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The Generalized Analytical 
Expression for the Resonance 
Frequencies of Plasmonic 
Nanoresonators Composed of 
Folded Rectangular Geometries
Hai Lu  1,2, Lijun Li1, Jun Zhang1, Shiqiang Xia1, Xiubao Kang2, Meng Huang1, Kesheng Shen1, 
Chao Dong1 & Xianzhou Zhang1

A robust generalized analytical expression for resonance frequencies of plasmonic nanoresonators, 
which consists of folded rectangular structures, is proposed based on a circuit route. The formulation 
is rigorously derived from the lumped circuit analogue of the plasmon resonance in a rectangular 
metallic nanorod. Induced by the nonhomogeneous charge distributions in the plasmonic resonators 
of rectangular end-caps, the electromagnetic forces drive the harmonic oscillations of free electrons 
in the plasmonic nanoresonators, generating intrinsically nonlinear shape-dependent LC resonance 
responses. Even for the plasmonic nanoresonators with much larger structure sizes than the skin 
depths, the significant frequency deviations due to the phase-retardation behavior can still be 
adequately described by the generalized expression. Moreover, for a large range of plasmonic 
nanoresonators with various folded rectangular geometries, sizes and materials, the generalized 
analytical expression gives the underlining physics and provides accurate predictions, which are 
perfectly verified by a series of numerical simulations. Our studies not only offer quantitative insights of 
nearly any plasmonic nanoresonators based on folded rectangular geometries, but also reveal potential 
applications to design complex plasmonic systems, such as periodic arrays with embedded rectangular 
nanoresonators.

Plasmonic nanoresonators are related to the subwavelength confinements of electromagnetic fields, and open 
up a wide range of applications in spectroscopy1, bio-sensing2, imaging3 and information technology4. Although 
there are a rich variety of plasmonic nanoresonators, they can be differentiated based on their geometries. For 
example, compared with spherical metallic resonators, the plasmonic nanoresonator with rectangular geometry 
has a longitudinal plasmon resonance, which is particularly desirable for practical applications and fabricating 
with versatile tools, such as electron-beam lithography (EBL)5–10. Moreover, since the electromagnetic field is 
highly localized in the closed circular geometry and the decay length of the field is limited (δAg < 35 nm for silver), 
very small gaps (<20 nm) are required to achieve any noticeable coupling between the resonators with circular 
geometries11–13. In reality, though structures with lateral dimensions as small as 30 nm can be routinely gener-
ated using EBL, to achieve such a request is still a challenge14–16. In contrast to the plasmonic resonators with 
closed circular geometries, the efficient coupling distance between the plasmonic nanoresonators with rectan-
gular geometries can be up to ~220 nm7. Thus it may be more suitable for use as constituent element of complex 
plasmonic structure17–20.

In order to understand and design the functionality of highly integrated devices utilizing various plasmonic 
nanoresonators with rectangular geometries, it is mandatory to know the exact resonance frequencies of the indi-
vidual constituents, that is, the folded plasmonic rectangular nanoresonators. Usually, to determine resonance 
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frequencies of various plasmonic systems, numerous attempts are focused on numerical techniques, such as 
finite element method and finite difference time domain method21–24. However, because of the trial-and-error 
nature of the numerical technique, designing often is time-consuming and the numerical results cannot be 
extended to other structures. Thus, to deeply exploit the resonance effects of plasmonic nanoresonators with 
rectangular geometries, a generalized analytical description of the interaction between light and nanoresonator 
is urgently needed, which can be implemented to predict directly resonance frequencies of various rectangular 
nanoresonators.

Plasmon resonance is an optical phenomenon arising from the collective oscillation of conduction electrons 
in a metal when the electrons are disturbed from their equilibrium positions25,26. For a bulk metal of infinite sizes 
in all three dimensions, the resonance frequency can be described by ωp = (Nq2/ε0me)1/2, where N is the number 
density of conduction electrons, ε0 is the dielectric constant of vacuum, q is the charge of an electron, and me is the 
effective mass of an electron27,28. Thus, the bulk plasmon frequency of a particular metal depends only on its free 
electron density. In practice, the controllable resonance frequency can be obtained by designing metallic struc-
tures of finite sizes. Specially, for a metal particle, the electron’s oscillation is subject to the boundary conditions 
relying on the nanoparticle’s geometry. Thus, the resonance frequency of the plasmonic nanoresonator is sensitive 
to resonator shape, which determines how the free electrons are polarized and distributed on the surface. Also for 
this reason, various shapes of metal nanoresonators (such as gold colloid) appear colorful in liquid or glass29,30. 
Nowadays, it has been known that, the resonance frequencies can be modulated in many ways by tailoring the 
sizes, shapes, and environments of plasmonic resonantors. For example, a flat metal–vacuum interface boundary 
condition results in a surface plasmon mode of ωp/ 2  in frequency31, whereas for a spherical plasmonic resonator, 
the resonance frequency of the conduction electrons would be changed to ωp/ 3 32.

