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Immunoinformatic and systems 
biology approaches to predict and 
validate peptide vaccines against 
Epstein–Barr virus (EBV)
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Muhammad Junaid1, Shoaib Saleem2, William C. S. Cho3, Xueying Mao4 & Dong-Qing Wei  1

Epstein–Barr virus (EBV), also known as human herpesvirus 4 (HHV-4), is a member of the Herpesviridae 
family and causes infectious mononucleosis, Burkitt’s lymphoma, and nasopharyngeal carcinoma. 
Even in the United States of America, the situation is alarming, as EBV affects 95% of the young 
population between 35 and 40 years of age. In this study, both linear and conformational B-cell epitopes 
as well as cytotoxic T-lymphocyte (CTL) epitopes were predicted by using the ElliPro and NetCTL.1.2 
webservers for EBV proteins (GH, GL, GB, GN, GM, GP42 and GP350). Molecular modelling tools were 
used to predict the 3D coordinates of peptides, and these peptides were then docked against the MHC 
molecules to obtain peptide-MHC complexes. Studies of their post-docking interactions helped to 
select potential candidates for the development of peptide vaccines. Our results predicted a total of 
58 T-cell epitopes of EBV;  where the most potential were selected based on their TAP, MHC binding 
and C-terminal Cleavage score. The top most peptides were subjected to MD simulation and stability 
analysis. Validation of our predicted epitopes using a 0.45 µM concentration was carried out by using 
a systems biology approach. Our results suggest a panel of epitopes that could be used to immunize 
populations to protect against multiple diseases caused by EBV.

Epstein–Barr virus (EBV), also known as human herpesvirus 4 (HHV-4), is a member of the Herpesviridae 
family and is one of the eight known types of human herpesvirus. EBV is the most common human virus in the 
world1 and was isolated in 1964 from tumor cells (Burkitt’s lymphoma) by Epstein’s group2. EBV is related to 
distinct forms of cancer, such as Burkitt’s lymphoma, stomach cancer, Hodgkin’s lymphoma and nasopharyngeal 
carcinoma3,4. A High number of cases are usually reported. In the United States and other developing countries, 
most people are infected with EBV5 as 90% of the adults in the United States have been formally diagnosed with 
EBV infection. EBV infection can be asymptomatic or symptomatic, and the latter case includes mild fatigue, 
fever, enlarged spleen, swollen liver, swollen lymph nodes, inflamed throat, or rashes6. From 2006 to 2015, several 
clinical trials were conducted to develop vaccines; however, an EBV vaccine, phase 2 trial, from gp350 protein has 
been testified. This vaccine reduced the rate of Infectious Mononucleosis (IM) but not virus infection7.

Precautionary measures, such as avoiding direct contact with patients (including refraining from using a 
patient’s toothbrush, sharing food, or exchanging bodily fluids), can help reduce the risk of infection. EBV can 
infect host B cells and booms via a nonlytic mechanism8. EBV viral proteins play important roles in lymphopro-
liferative disease. For example, viral membranous proteins, such as LMP-1, may induce tumorigenic replication in 
infected B cells9,10. There are two types of EBV; Epstein and Yvonne Barr identified EBV in tumor tissue associated 
with Burkitt’s Lymphoma11. Glycoprotein 42 (gp42), Glycoprotein H, Glycoprotein L, and Glycoprotein B aid in 
the entrance to the host cell. Glycoprotein 42 binds to the HLA class II molecule because it is required for B cells, 
which inhibit epithelial cell fusion. For epithelial-cell fusion, the GH receptor protein interacts with GP4212 and 
GL is transported to the cell surface, which is essential for the correct folding of GH13.
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EBV glycoprotein B is important for viral fusion events with B cells14. The human immune system precisely 
targets EBV glycoprotein 350 (gp350), which is an example of a lytically expressed gene15. The attachment of 
GP350 to the MHC-II molecules in the cell is aided by the already attached GP42 protein of EBV virus16. The 
fusion of the B-cell membrane and the outer viral envelope of the EBV virion requires functional spicule gly-
coproteins such as GH, GL, and gp4217. Previous studies suggest that glycoproteins such as GB complement 
membrane fusion18.

