were calculated by the two tailed Student’s T-test in Excel (Microsoft Office 2016) and one-way 
analysis of variance was conducted based on Kruskal-Wallis test with Benjamini-Hochberg adjustment using Multi 
Experimental Viewer (MeV, TIGR)12,66. Box-and-whisker plots were generated using MetaboAnalyst 4.0 (http://
metaboanalyst.ca).

Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), variable impor-
tance in projection (VIP), and Receiver Operating Characteristic (ROC) analysis were done using SIMCA 14 
(Umetrics AB, Umea, Sweden). PLS-DA was performed using 7-fold cross-validation and permutation test 
(N = 999). For validation of ROC analysis, the 95% confidence interval using bootstrapping was done by bio-
marker analysis module implemented in Medcalc® (Medcalc® Software, Mariakerke, Belgium). Multivariate 
analysis of covariance (MANCOVA), and binary logistic regression analysis with enter method were performed 
by IMB SPSS Statistics for Windows, version 23.0 (IBM Corp., Armonk, N.Y., USA).

Pathway enrichment analysis was performed using MetaboAnalyst 4.0 (http://metaboanalyst.ca)67. Statistical 
significance was evaluated based on the hypergeometric test and pathway topology was analyzed based on the 
relative-betweenness centrality. Pattern Searching module implemented in MetaboAnalyst 4.0 was applied 
to pre-determine the lipids with the disease type-specificity. The pattern is pre-defined as consecutive num-
ber. For instance, that can be formulated as 2-1-1 where the position of each digit indicate pre-assigned group 
(MFS-AMAN-AIDP) while each value presents relative abundances among the three group (in this case, metab-
olites with the highest contents in MFS and with lower contents in AMAN and AIDP). The univariate statisti-
cal analysis validated based on Kruskal-Wallis test with Benjamini-Hochberg adjustment (Multi Experimental 
Viewer, TIGR).

For primary metabolite-lipid network construction, linear relationships were computed based on the Bayesian 
law and Hess normal form68. The correlation matrix was then imported to Cytoscape interface69 and cytoHubba 
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plugin20 for further visualization and network topological analysis. Subnetworks were finally visualized with top 
20-ranked nodes by maximal clique centrality and their edges.

Quality control for mass spectrometric analysis.  Extraction, derivatization and mass spectrometric 
analysis were randomly conducted to reduce any potential systematic error. In addition, analytical stability of 
mass spectrometry was evaluated prior to data analysis. The quality control (QC) mixture consisting of 19 rep-
resentative metabolites, was analyzed every ten samples. The percentage of coefficient of variation (%CV) was 
14.9 across 8 QC samples. Score scatter plot of the QC mixture computed by PCA showed the constant levels of 
the compounds throughout the analysis (Supplementary Fig. S7A). In addition, orthogonal projection in latent 
structure (OPLS) analysis was conducted to globally interrogate potential effect of sample storage period on CSF 
metabolome as confounding effect. The result indicated no significant correlation between the storage period and 
CSF metabolites (pq < 0.3) (Supplementary Fig. S7B).
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