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X-Ray Nanotomography of 
Individual pulp Fibre Bonds Reveals 
the Effect of Wall Thickness on 
Contact Area
t. sormunen 1,2, A. Ketola3, A. Miettinen  1,4,5, J. Parkkonen1 & e. Retulainen3

Fibre bonds play an essential role in various properties of paper. Much research has focused on their 
strength, but the determination of the actual contact area also provides a challenge. Many of the 
research methods rely on optical tools, which are restricted by the wavelength of light that is utilised. 
Novel X-ray computed tomography devices utilise X-rays in studying the inner structure of materials, 
and surpass the optical methods in terms of resolution, allowing detection of even smaller details and 
variations in distance between the fibres in the bond intersection area. X-ray nanotomography was used 
to image 26 individual cellulose fibre bonds made of springwood and summerwood fibres of refined 
bleached softwood kraft pulp. Various dimensional properties of the bonds were measured, most 
importantly the relative contact area (apparent contact area/intersection area), whose values showed 
wide variation from 6.4 to 85% with an average of 57.7%. Although the summerwood bonds had a 
somewhat smaller intersection and contact area than springwood bonds, there were no significant 
differences in the relative contact area between the bond types. This suggests that the effect of relative 
and absolute contact area on the strength differences between bond types seems to be minor.

Fibre bonds have been established to be an important contributor to the optical and mechanical properties of 
paper. The strength of fibre bonds is linked to the contact area between the fibres and is shown to have a direct 
effect on the strength of paper. The structure and area of individual fibre bonds are therefore of particular inter-
est, when paper properties are to be improved. Most research on fibre contacts have utilised visible light1–7, and 
an assumption has been made that the area of optical contact is the area of actual molecular contact. Since the 
resolution of optical devices is at best 200 nm, it may not be good enough to draw a conclusion about the actual 
contact area.

X-ray nanotomography is a non-invasive imaging method capable of resolutions up to tens of nanometres, 
greatly surpassing that of optical methods. As such, it seems highly applicable in studying the contact areas of 
individual fibre bonds.

The difference in breaking strength and optically bonded area (OBA) between individual fibre bonds made 
from exclusively summerwood or exclusively springwood fibres has been recognised4–6, as well as bonds made of 
a springwood and a summerwood fibre7. Springwood fibre bonds have larger OBA and lower breaking strength 
than summerwood bonds. Spring-to-summerwood bonds have respective values between those two.

In terms of the relative contact area (RCA) of individual fibre bonds, several different studies have been con-
ducted over the years. One of the earliest examples is the study conducted by Page et al.3 where it was found via 
optical microscopy that refined spruce sulphite fibre bonds had an RCA of 71.6%. In a more recent study by 
Kappel utilising microtome sectioning1, refined and unrefined softwood fibre bonds were found to have an aver-
age RCA of 98% and 86%, respectively. In the previous study utilising X-ray nanotomography8, the average RCA 
of refined softwood fibre bonds was found to be approximately 58%. An identical value was found in another 
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study utilising confocal laser microscopy2. As such, it is as of yet unclear in which range the actual values lie, due 
to sample size and resolution differences of the aforementioned methods.

The main goal of this study was to generate a more significant data set as a continuation of the previous 
study8. In addition, another topic of interest was to find out the differences between different bond types 
(spring-to-springwood, spring-to-summerwood, summer-to-summerwood) in terms of contact area, relative 
contact area (RCA) and number of contact regions within the overlapping (intersection) area. A more detailed 
description of the present study can be found in a thesis by Sormunen9.

Methods
sample preparation and imaging. The raw material used was commercially bleached kraft softwood pulp 
refined to 25° SR. The pulp contained mainly pine (Pinus sylvestris), but also some spruce (Picea abies) fibres may 
have been included. In order to facilitate the trimming of samples with a laser cutter (by increasing laser absorp-
tion), 1 litre of fibre suspension diluted to 0.01% was stained with 0.00005 M acridine orange for 10 minutes. 
Afterwards, the fibres were washed with purified water to get rid of excess stain. It was confirmed earlier that the 
staining does not weaken paper strength.

In order to manufacture individual fibre bonds, droplets of diluted fibre suspension were placed between 
two polystyrene plates and pressed with 50 kPa for 5 minutes. The plates were dried in an oven at a temperature 
of 80 °C for 90 minutes. Afterwards, the selected fibre bonds were glued to a needle, excess dangling ends of the 
fibres were trimmed (see Fig. 1) with ESI QuikLaze-50 laser cutter, and a gold marker particle was placed on top 
of the intersection area to facilitate image registration performed during the X-ray tomographic imaging process.

Xradia nanoXCT-100 was used for tomographic imaging. The resolution of the apparatus was empirically 
determined to be 128 nm (corresponding to Modulation Transfer Function value 10%), with a pixel size of 65 nm. 
The temperature and the relative humidity inside the machine were 25 °C and 30%, respectively. By rotating the 
sample 1,081 shadowgraphs were taken from various angles forming a semicircle by using 160 seconds of expo-
sure. This meant that imaging took 48 hours per sample. Reference (flat field) correction image was obtained by 
averaging 40 images taken with 80 seconds of exposure time. After imaging, the shadowgraphs were aligned with 
the help of the marker particle by a developed automatic algorithm, and reconstruction was conducted with a 
filtered back-projection method.