Because of their high symmetries, simple structures such as isolated small plasmonic spheres exhibit res-
onance frequencies which can be forecasted analytically. However, for more complicated shapes with lower 
symmetries, such as cubes or bars, a close-form solution cannot be reached easily. Inspiringly, some universal 
formulas for predicting resonance frequency shifts Δf of any type of plasmonic nanoresonators were reported33,34. 
But they cannot determine the resonant frequency f0 analytically. Moreover, to evaluated frequency shifts Δf, the 
scattered field or the field of resonance mode needs to be calculated firstly with extra numerical solvers according 
to these approaches, which compromises the efficiency of this method. Currently, another promising alternative 
is to treat rectangular nanoplasmonic system as a high frequency circuit composed of capacitors, inductors, and 
resistors35–39. However, most of them are limited to specific rectangular geometries or requirements, such as 
split-ring resonators35,36, plasmonic plate37, nanorod with large height-diameter aspect ratio38, or extracting the 
circuit parameters assisted by numerical simulations39. To our best knowledge, a generalized analytical prediction 
for the resonance frequencies f0 of plasmonic resonators with arbitrary rectangular geometries is still missing in 
the literature.

In this work, for the first time, a generalized closed-form expression for the resonance frequency of a single 
nanoresonator with arbitary rectangular cross section is derived. After that, based on a detailed analysis of the 
spectral positions of the resonances as a function of the nanoresonator geometry and by simulating the near-field, 
we further outline the fundamental difference between the present work and the previous theoretical works of 
the same kind, i.e. the Faraday inductance and phase retardation will play an important role when the size of rec-
tangular cross section are large enough. Finally, we test the closed-form expression validity and universality for 
plasmonic resonators composed of different folded rectangular geometries with different sizes, and surrounding 
mediums. This work represents a study of unprecedented coherence, as we are able to correlate the resonance 
frequency with geometry of the individual plasmonic resonantors and a simple circuit model.

Circuit Equations for the Plasmonic Resonators With Rectangular Geometry
A typical rectangular plasmonic nanorod and all relevant geometrical parameters are shown in Fig. 1a. The 
parameters in the present work are chosen to match closely those of technologically feasible physical systems5–10. 
The resonator is made of silver and assumed to be surrounded by dielectric medium with a refractive index of nb. 
In the present work, the dielectric functions of silver as published by M. A. Ordal et al. are used40. The incident 
light propagates along the -z axis with the electric field along the rod axis (y axis), thus exciting the longitudinal 
plasmon resonance. Since the metal permittivity is negative in the optical frequency region and is inversely pro-
portional to the frequency squared, we can model a metal resonator as an inductance L. The interaction of a metal 
resonator with electromagnetic field can be then presented as excitation of R-L-C contour, which is depicted in 
Fig. 1b. Here, inductance L (with small losses described by resistance R) represents the metal resonator while 
capacitance C represents the surrounding space. The resonance in R-L-C contour is analogous to the longitudinal 
charge oscillations along a single nanorod. The equation of motion for this circuit is analogous to that of a driven 
mass on a damped spring(e.g., a Lorentz model for an atom). In general, all three circuit components must be 
included in lumped optical circuit models for plasmonic resonators, capacitance, kinetic inductance (Lk), and 
Faraday inductance (Lf)37. Intuitively, the electric potential energy is captured by a capacitor C; the electron 
kinetic energy and the magnetic field energy are captured by a kinetic inductor Lk and a Faraday inductor Lf, 
respectively. Thus the circuit has a resonance with natural frequency π=f LC1/20 , where the inductance L 
equals the sum of the Lk and Lf. It should be mentioned that, the minimum size of the nanoresonator considered 
in this work should be much larger than the Fermi wavelength (~0.5 nm), so that the quantum effect can be 
ignored and the above-mentioned classic description of the plasmonic resonance effect is applicable.