Vaccination is a significant approach to improve the standard of public health and provide an effective way to 
control the growing infections. In nature, plants act as bioreactors, which have been used to express efficient vac-
cine antigens against viral, bacterial and protozoan infections. Besides, we know that antibody epitope prediction 
using computational tools, one of the crucial steps of vaccine design19. Recent advancement in vaccine design has 
aimed for the expansion of conventional assays designed to quantify T-cell responses against various vaccine can-
didates20. Immunoinformatic approaches have made great contributions to predicting B-cell and T-cell epitopes 
in the development of subunit vaccines21. For subunit vaccine development, identification of continuous B-cell or 
nonlinear also known as non-continuous and cytotoxic T-lymphocyte (CTL) epitopes are essential. Among B-cell 
epitopes, >90% are noncontinuous22,23. The use of computational tools contribute greatly in biology designing 
in silico vaccine, prediction of T-cell epitope is crucial which does not only reduce the cost but also the necessity 
for experimental results24. Epitopic vaccine against HIV, malaria and tuberculosis resulted in promising outputs 
and maintained the defensive and beneficial potential therapeutic uses of the developed vaccines candidates25. 
Immunoinformatics plays an upright role in antibody and immunodiagnostic agents development, and vaccine 
design. The early phases of vaccine and other therapeutics agents developments were based on solely immunolog-
ical experimentations. These early developmental techniques were tedious and costly too. The use of bioinformat-
ics such as computational techniques greatly reduces the time and cost of developing such agents for therapeutic 
purposes. Khan et al.26, used multiple bioinformatics tools to predict vaccine against multiple HPV viruses26. Thus 
the development of modern therapeutic medicines and vaccines greatly rely on such tools27,28.

Systems medicine emphases significantly on the components of pathway kinetics to probe different conditions. 
Systems medicine could be also utilized to investigate interaction mechanisms between microbes. Metagenomics 
data could be utilized for such analysis. Rather than whole cell interaction, an insight onto proteins interaction 
could be also comprehended through systems biology approaches (Singh, P. K. et al.29. These latest techniques 
widely expand the circle of new drugs development. Overall, it is known that multidisciplinary aspects of the pro-
duction of therapeutic proteins that has gained much more attention (Dangi, A. K. et al.30. Structural modelling 
using computational resources led to success in the development of computer assisted drugs. Likewise molecular 
docking algorithms scoring functions of different conformers to design new drug candidates.

In the present study, potential B-cell and T-cell epitopes (as effective vaccine candidates) were identified with 
the help of immunoinformatic approaches. T-cell immunogenicity is associated with epitope binding strength 
to the MHC molecule31. Molecular modelling tools were applied to peptide-MHC complexes to investigate their 
post-docking interaction in order to select potential candidates for the development of peptide vaccines.

Materials and Methods
Epstein-Barr Virus Sequence. The sequences of EBV proteins, including GH, GL, GB, GN, GM, GP42 
and GP350, were retrieved from the Universal Protein knowledgebase (Uniprot) database (http://www.uniprot.
org/). The sequence retrieval accession numbers along with other information are provided in the (Table 1). The 
3D coordinates of all the selected proteins were predicted by using online webserver phyre2 (http://www.sbg.bio.
ic.ac.uk/phyre2/html/page.cgi?id = index)32. The overall workflow of the work is shown in the Fig. 1.

Prediction of Linear B-Cell Epitopes. After interacting with antigens (such as B-cell epitopes), 
B-lymphocyte cells differentiate into memory cells and antibody secreting plasma cells33. B-cell epitopes have a 
hydrophilic nature and are accessible for flexible regions34. IEDB (http://www.iedb.org/) online analysis resources 
were used to obtain the Parker hydrophilicity prediction values35, Emini prediction values of surface accessibil-
ity36, Kolaskar and Tongaonkar’s antigenicity scale values37, and Karplus and Schulz Flexibility Prediction values. 
B-cell epitopes were predicted using ElliPro (http://tools.immuneepitope.org/toolsElliPro/) using both protein 
sequences and structural information38. ElliPro utilizes the Protrusion Index (PI) of residues, protein shape 
approximation, and the final neighbouring residues clustering, which rely on PI.

S. No
Uniprot Accession 
Number Protein Name

No of Amino 
Acids

1. P0C763 Glycoprotein B 857

2. P03231 Glycoprotein H 706

3. P03212 Glycoprotein L 137

4. P03215 Glycoprotein M 405

5. P03196 Glycoprotein N 102

6. P03205 Glycoprotein 42 223

7. P68343 Glycoprotein 350 886

Table 1. Detailed information, including individual protein sequence length, and region and accession number 
is shown in the table below.

http://www.uniprot.org/
http://www.uniprot.org/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.iedb.org/
http://tools.immuneepitope.org/toolsElliPro/
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Prediction of Potential Cytotoxic T-lymphocyte (CTL) Epitopes. CTL epitopes were predicted using 
the NetCTL.1.2 (http://www.cbs.dtu.dk/services/NetCTL/) server28. NetCTL accepts the FASTA sequence format 
to perform different analyses, such as prediction of MHC class I binding affinity, TAP transport efficiency and 
C-terminal cleavage. The artificial neural network and weight matrix were used for the prediction of MHC-I 
binding and proteasome-dependent C-terminal cleavage.