Image processing and analysis. Image processing and analysis were conducted using the ImageJ soft-
ware10 and calculations were done with MATLAB. For image de-noising, Gaussian filter with radius 2 was used 
for the raw reconstruction stack. Furthermore, the stack was straightened with respect to the sample, and cropped 
accordingly. Otsu’s method11 was used to segment the image into binary parts: the fibre segments and the back-
ground (including spaces between fibres in the bond area). Since the contrast in the shadowgraphs was not opti-
mal, further de-noising had to be done using a volume-opening algorithm, effectively eliminating small and 
isolated regions caused by imaging noise. The volume parameters 100,000 and 1,000 were used to delete white 
and black noise speckles, respectively.

Figure 1. A prepared fibre bond sample (top), which was trimmed with a laser (bottom).
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A re-slicing operation was done to view the stack normally in the bond area. A sum projection image was cal-
culated, and from this the intersection area is selected visually (see Fig. 2). The selection was used to remove the 
fibre segments outside the intersection area. Afterwards, the background was removed from each volume image 
individually, leaving only the data of the gaps between the fibres.

A similar sum projection as before was done for the modified stack. This generated the so called “opening 
thickness” map of the intersection area (Fig. 2), where the distance between the fibres was manifested by grey 
values: regions of contact had a value of 0. From this image, the relative contact area (RCA) and the cumulative 
separation distance distribution of intersection area could easily be calculated.

Results
In total, 13 spring-to-summerwood, 7 summer-to-summerwood and 6 spring-to-springwood fibre bonds were 
successfully imaged. The categorisation of fibres and fibre bonds were done post-imaging with the cell wall thick-
ness as the criterion. In this study, fibres with cell wall thickness under 2.31 μm were deemed springwood fibres 
and those above 2.31 μm were deemed summerwood fibres. The fibre wall thickness distribution (shown in Fig. 3) 
had two peaks and resembled that of pine fibres found in another study12. In that study, it was found that the aver-
age cell wall thickness of springwood fibres was 2.0 μm with a standard deviation of 0.31 μm.

The RCA values, i.e., the percentage of intersection area where the distance between the fibres was at most 
65 nm, ranged between 6.4% and 85% in the total population, corresponding to contact area values 64 μm2 and 
1690 μm2. The intersection areas ranged between 400 μm2 and 2,080 μm2. The average RCA values did not signif-
icantly vary between bond types: the total average of the population was 57.7 ± 0.8% (Table 1). This is remarkably 

Figure 2. Sum projection, i.e., thickness image, with fibre intersection selected (left), and opening thickness 
image (right) of the same fibre bond sample (scale bar values in pixels). The image size is 65 × 65 micrometres in 
both cases.

Figure 3. Cell wall thickness distribution of the fibres in the present study.
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close to the value obtained in the previous study, even if in that case only three fibre bonds made by refined fibres 
were successfully imaged8. As expected, on average the spring-to-springwood bonds had the highest absolute 
contact area, but the lowest value was surprisingly found in the spring-to-summerwood bonds.

In terms of necking, springwood fibres in spring-to-springwood bonds experienced the least necking (average 
value 1.081), and summerwood fibres in summer-to-summerwood bonds the most (1.217). Springwood fibres 
necked more (1.161) than summerwood fibres (1.101) in spring-to-summerwood bonds. This suggests that sum-
merwood fibres were able to suppress the radial shrinkage of the partner fibre more than springwood fibres. The 
average ratio of necking between the partner fibres did not vary significantly between bond types.

Bonds containing springwood fibres seemed to be more susceptible to lower connectedness, as evidenced by a 
higher number of contact regions in spring-to-springwood fibre bonds than other bond types.

In the case of cumulative separation distance distributions (Fig. 4), no clear differences were observed between 
bond types. In all cases, the distributions had the approximate shape of a sigmoid function, with distinct regions 
of high and low slopes. It could be speculated that unbonded areas contributing to high slopes are areas that 
potentially could have been bonded, but which were de-bonded after wet pressing or during drying, and low slope 
segments corresponding to areas that were not in contact in the first place. The wet pressing stage plays an impor-
tant role by bringing together the regions of the two fibres that are morphologically compatible. After removal 
of the wet pressing pressure, the internal stresses may cause some spring-back in the fibre structure. The drying 
phase finally forms the molecular level bonds, which, however, may have broken locally due to drying stresses.