Kinetic Inductance. Unlike the flat metallic surface plasmon whose effective kinetic inductance Lk needs to 
refer to the exact despersion relation of the surface plasmon to get the analytical expression37, the charge oscilla-
tion in the plasmonic nanoresonators are localized and its effective Lk can be obatined approximatively accord-
ing to the usual expression for the bulk plasmons. Under the driving of a time-harmonic field with the angular 
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frequency ω, the velocity of electrons and the current density cannot be in phase with the driving field due to the 
presence of electron inertia. As derived in Supporting Information I, the kinetic inductance Lk can be expressed as

μ ω= ( )L lc s/ (1)k p0
2 2

where ωp = (nq2/mε0)1/2 is the bulk plasma frequency, q is the electric charge, s = a × b is the cross-section area 
of rectangular nanorod, ε0 and μ0 are permittivity and permeability of vacuum, respectively, and c is the light 
velocity.

Faraday Inductance. As can be seen in Fig. 1c,d, under the incident light, a current flow I will be generated 
in the nanorod, which is accompanied by a magnetic field with the amplitude proportional to the current. To 
obtain effective Faraday inductance Lf of plasmonic nanorods, the usual method is to calculate the self-inductance 
which is induced by the magnetic field energy stored both inside and outside the conductor38. This method 
assumes that the magnetic energy in the internal part of nanorod is much smaller than the external part, thus a 
simplified expression for Lf can be obtained. However, when the size of cross section is large enough, the internal 
part of the magnetic energy is comparable to the external part. In that case, this method will no longer accurately 
predict the resonance frequency. Therefore, we cannot neglect the inside magnetic field energy in the calculations. 
Fortunately, the self-inductance of a nanorod can be regarded as a special case of the mutual inductance between 

Figure 1. (a) Schematic view of the rectangular plasmonic nanorod embedded in air, and the incident light 
is propagating with the electric field along the rod axis, thus exciting the longitudinal plasmon resonance. (b) 
Effective circuit mapping of plasmon resonance of rectangular nanorod; inductance and resistance stand for 
metal resonator, capacitor represents surrounding space. (c) The electric field and (d) magnetic field distribution 
which located at z = −b/2 plane when a current flow in the rod is excited by the light electric field at 375 THz. In 
the simulation, a = b = 30 nm, l = 160 nm, and a Drude model εm = 1−ω2

p/(ω2−iωΓ) is adopted for the relative 
permittivity of silver with ωp = 7.25 × 104 cm−1 and Γ = 1.45 × 102 cm−1.
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two conductors41. We can think of the self-inductance of a conductor as the mutual inductance between two 
identical conductors which coincide with each other. As derived in Supporting Information II, with the help of 
Neumann’s formula for calculating the mutual inductance between two parallel conductors, we can get the effec-
tive Faraday inductance Lf of plasmonic nanorod with rectangular cross section as

μ
π
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+ +
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where g is the geometric-mean-distance of the parallel conductors. Note that, considering the neglected quantum 
effects and the physics of Lf related to magnetic energy, the width of the nanorod (a or b) should be much larger 
than the Fermi wavelength for ensuring the validity of eq. 2. The further discussion on this limitation can be 
found in Supporting Information II.

Effective Capacitance. As a consequence of the current flow, electric charges with different signs will accu-
mulate on the opposite ends of the nanorod. Correspondingly, the two end-caps of the nanorod will function as 
one rectangular capacitor. With the potential and charge in these capacitors, the effective capacitance along the 
longitudinal direction (y axis) can be determined. Nonetheless, it should be mentioned that the potential of a 
rectangluar end-cap is not homogeneous, and the two dimensional charge distribution in the end-cap of a nano-
rod cannot be considered as a cosine function which has been used for a single metal surface37. For the capaci-
tance of the complex structures, various approaches such as conformal mapping are widely adopted to obtain 
quantitatively accurate closed form. However, the potential of the rectangular plasmonic disk is clear and can be 
worked out analytically with ∫ ∫ σ πε= +

− −
V x z dxdz x z( , ) /(4 )

a
a

b
b

b/2
/2

/2
/2 2 2 , where the εb is the permittivity of the 

surrounding medium. The effective capacitance is defined as the electric charges divided by the potential differ-
ence between the two disk centers, as derived in Supporting Information III, then we can obtained the expression 
for the effective capacitance C as follow:

πε
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The Amendment of Capacitance and Faraday Inductance. In our analytical model, the effective 
capacitance C will be modified by the effects such as the inhomogeneous distribution of the potential and the weak 
coupling between the two disks. Besides, the Faraday inductance Lf will be modified also by the non-rotational 
symmetry of the two conductors used for calculating the mutual inductance. To take account of these effects, we 
phenomenologically introduce correction factors α and β to the effective capacitance and Faraday inductance, 
respectively. And the final expression for resonance frequency can be rewritten as:

π α β
=

+
f

C L L
1

2 ( ) (4)k f
0

As can be seen in eq. 4, in order to understand and even design the functionality of highly integrated devices 
utilizing plasmonic resonators with rectangular geometry, it is mandatory to exactly know the properties of indi-
vidual units, especially the correction factors. Here, the correction factors can be determined by comparing the 
analytically and numerically obtained resonance peaks. For the silver rectangular resonators studied in this paper, 
an appropriate value of α = 2.65 and β = 0.65 have been found from the calculation about rectangular nanorod 
and will be used in related resonators with folded geometries. It should be mentioned that, although the cor-
rection factors α and β are artificially introduced, these parameters are instructive and can be obtained easily 
through experimental results of the simplest structure (i.e. nanorod) according to the user’s respective process 
conditions8. Moreover, the correction factors can also be directly applied to other geometries folded from the rec-
tangular nanorod with the same constituents. A thorough discussion is provided in the Supporting Information 
IV.

The Effect of the Faraday Inductance and Phase Retardation
Subwavelength Rectangular Plasmonic Nanorods. In the radio frequency and microwave regimes, 
the resonance frequency f0 of a resoantor is only a function of characteristic lengths l, and in certain conditions 
a linear relationship between them can be resulted. For example, an ideal half-wave dipole resonator is made of 
a thin rod of length l = c/2f0. Particularly, at optical frequencies, for a plasmonic nanorod with large aspect ratio 
(l/r ≫ 1), a linear relationship can be found between the absorption maximum of the longitudinal plasmon reso-
nance and the mean aspect ratio or the medium dielectric constant42. Other than these special cases, our approach 
demonstrates a more general nonlinear relationship between the resonance frequency and the geometry param-
eters of the subwavelenght rectangular plasmonic nanorod as shown in the eq. 4. In order to test the developed 
theory we numerically analyzed the subwavelength rectangular plasmonic nanorod with different geometrical 
parameters. Numerical simulation are carried out by a finite integration technique solver (CST microwave stu-
dio), with Drude-type dispersion of silver considered40. Here, our simulations are performed in the frequency 
domain with unit cell boundary to simulate a nanorod arrays, which is a straightforward and reliable approach. 
When a plane wave incident these nanorod arrays, the resonate frequency f0 can be obtained directly via moni-
toring the characteristic transmission spectra. The periods in both x and y directions are set to 700 nm which is 
far greater than the propagation distance of the evanescent field to weaken the coupling effects between adjacent 
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particles. The objective of this paper is to analyze the impact of geometry on the resonate frequency of the optical 
nanoresonator more accurately. For this purpose, we use adaptive tetrahedral mesh refinement for higher accu-
racy and radiation boundary conditions to truncate the unbounded domain.

As can be seen in Fig. 2, whether the parameter is the longitudinal length or lateral width of the rod, the results 
of the analysis and the simulation results are very consistent. For a perfectly conducting filament of negligible 
width (a & b → 0), the Faraday inductance can be neglected (Lf → 0), and the capacitance can be considered as a 
geometry-independent constant → πε

+( )C a
2 ln( 2 1)

b . Thus, we obtain f0 ∝ (a/l)1/2, different with microwave theory 
f0 ∝ 1/l. On the other hand, for a thin rod in optical regime (a ≈ b, a & b ≪l), the Faraday inductance can also be 
neglected approximatively, because the mutual inductance calculations are no longer applicable to Faraday 
inductance calculations. As a result, the relationship f0 ∝ (a/l)1/2 can be obtained, similarly to ref.42 For the sub-
wavelengh rectangular plasmonic nanorods, at optical frequencies the simple wavelength scaling breaks down 
because incident radiation is no longer perfectly reflected from a metal’s surface. Instead, radiation penetrates into 
the metallic nanorods and gives rise to oscillations of the free-electron gas. Moreover, it should be noted that, 
since the lateral parameters of the rectangular nanorod are smaller than the decay length (a & b < δAg) in the 
Fig. 2, the phase retardation can be neglected here.