Peptide Library Construction and Molecular Docking. All of the predicted epitopes were modelled 
using the online webserver PEP-FOLD3 using 200 simulation runs to sample the conformations39 and sOPEP 
energy function40. Subsequently, we have docked the best ranked peptide models to the selected class I MHC 
molecules HLA-A (PDB ID: 2GIT) using the PatchDock docking server41. The algorithm of the PatchDock server 
uses structural geometry to find docking transformations with good molecular shape complementarity42. The 
resulting complexes were refined through the FireDock server43,44. High energy complexes were subjected to 
interaction analysis and molecular dynamics simulations45.

Molecular Dynamics Simulations. The accepted complexes were subjected to Molecular Dynamic sim-
ulations using the AMBER 14 molecular dynamics package46. The system was neutralized using Na+ ions using 
tleap. Each system was solvated in a rectangular box with buffer distance of 8.0 A° using TIP3P water molecules. 
A two-stage energy minimization of the complexes, using the SANDER module of AMBER 14, was performed 
to relieve the atomic clashes. An initial minimization of 6,000 steps, followed by another round of minimization 
(6,000 steps), were used to restrain the positions of all atoms in the systems, except those from the water mole-
cules in the first minimization. The pmemd.cuda47 software was used to simulate the minimized complexes. The 
SHAKE algorithm and the Particle-Mesh Ewald (PME) method were used to include the long-range interactions, 
and a non-bonded interaction cutoff radius of 10 A° was considered. For equilibration, 10,000 ps time was applied, 
followed by a 50 ns simulation carried out at 310 K using the Langevin temperature coupling scheme at constant 
pressure (1 atm) with isotropic molecule-based scaling. Sampling of the MD trajectories was carried out every 
2.0 ps. RMSD and hydrogen bonding analysis were carried out using the integrated CPPTRAJ and PYTRAJ48 
modules in AMBER 14 and were visualized using the online server PDBePISA49, UCSF Chimera50 and PyMOL51.

Antigenic and Allergenic behaviour the predicted Epitopes. To confirm the allergenic and 
non-allergenic properties of all the designed epitopes, B-cell and T-cell epitopes, AlgPred52 (http://crdd.osdd.

Figure 1. The figure above is showing the pipeline of the study. Resources, methods, and each step is discussed.

http://www.cbs.dtu.dk/services/NetCTL/
http://crdd.osdd.net/raghava/algpred/
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net/raghava/algpred/), which is an online web tool was employed with accuracy of 85%. Primary amino acid 
sequences were used of all the selected proteins for this purpose. The antigenicity of all the epitopes was predicted 
by using ANTIGENpro53 (http://scratch.proteomics.ics.uci.edu/) using different machine learning algorithms to 
process the amino acids sequences.

PKPD Modeling. The design and execution of the EBV signalling cascade was performed based on a litera-
ture survey within a virtual cell. Proposed peptides were chosen for kinetic analysis of EBV, where a concentration 
of 0.45 µm was assigned based on previous literature. Modelling of chemical reaction networks was applied for 
the analysis of this pathway.

This nonlinear kinetics scheme follows the Michaelis–Menten equation as below:

=
+

·V (Vmax) (S)
Km S (1)

This equation can be transformed to,

=
+

·C (Cmax) (D)
Km D

or

= =
+

·V d[P]
dt

(Amax) (D)
Km D (2)

Here,
C = steady state concentration;
Cmax = theoretical maximum for C;
Amax = theoretical maximum for A;
D = dose.

Results
Sequence retrieval and analysis. Uniprot was used to retrieve the primary amino acid sequences of the 
selected proteins (glycoprotein B, glycoprotein L, glycoprotein N, glycoprotein H, glycoprotein M, glycoprotein 
42 and glycoprotein 350) of EBV as shown in Fig. 2. Information about the protein source, accession number, 
number of active residues, and other information is given in Table 1.