In addition to the contact area and necking measurements, correlation coefficients were calculated between 
relevant fibre bond properties. These are shown in Table 2. In the case of thickness, opening thickness and dis-
tance, intraspecimen correlations were calculated: the correlation coefficient was calculated between the grey 
values of the pixels in the opening thickness and thickness images in the intersection area, and, in the case of 
distance, the pixels’ distance from the centre of the intersection. Thus, each sample had thousands of data points 
from which the correlation was calculated. The average correlation coefficient of all samples was calculated for 
each bond type. In all other cases, interspecimen correlations were calculated: the correlation between RCA and 
other dimensional properties for each bond type was calculated. In these cases, each sample had one data point 
for each property.

As can be seen, a low positive correlation was found between the distance and opening thickness of all bond 
types, indicating that unbonded segments are located on the edges of the intersection area. Furthermore, dis-
tance from the bond centre and bond thickness have a low negative correlation for spring-to-summerwood 
and summer-to-summerwood fibres, hinting that the thickness is distributed towards the centre, while in 
spring-to-springwood bonds, towards the edges. The negative correlation coefficient between thickness and 

Property (average)
Spring-to-
summerwood

Summer-to-
summerwood

Spring-to-
springwood

Intersection area [μm2] 1180 ± 460 1300 ± 300 1610 ± 440

RCA [%] 58.1 ± 25.0 56 ± 21 58.3 ± 27.1

Contact area [μm2] 690 ± 400 750 ± 330 960 ± 540

Necking ratio 1.072 ± 0.053 1.08 ± 0.08 1.07 ± 0.02

No. of contact regions 3.4 2.4 6.5

Table 1. Dimensional properties of different bond types, with the associated sample standard deviations.

Figure 4. Cumulative separation distance distribution of intersection area in all fibre bond samples. The 
distributions are calculated from the opening thickness images.
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opening thickness indicate that the greater the total thickness in a location, the greater the probability that it is 
in contact. This can be explained by the thicker regions experiencing a higher pressure in the wet pressing stage.

Interestingly, the size of the intersection had little to no correlation with RCA (Fig. 5). The intersection area, 
however, was moderately correlated with the absolute contact area (Fig. 6). Necking symmetricity seemed to 
be connected with RCA in bonds with more symmetrical fibre combinations (summer-to-summerwood and 
spring-to-springwood bonds). Since necking symmetry indicates symmetric stress distribution in drying, this 
seems reasonable. The number of contact regions seemed to correlate negatively with RCA as well: the lower the 
number of contact regions the greater the RCA. This was particularly true for spring-to-springwood fibre bonds, 
which seemed to be more susceptible to bond region fragmentation.

Conclusion
Continuing the previous study, a greater number of bonds made from springwood and summerwood fibres 
were successfully imaged. The present results suggest that in spite of the larger average contact area between 
springwood fibres, there seems to be no differences in spring-to-springwood, spring-to-summerwood and 
summer-to-summerwood fibre bonds in terms of relative contact area. However, since the number of samples is 
still rather low, no exact statistical conclusions can be drawn.

Several dimensional properties and correlations between them were analysed. The present data suggest that 
thicker summerwood fibre bonds experience a higher wet pressing pressure, which results in, e.g., high pixelwise 
correlation between bond thickness and the contact probability within the bond. The total fibre mass, i.e., the 
summed thickness of the two fibres, seems to accumulate towards the bond centre for summerwood fibres and 
towards the edges for springwood fibres.

The relative contact area and intersection area were found not to be correlated. Conversely, the intersection 
area and the absolute contact area were in moderate correlation. These findings seem to indicate that the proba-
bility of contact development is linked with the size of the overlap between the two fibres. In addition, the expe-
rienced pressure during wet pressing seems to increase the probability further. This could explain the fact that no 
significant differences were found in RCA between the different bond types, regardless of the established differ-
ences in intersection area between bonds made from summerwood and springwood fibres. The aforementioned 
points are nonetheless speculative, and a greater sample population is needed for verification.

Correlation between
Spring-to-
summerwood

Summer-to-
summerwood

Spring-to-
springwood

Thickness & opening thickness −0.481 −0.646 −0.142

Distance & opening thickness 0.406 0.391 0.363

Distance & thickness −0.238 −0.463 0.207

Intersection area & RCA 0.085 0.178 0.259

Intersection area & contact area 0.702 0.524 0.496

Necking symmetry & RCA 0.173 0.581 0.864

No. of contact regions & RCA −0.469 −0.278 −0.850

Table 2. Correlation coefficients of different fibre bond properties.

Figure 5. Absolute contact area vs. intersection area of imaged samples. The correlation coefficient in the whole 
population was found to be 0.643 (black line).
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As a tool, the X-ray nanotomography reconstruction data was found to be useful as a benchmark for other 
methods, but the tomographic methods need to be improved in order to generate a statistically significant data 
set within a more reasonable time frame. Challenges during tomographic imaging were the high failure percent-
age of samples (over 50% of the samples were discarded due to motion artefacts) and long imaging and sample 
preparation time (over 50 hours in total).

Data Availability
The datasets generated during and/or analysed during the current study are available in a Zenodo repository13. 
Algorithms and codes are also included.
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Figure 6. Relative contact area vs. intersection area of imaged samples. The correlation coefficient in the whole 
population was found to be 0.132 (black line).
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