Rectangular Plasmonic Nanosheets of Sizes Comparable To the Wavelength. But for the rectan-
gular plasmonic resonators with the transverse characteristic dimensions larger than the decay length as shown 
in the Fig. 3a, the retardation will take its toll, because the spatial extension of the structure is not negligible in 
comparison to the wavelength. For visualizing the excited plasmonic resonance, the field distributions of the fun-
damental longitudinal resonances have been calculated for the present structure. In all simulations, the incident 
light propagates along the -z axis with the electric field along the y axis. Results for the distribution of the electric 
field and magnetic field are shown in Fig. 3b,c, respectively. Obviously, in the present nanosheet, the resonance 
frequency will be influenced more strongly by the inhomogeneous distribution of the fields which can be attrib-
uted to the phase retardation throughout the resonator. To further understand these effects, we compare the 
results from the master equation eq. 4 with the formula recently published in ref.38, in which the retardation effect 
was not considered. For the influence on the longitudinal length of the nanosheet, we can see from the Fig. 3d, 
the results from these equations are all in good agreement with the numerical simulation. But for the rectangu-
lar nanosheet with larger transverse length as shown in Fig. 3e,f (a or b > 50 nm) that, somewhat surprisingly, 

Figure 2. (a) Simulated transmission spectra and (b) resonance frequency of the rectangular plasmonic 
nanorod plot as a function of the height l. The length of the a and b are fixed as 30 nm and 40 nm, respectively. 
(c) Simulated transmission spectra and (d) resonance frequency of the rectangular plasmonic nanorod plot as 
a function of the width a. The length of the l and b are fixed as 160 nm and 30 nm, respectively. (e) Simulated 
transmission spectra and (f) resonance frequency of the rectangular plasmonic nanorod plot as a function of the 
width b. The length of the l and a are fixed as 160 nm and 30 nm, respectively. The stars represent the simulation 
data and the dashed line gives our analytic results.
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retardation is already important and shifts the resonance frequency to lower energies. In other words, the theory 
neglected retardation may be just suitable for describing the nanorod with large height-diameter aspect ratio.

The Universality of the Analytical Expression
Folded Rectangular Plasmonic Nanorods with Different Shapes. To verify eq. 4, we numerically sim-
ulated the resonance frequency of folded rectangular silver nanorods with different shapes, namely L-, V- and 
U-shaped resonators. The simulated results are plotted in Fig. 4. Although L-shape is the noncentrosymmetric 
geometry which rod cannot reserve, the L-shaped resonators can still be considered as being folded from the rectan-
gular nanorod. From a plasmonic point of view, the fundamental resonance is characterized by a charge oscillation 
along the entire rod that forms the L-shaped resonators. Indeed, like plasmon resonance in the rectangular nanorod, 
similar electromagnetic fields distribution can be observed in L-shaped resonators as well43. Thus, it is possible to 
exhibit similar resonance behaviors between the nanorods and the L-shaped nanoresonators with the same nominal 
total edge length. To test the accuracy of eq. 4 for these resonators with different longitudinal total lengths l and arm 
lengths m, we compare the resonance frequency f0 predicted with eq. 4 to the exact value obtained with the simula-
tion. As plotted in Fig. 4, both theory and numerical experiments show that, the different arm lengths do not affect 
the resonance frequency at a certain total length. But an increasing total length results in a plasmonic resonance shift 
towards lower frequencies. In addition, the theoretical value predicted by eq. 4 is slightly lower than the simulation 
result. This phenomenon can be understood by unfolding conceptually the ‘L’ into an extended rod (the total length 
of a L shape is defined as the geometric mean of the long and short sides, i.e. + + − +m a n m a n( )( ) ) that 
supports the so-called LC-resonance. Similar to the case of nanorods, due to the modified effective inductance and 
capacitance, the resonance frequency f0 will decrease when the rod length l increase as shown in Fig. 2d. And the 
V- and U- shaped resonators exhibit similar physics. Furthermore, it is possible that the model presented here can be 
extended to predict the resonant frequency of the polarization dependent on the incident. For instance, the doubling 
of the resonance frequency may be observed if the electric field polarization is chosen parallel to the legs of the struc-
ture as shown in Fig. 4(g). Because for this polarization, the internal field has to be in phase at both legs of the 
U-shaped resonator. The U-shaped resonator has mirror symmetry with respect to this polarization. For preserving 
this symmetry, the fields have to have an equal phase along the legs of the ‘U’-structure. Hence, the calculation of the 
effective inductance should be considered as parallel circuit and the length used to calculate a single inductor is 
approximately equal to half the effective length of the folded nanorods.