Allergenicity and antigenicity prediction. The allergic and nonallergenic behaviours of EBV species 
were predicted using AlgPred (http://www.imtech.res.in/raghava/algpred/). Allergenicity prediction of known 
protein sequences is based on similarity. We checked if the epitopes are antigenic or not using the online server 
AntigenPro (http://www.scratch.proteomics.ics.uci.edu/)35. All of the proteins were found to be nonallergenic, 
while they possess antigenic properties (Table 2).

B-cell epitope prediction. The BCPred server predicted 58 B-cell epitopes: five epitopes were for GP 42, 
eight for GP H, nineteen for GP B, one for GP L and GP N, five for GP M, and nineteen for GP 350. However, 
epitopes with scores above 0.99 were selected as the most potentially antigenic epitopes. Therefore, only one 
epitope each from GP42, GL, GM, GN and GH; four epitopes from GB; and fifteen epitopes from GP350 were 
found to meet the threshold value. B-cell epitopes, along with their scores, are tabulated in Table 3.

Surface accessibility of EBV. Threshold values >1 were set to predict the surface probability values. Amino 
acids with higher surface probability values (>1) have greater probability to be present on protein surfaces36. 
The maximum surface probability scores for Glycoprotein B (RRRRRD428–433), Glycoprotein H (EREDRD520–525), 
Glycoprotein L (KNGSNQ68–73), Glycoprotein M (RNRRRS362–367), Glycoprotein N (TEAQDQ44–49), Glycoprotein 
42 (TKKKHT199–124), and Glycoprotein 350 (PRPRYN810–815) were 9.415, 9.265, 4.395, 9.054, 4.777, 5.691 and 
4.859, respectively. The minimum surface probability scores were 0.032 (VVILVI745–750), 0.033 (CVFCLV5–10), 
0.071 (LAICLV8–13), 0.067 (IIPILC309–314), 0.07 (LVLVII76–81), 0.054 (VIVLLL18–23), and 0.058 (AALLVC3–8). 
Figure S1 (Supplementary Materials) shows the graphical representation of the predicted surface accessibility of 
EBV. Moreover, for all of the other proteins which have maximum and minimum accessibility scores are shown 
in Table S1 (Supplementary Materials).

Surface flexibility of EBV selected proteins. The Karplus and Schulz flexibility method was used to cal-
culate the motions of atoms (back and forth, considering temperature or B factor). Low B-factor values indicate 
a highly systematic structure, and high B factors indicate a distorted structure 32. The graphical representation 
of the surface flexibility results for EBV is shown in Fig. S3. Maximum flexibility scores for Glycoprotein B, 
Glycoprotein H, Glycoprotein L, Glycoprotein M, Glycoprotein N, Glycoprotein 42, and Glycoprotein 350 were 
1.13, 1.094, 1.121, 1.157, 1.071, 1.091, 137 for heptapeptides EQNQEQK803–809, VITQGPN346–442, PKNGSNQ67–73, 
STSSSSS368–374, GASSPTN31–37, VRGGGRV31–37, PGNSSTS733–739, respectively. Minimum flexibility scores 
were 0.88, 0.872, 0.904, 0.866, 0.862, 0.897, and 0.894 for the peptides QAIMLAL795–801, LAAMLMA351–357, 
FLAICLV7–13, FLWWVVF193–199, IYLMYVC85–91, VAAAAIT37–43, and LLVMADC877–883, respectively. Figure S2 
(Supplementary Materials) shows a graphical representation of the predicted surface flexibility of EBV. Moreover, 
for all of the other proteins which have maximum and minimum flexibility scores are shown in Table S2 
(Supplementary Materials).

http://crdd.osdd.net/raghava/algpred/
http://scratch.proteomics.ics.uci.edu/
http://www.imtech.res.in/raghava/algpred/
http://www.scratch.proteomics.ics.uci.edu/
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Parker Hydrophilicity Prediction for EBV. Hydrophilicity of the predicted epitopes was calculated using 
the Parker hydrophilicity approach35. The graphical illustration of the predicted Parker hydrophilicity of EBV 
is shown in Fig. S3 (Supplementary Materials). From all of the predicted EBV peptides, the maximum hydro-
philicity calculated was 6.843 for Glycoprotein 350 at the amino acid positions DNGTESK496–502. These regions 
were predicted to act as active T-cell epitopes. The minimum hydrophilicity score calculated was −7.857 for 
Glycoprotein M at the amino acid positions FLWWVVF193–199. Moreover, for all of the other proteins which have 
maximum and minimum hydrophilicity scores are shown in Table S3 (Supplementary Materials).