Folded Rectangular Plasmonic Nanorods with Different Surrounding Mediums. Moreover, 
the resonance peak position is very sensitive to the refractive index change of the surrounding medium of the 

Figure 3. (a) Schematic of a plasmonic nanosheet embedded in air, and the incident light is propagating with the 
electric field along the rod axis, thus exciting the longitudinal plasmon resonance. (b) The electric field and (c) 
magnetic field distribution which located at z = -b/2 plane when a current flow in the rod is excited by the light 
electric field at 388 THz, a = 200 nm, b = 30 nm, l = 160 nm. Dependences of the resonance frequency on the (d) 
l [a = 30 nm, b = 40 nm], (e) a [l = 160 nm, b = 30 nm], and (f) b [l = 160 nm, a = 30 nm], respectively. Resonance 
frequencies extracted by the analytic eq. 4 compared against those extracted by the simulation (star *) and ref.38 
(solid line).
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plasmonic nanoresonators. A change in the refractive index of the surrounding environment results in a change in 
the effective capacitor of the LC-resonance presented here, which can be monitored by the shift of the resonance 
peak positions. To quantitatively prove that the expression is universally applicable to various plasmonic nanores-
onators with different surrounding mediums, three different plasmonic nanoresonators were used in Fig. 5 for the 
comparison between the value predicted with eq. 4 and the numerical results. In general, the agreement between 
the analytical predictions obtained with eq. 4 and the fully vectorial calculations is excellent in Fig. 5a,b. Though 
there is a slight deviation in L-shaped resonator as shown in Fig. 5c, the theoretical peak-frequency shifts are still 
consistent with the numerical results (note that, the correction factors α and β used for L-shaped resonators and 
nanorods are the same). This unique property of plasmonic resonators can be used for sensing33,34. Moreover, we 
have performed additional tests on the plasmonic resonators composed of different folded rectangular geometries 
(i.e. nanorod, nanosheet, L-shaped nanoresonator, V-shaped nanoresonator with the 120° angle between the two 
arms, V-shaped nanoresonator with the 60° angle between the two arms, and the U-shaped nanoresonator) with 
different metallic constituents (that is Ag, Cu vs Al), and similar agreement was achieved as shown in Supporting 
Information IV. Although the resonance behaviors of those nanostructures exhibit a great diversity depending on 
the shape and material, clear relation between the resonance frequency and the shape, material, or surrounding 
medium can still be observed according to eq. 4.

Summary
In this work, we derived a simple explicit expression to predict the fundamental resonance frequency of plas-
monic nanoresonators with rectangular geometry. Interacted with the electromagnetic field localized in the reso-
nators, the free electrons in the metal oscillate in harmonic way under the electromagnetic force, which generates 
the effective LC-resonance. Based on the classical electromagnetism, the effective kinetic inductance, Faraday 

Figure 4. (a) Schematic of a L-shaped nanoresonator embedded in air, and the incident light is propagating 
with the electric field along the rod axis, thus exciting the longitudinal plasmon resonance. Dependences of 
the resonance frequency on the (b) different longitudinal total lengths l with m = 150 nm, and (c) arm lengths 
m of the L-shaped nanoresonator with l = 160 nm, respectively. Corresponding results of the other plasmonic 
resonators: [(d–f)] V-shaped nanoresonators and [(g–i)] the U-shaped nanoresonators. The lengths of the a and 
b are equal and fixed at 30 nm. And in the case of (f) and (i), the length of l is 160 nm. Resonance frequencies 
extracted by the analytic eq. 4 compared against those extracted by the simulation (star *).
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inductance and capacitor of the plasmonic nanoresonators with rectangular geometry are explicitly described 
and supported by the numerical simulations. The geometric influences on the resonance frequency demonstrate 
that these novel expressions can be applied to different designs. This pure lumped circuit analogue of localized 
surface plasmon, without the aid of any numerical simulations, supplies an analytical approach for designing the 
resonance behaviors, which would open a wide range of possibilities and bring fantastic potential to plasmonic 
nanoresonators. We emphasize that the present approach is not stringently restricted by the subwavelenth limits 
and it may be used for nanoresonators of sizes comparable to the wavelength. Thus, it would be interesting to 
consider extension of the present work to coupled plasmonic systems that operate in flexible wavelength range, 
such as terahertz systems sustaining plasmonic resonances44,45.
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