T-cell epitope identification. Epitope predictions for all seven proteins were conducted on NetCTL, an 
online epitope prediction server. MHC-I binding prediction using the SMM method resulted in many poten-
tial epitopes against one allele, HLA-A*24:02. The weight matrix and artificial neural network was used for the 
prediction of MHC-I binding and proteasome dependent C-terminal cleavage. The MHC binding affinity, the 

Figure 2. The 3D structures of the selected proteins. The Phyre 2 online server was used for B-cell and T-cell 
epitope prediction. (A) Glycoprotein B (B) Glycoprotein H (C) Glycoprotein L (D) Glycoprotein M (E) 
Glycoprotein N (F) Glycoprotein 42 (G) Glycoprotein 350.

S.NO Proteins Allergenicity Antigenicity

1. Glycoprotein B Non-Allergic Antigenic

2. Glycoprotein H Non-Allergic Antigenic

3. Glycoprotein L Non-Allergic Antigenic

4. Glycoprotein M Non-Allergic Antigenic

5. Glycoprotein N Non-Allergic Antigenic

6. Glycoprotein 42 Non-Allergic Antigenic

7. Glycoprotein 350 Non-Allergic Antigenic

Table 2. Antigenic and allergenic results of the selected proteins.



www.nature.com/scientificreports/

6SCiEnTifiC REPORTS |           (2019) 9:720  | DOI:10.1038/s41598-018-37070-z

TAP score, and the C-terminal cleavage score were considered to select the most promising epitopes among 
those predicted. The top three epitopes (as shown in Table 4) for glycoprotein B (ETDQMDTIY, QMDTIYQCY, 
PTTVMSSIY), glycoprotein L (MTAASYARY, LTSAQSGDY, ATSVLLSAY), glycoprotein H (ALENISDIY, 
LLTTLETLY, SSSALTGHL), glycoprotein N (IADCVAFIY, FLALGNSFY, TTDSEEEIF), glycoprotein M 

Protein Position Epitope Score

GP42 43 TWVPKPNVEVWPVDPPPPVN 1

GH 623 DEKEGLETTTYITSQEVQNS 0.994

GB

21 GAQTPEQPAPPATTVQPTAT 1

400 TTPTSSPPSSPSPPAPSAAR 1

430 RRRDAGNATTPVPPTAPGKS 1

257 YKIVDYDNRGTNPQGERRAF 1

GL 18 LPTWGNWAYPCCHVTQLRAQ 0.674

GM 357 TPSPGRNRRRSSTSSSSSRS 1

GN 25 TGVLPAGASSPTNAAAASLT 1

GP350

514 TTPTPNATSPTPAVTTPTPN 1

535 TSPTPAVTTPTPNATSPTLG 1

474 TSPTPAGTTSGASPVTPSPS 1

598 TSPTSAVTTPTPNATGPTVG 1

720 PAPRPGTTSQASGPGNSSTS 1

577 TSPTSAVTTPTPNATSPTLG 1

556 TSPTSAVTTPTPNATSPTLG 1

423 KAPESTTTSPTLNTTGFADP 1

835 TSPPVTTAQATVPVPPTSQP 1

647 TSAVTTGQHNITSSSTSSMS 1

243 GILTSTSPVATPIPGTGYAY 1

452 THVPTNLTAPASTGPTVSTA 1

626 TNHTLGGTSPTPVVTSQPKN 1

746 NVTKGTPPQNATSPQAPSGQ 1

767 TAVPTVTSTGGKANSTTGGK 1

Table 3. B-Cell epitopes predicted by BCPred.

S.NO Peptide Sequence
MHC Binding 
Affinity

Rescale Binding 
Affinity

C-terminal 
Cleavage Affinity

Transport 
Affinity

Prediction 
Score

MHC-I 
Binding

GB

131 ETDQMDTIY 0.7945 3.3733 0.6371 2.4710 3.5924 Yes

134 QMDTIYQCY 0.7028 2.9841 0.9533 2.7440 3.2643 Yes

502 PTTVMSSIY 0.5331 2.2633 0.6136 2.5280 2.4817 Yes

GL

256 MTAASYARY 0.7300 3.0993 0.6470 2.9770 3.3452 Yes

216 LTSAQSGDY 0.7246 3.0764 0.6687 2.9570 3.3245 Yes

396 ATSVLLSAY 0.6201 2.6327 0.9581 3.0130 2.9271 Yes

GH

41 ALENISDIY 0.4625 1.9636 0.9238 2.9920 2.2518 Yes

107 LLTTLETLY 0.3076 1.3059 0.9638 2.7450 1.5877 Yes

96 SSSALTGHL 0.1437 0.6103 0.9131 1.1760 0.8060 Yes

GN

86 IADCVAFIY 0.6262 2.6588 0.9587 2.7190 2.9385 Yes

225 FLALGNSFY 0.5351 2.2720 0.8655 2.9130 2.9385 Yes

396 TTDSEEEIF 0.4510 1.9148 0.2635 2.3520 2.0719 Yes

GM

43 LTEAQDQFY 0.7612 3.2319 0.6749 2.8170 3.4740 Yes

81 IASAIYLMY 0.5205 2.2100 0.7658 3.0050 2.4752 Yes

82 ASAIYLMYV 0.1686 0.7159 0.5794 0.5250 0.8291 Yes

GP42

132 CAELYPCTY 0.4738 2.0117 0.9710 2.9460 2.3047 Yes

86 HTFQVPQNY 0.4422 1.8777 0.9494 2.9720 2.1687 Yes

103 NTREYTFSY 0.3707 1.5740 0.9745 2.9820 1.8693 Yes

GP350

316 PTNTTDITY 0.5572 2.3659 0.9498 2.3650 2.6266 Yes

274 FLGNNSILY 0.4340 1.8426 0.9710 2.8180 2.1291 Yes

143 HAEMQNPVY 0.4028 1.7103 0.7631 2.7190 1.9607 Yes

Table 4. List of the total peptides T-cell vaccines predicted by NetCTL.
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(LTEAQDQFY, IASAIYLMY, ASAIYLMYV), glycoprotein 42 (CAELYPCTY, HTFQVPQNY, NTREYTFSY), and 
glycoprotein 350 (PTNTTDITY, FLGNNSILY, HAEMQNPVY) were selected for docking.

Peptide modelling and docking studies for HLA-A*24:02 and epitope interaction analysis. The 
selected top three epitopes from all proteins were docked against HLA-A*24:02 using Fire dock. The epitope 
QMDTIYQCY (glycoprotein B) was docked to understand the interaction pattern between peptide-MHC com-
plexes. The global docking energy and van der Waals (vdW) energy were reported as −35.20 (kcal/mol) and 
−25.12 (kcal/mol), respectively. Residues Gln7, Cys8 and Asp3 from the docked peptides and Thr143, Tyr116, 
Thr80 and Lys146 from the MHC molecules were involved in binding. Peptide MTAASYARY (glycoprotein 
H) was reported to share a global energy of −34.27 (kcal/mol), with −29.12 (kcal/mol) vdW energy. On the 
other hand, peptides from Glycoprotein M (TTDSEEEIF), Glycoprotein N (LTEAQDQFY), Glycoprotein 42 
(CAELYPCTY), and Glycoprotein 350 (PTNTTDITY) contributed global energies of −36.20 (kcal/mol), −34.25 
(kcal/mol), −40.20 (kcal/mol), and −30.48 (kcal/mol), respectively. The vdW interaction energies for these com-
plexes ranged from −29.71(kcal/mol) to −18.80 (kcal/mol). Residues Lys66, Arg97, Tyr99, Gln155, His114, and 
Thr163 from these complexes were uniformly involved in hydrogen bonding interactions. The Chimera inter-
action analysis tool predicted the interactions between peptide and MHC-I molecules within 3Ǻ. Overall, the 
stability was supported by the variable amounts of hydrogen bonding. The molecular interaction patterns are 
depicted in Fig. 3, while the interacting atoms are shown in Table 5.

PKPD modelling-based validation. In a time-course simulation with the shortlisted peptides (obtained 
from the screening), the initial concentration of the top-listed peptides was set at 0.45 µm54–56, and after 20 sec-
onds, all of the interactions of the EBV mechanism in the cell signalling cascade were stabilized given in Fig. 4 
and 5. EBV is a Baltimore Class I virus of the Herpesviridae family and plays a crucial role in lymphoproliferative 
disease. During tropic EBV infection, EBV binds to the HLA class II molecule, and B cells inhibit epithelial cell 
fusion, while the GH receptor protein interacts with GP42, and GL is transported to the cell surface where it is 
essential for the correct folding of GH. EBV GB is important for viral fusion events with B cells. Glycoprotein 
350 binding is supported by the binding of EBV gp42 to B-cell MHC-II, while fusion of the B-cell membrane and 
the outer viral envelope of EBV virion must have functional spicule glycoproteins, such as GH, GL and gp42. 
Vaccines development requires the identification of extremely competent B-cell linear or nonlinear and CTL 
epitopes, where T cells act as mediators.

A systems biology approach is useful to investigate T-cell epitopes in peptide sequences, and earlier reports 
have accelerated research leading to the development of immune biology.

Root Mean Square Deviation (RMSD). Molecular dynamics simulation was conducted to confirm the 
post-docking stability of the complexes. Trajectories were obtained after 50 ns and subjected to backbone stability 
using RMSD. RMSD of the selected complexes after 50 ns revealed that all of the complexes were stable and that 
the peptides had occupied the binding grooves of MHC-I molecules. RMSDs of all the complexes were calculated 

Figure 3. Interaction pattern of the docked peptides against MHC I molecules.
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and plotted on the graph shown in Fig. 6. The RMSDs of all of the complexes ranged from 0.08 to 0.2 nm. These 
results show that small fluctuations were observed during the simulation time, but these fluctuations are likely 
because some of the peptides are modelled as loop structures.

Discussion
Vaccination is one of the best options for providing immunity against different pathogenic organisms, thus deliver-
ing protection against different diseases. Different types of vaccines, such as peptide, conjugated, subunit, and DNA 
vaccines, can be used to provoke the immune response. However, in this postgenomic and proteomic era, research-
ers prefer peptide or subunit vaccines over the whole pathogenic agent due to the availability and accessibility of 
huge data sets for different pathogens. These data can be systematically analyzed through the use of computational 

Peptide

Global 
Energy 
(kcal/mol)

vdW 
Energy 
(kcal/mol)

H-Bond 
Energy 
(kcal/mol)

H-Bond Interaction

Peptide-MHC atom pair dinit (Å)

QMDTIYQCY −35.20 −25.12 −1.09 GLN7 NE2-THR143 OG1 3.39

Glycoprotein B

CYS8 N-TYR116 OH 3.77

ASP3 OD1-THR80 OG1 2.62

ASP3OD2-LYS146 NZ 3.95

MTAASYARY −34.27 −29.12 −3.82 GLN5 NE2-GLU63 O 3.35

Glycoprotein H

GLN5 NE2-GLU63 OE2 3.60

SER6 N-TYR99 OH 3.47

TYR9 N-GLN155 OE1 2.42

THR2 O-THR73 OG1 3.56

THR2 O-ARG97 NH1 3.63

SER3 OG-HIS70 NE2 3.01

GLN5 OE1-TYR99 OH 3.77

ASP8 OD2-HIS114 NE2 3.79

ASP8 OD2-ARG97 NH2 3.76

MTAASYARY −34.26 −18.80 −1.36 GLN5 NE2-THR163 OG1 2.74

Glycoprotein H

SER6 O-TYR99 OH 2.56

GLY7 O-ARG7 NH1 2.22

TYR9 OH-TRP147 NE1 3.52

TTDSEEEIF −36.20 −29.71 −4.82 THR1 OG1-GLU63 OE2 3.03

Glycoprotein M

THR1 O-LYS66 NZ 2.89

GLU7 OE1-ARG97 NH2 3.72

GLU7 OE2-ARG97 NE 3.69

GLU7 OE2-ARG97 NH2 3.02

GLU7 OE2-HIS114 NE2 3.24

LTEAQDQFY −34.25 −24.49 −3.30 LEU1 N-ARG65 O 3.65

Glycoprotein N

GLU3 OE2-TYR99 OH 2.17

ASP6 O-LEU156 N 3.88

GLN7 OE1-HIS70 NE2 3.04

GLU3 OE1-LYS66 NZ 3.60

GLU3 OE2-HIS70 NE2 3.32

CAELYPCTY −40.20 −23.44 −1.23 CYS7 N-THR163 OG1 3.50

Glycoprotein 42

THR8 OG1-THR163 O 2.95

TYR9 N-TYR159 OH 3.74

GLU3 O-GLN155 NE2 3.13

PRO6 O-THR163 OG1 2.03

THR8 O-LYS66 NZ 2.02

PTNTTDITY −30.48 −29.45 −3.12 THR5 OG1-THR143 OG1 3.48

Glycoprotein 350

ASN3 OD1-TRP147 N 3.54

THR4 O-THR80 OG1 3.58

THR4 OG1-LYS146 NZ 2.53

ASP6 O-TRP147 NE1 3.57

ASP6 OD2-ARG97 NH2 3.50

ASP6 OD1-ARG97 NH2 3.89

ASP6 OD2-ARG97 NH2 3.50

ASP6 OD2-HIS114 NE2 3.27

Table 5. Molecular Docking analysis of the final peptides.
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tools. Presentation of MHC-Antigen on the surface of T-cells provide a way to kill the infected cell. This presenta-
tion of MHC-antigen complex direct apoptosis or self-eating process of the infected cell. The antigenic element 
of the pathogen provoke the immune response by activating a signalling process. The peptide fragment bound to 
MHC molecule is primarily presented T-cell which significantly rely on different factors including proteasome 
cleavage and transport with the aid of ER. TAP which transporting channels or proteins help in the transport to 
the surface of the cell. Therefore, considering the c-terminal cleavage activity and TAP efficiency greatly help in 
the selection of effective vaccine candidates31,57–59. Immunoinformatic approaches have contributed greatly to the 
development of vaccines. Therefore, we employed these tools to design peptide vaccines against EBV to provide a 
means to protect humanity from the multiple diseases caused by EBV, such as infectious mononucleosis, Burkitt’s 
lymphoma60, Hodgkin’s lymphoma61, stomach cancer, laryngeal carcinoma62, multiple sclerosis63,64 and lympho-
matoid granulomatosis65. Additional diseases that have been linked to EBV include Giannotti–Crosstie syndrome, 
erythema multiform, acute genital ulcers, and oral hairy leukoplakia66; furthermore, hypersensitivity to mosquito 
bites has been associated with EBV infection67. EBV has been implicated in disorders related to alpha-synuclein 
aggregation (e.g., Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy)68. The proteome 
of EBV has many important functional proteins involved not only in its pathogenesis but also in the maintenance 

Figure 5. The time-course simulation with screened peptides against relation of interacting EBV.

Figure 4. Model of the biochemical pathway of MDS in the presence of peptides.
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of the pathogenic condition. EBV has been reported to use its glycoproteins, such as glycoprotein B, glycoprotein 
L, glycoprotein H, glycoprotein N, glycoprotein M, glycoprotein 42, and glycoprotein 350, to attach to and infect 
its host cell. Therefore, predicting and validating both B-cell and T-cell epitopes from these proteins are important 
steps to provide immunity against these various diseases. Based on MHC binding affinity, TAP score, C-terminal 
cleavage score, molecular docking and MD simulation, we propose Glycoprotein B (QMDTIYQCY134–142), 
Glycoprotein L (MTAASYARY256–264), Glycoprotein N (TTDSEEEIF396–404), Glycoprotein M (LTEAQDQFY43–52), 
Glycoprotein 42 (CAELYPCTY132–140), and Glycoprotein 350 (PTNTTDITY316–324) as the final T-cell epitopes 
that could provoke the immune response in the host cell. The systems biology approach with pharmacokinetic/
dynamics modelling validated that these epitopes significantly activates the immune response pathway and, thus, 
provide a strong basis for the testing of these epitopes under in vivo conditions. Structural stability analysis of the 
peptide-MHC complexes also revealed the stability of these immunogenic complexes. Antigenic and allergenic 
profiles also confirmed that these epitopes are strong candidates. Furthermore, B-cell epitopes were reported as the 
primary choice for the development of a B-cell immune response.

This study provides a means for the development of peptide-based vaccines against EBV infection that could 
prevent many important diseases. To date, no such computational meta-analysis integrated with dynamics has 
been reported for the purpose of developing a peptide vaccine for EBV. This multiple step process has noticeably 
increased the scope and precision of this study. Our results will facilitate efficient subsequent experimental efforts, 
as the specified regions from Glycoprotein B (QMDTIYQCY134–142), Glycoprotein L (MTAASYARY256–264), 
Glycoprotein N (TTDSEEEIF396–404), Glycoprotein M (LTEAQDQFY43–52), Glycoprotein 42 (CAELYPCTY132–140), 
and Glycoprotein 350 (PTNTTDITY316–324) could be used for the development of candidate CTL epitopes. This 
study will aid in the progress of peptide vaccines against EBV.

Conclusion
It is well known that EBV causes many human diseases, including cancer. This study integrated multiple 
approaches to elucidate possible effective peptide vaccines that could provide protection against multiple infec-
tions. This study provides insight into the disease-causing factors of EBV virus and, thus, finalized potential B-cell 
and T-cell epitopes that will aid in the development of effective vaccines. Despite the prediction and validation of 
such peptides computationally, testing of our predicted epitopes should be carried out in animal models.
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