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Intracellular albumin overload 
elicits endoplasmic reticulum stress 
and PKC-delta/p38 MAPK pathway 
activation to induce podocyte 
apoptosis
Guilherme Lopes Gonçalves, Juliana Martins Costa-Pessoa, Karina Thieme, 
Bruna Bezerra Lins & Maria Oliveira-Souza

Podocyte injury is closely related to proteinuria and the progression of chronic kidney disease 
(CKD). Currently, there is no conclusive understanding about the mechanisms involved in albumin 
overload and podocyte apoptosis response. In this study, we sought to explore the ways by which 
intracellular albumin can mediate podocyte apoptosis. Here, immortalized mouse podocytes were 
treated with bovine serum albumin (BSA) at different times and concentrations, in the presence or 
absence of SB203580 (0.1 µM, inhibitor of mitogen-activated-protein kinase – p38MAPK). Using 
immunofluorescence images, flow cytometry and immunoblotting, we observed a time-dependent 
intracellular accumulation of fluorescent albumin-FITC-BSA, followed by concentration-and time-
dependent effect of intracellular albumin overload on podocyte apoptosis, which was mediated by 
increased expression of the chaperone glucose-regulated-protein 78 (GRP 78) and phosphorylated 
inositol-requiring enzyme 1 alpha (pIRE1-α), as well as protein kinase C delta (PKC-δ), p38MAPK and 
cleaved caspase 12 expression. SB203580 prevented the cleavage of caspase 12 and the albumin-
mediated podocyte apoptosis. These results suggest that intracellular albumin overload is associated 
with endoplasmic reticulum (ER) stress and upregulation of PKC-δ/p38MAPK/caspase 12 pathway, 
which may be a target for future therapeutic of albumin-induced podocyte apoptosis.

Podocytes are highly specialized renal epithelial cells in the Bowman’s space. They regularly wrap around the glo-
merular basement membrane (GBM) of the glomerular capillaries and extend foot processes, which interdigitate 
with the same structures of the neighboring podocytes. The extracellular domains of specific integral membrane 
proteins, including nephrin, p-cadherin and FAT tumor suppressor homolog 1 (FAT 1) extend between the foot 
processes to form the slit diaphragm1,2, which under physiological conditions, forms a selective barrier that is 
permeable to water and small solutes but has limited permeability to macromolecules such as albumin3.

On the other hand, in renal diseases, podocytes are injured and the complex architecture of the foot processes 
can be altered, leading to loss of the slit diaphragm or podocyte effacement. These processes result in proteinuria 
and progressive loss of kidney function4,5. During podocyte dysfunction, large amounts of albumin are found 
in the glomerular ultrafiltrate; however they are predominantly reabsorbed by endocytosis in proximal tubular 
cells6. In addition to this classical pathway, it has been demonstrated that podocytes can endocyte proteins such as 
albumin7. Furthermore, studies in human and animal models have reported a transcellular migration of albumin 
through the podocytes under albuminuric conditions6–10, and albumin overload in podocytes results in increased 
expression of the GRP 78, which has been reported as an ER stress marker11,12. However, the mechanisms by 
which intracellular albumin induces ER-stress-mediated podocyte injury are not well understood.

It has been established that in vascular smooth muscle cells, adipocytes or the Human Embryonic Kidney 
293 (HEK293) cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase stimulation and reactive 
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oxygen species (ROS) production are closely related to endoplasmic reticulum (ER) stress, PKC-δ13–15 and p38 
MAPK activation, which together are associated with apoptotic responses13,16–18.

In view of these findings, we sought to explore the hypothesis that under intracellular albumin overload, the 
ER stress/PKC-δ/p38MAPK/caspase 12 signaling pathway can play a critical role in podocyte apoptosis. Our 
data advance the understanding of the cell signaling pathways responsible for albumin-induced podocyte apop-
tosis and may contribute to the development of preventive and therapeutic strategies for albuminuria-associated 
chronic kidney diseases (CKD).

Results
Expression of podocin and synaptopodin. To validate our in vitro model, differentiated mouse podo-
cytes were subjected to phalloidin immunofluorescence staining and podocin and synaptopodin protein expres-
sion (Fig. 1a).

Albumin overload induces podocyte apoptosis. Differentiated podocytes were cultured in BSA-free 
medium or with increasing concentrations of BSA (1, 5 or 10 mg/mL) at 37 °C for 24 hours. Under these condi-
tions, podocyte apoptosis was documented by flow cytometry. The treatment with albumin 1 mg/mL induced 
significant increase of the early, late and consequently total podocyte apoptosis compared to control (untreated) 
cells. Albumin 5 mg/mL induced only early podocyte apoptosis, whereas albumin 10 mg/mL induced a significant 
increase in the early apoptosis but decreased the late apoptosis. Thus, in these conditions, total podocyte apopto-
sis did not change compared to the control group (Fig. 1b,c and Table 1).

Time and temperature-dependence of the FITC-BSA internalization in podocyte. We moni-
tored the albumin internalization after stimulation with FITC-BSA (1 mg/mL in serum free medium) at 4 °C 
for 30 minutes and at 37 °C for 30 minutes, 1 and 3 hours. The signal was detected as green vesicles distributed 
in the cytosol. The nucleus was stained with DAPi (blue). Figure 2a,b shows that in 1 mg/mL FITC-BSA-treated 
cells for 30 minutes, the fluorescence intensity was significantly lower at 4 °C in comparison to 37 °C cells [(AU) 
4 °C: 1.67 ± 0.10 (n = 9) versus 37 °C: 3.62 ± 0.27(n = 20), **p < 0.01], indicating that the albumin internalization 

Figure 1. (a) Representative immunofluorescence and immunoblots from 4 experiments with differentiated 
podocytes under control conditions. Phalloidin images were captured on a Zeiss LSM 780 confocal microscope 
equipped with a 63× objective plan-apochromat zoom factor 1 and a laser excitation of 546 nm for phalloidin. 
Bar, 20 μm. Immunoblot analysis results are presented for the podocin and synaptopodin protein expression, 
as well as the internal control glyceraldehyde-3-phosphate dehydrogenase (GAPDH). (b) Representative flow 
cytometry data exhibiting podocyte apoptosis in the control or treated groups. The cells were treated with BSA 
(1, 5 and 10 mg/mL) for 24 hours, and apoptosis was evaluated by flow cytometry using FITC Annexin V/7-
AAD. Q1, cells in necrosis; Q2, cells in late apoptosis; Q3, cells in early apoptosis and Q4, healthy cells. (c) The 
values in percentage (%) are expressed as mean ± SEM of 6–9 experiments in triplicate.
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is temperature-dependent. The intracellular FITC-BSA quantification indicated that the albumin internaliza-
tion process at 37 °C followed a significantly time-dependent trend [(AU) 30 minutes: 3.62 ± 0.27 versus 1 hour: 
5.27 ± 0.42 (n = 20), ##p < 0.01]. Furthermore, the fluorescent signal did not change between 1 and 3 hours [(AU) 
4.37 ± 0.46 (n = 11)], and it was not evidenced after 24 hours of stimulation, despite the presence of the cellular 
layer.

Intracellular albumin overload leads to ER stress and PKC-δ phosphorylation in podocytes. We 
examined whether albumin overload triggers the ER stress response in podocytes. For these experiments, we used 
BSA without FITC. As shown in Fig. 3a,b and Table 2, the treatment with 1 mg/mL of BSA at 37 °C for 1 hour, 
but not for 30 minutes, 3 or 24 hours, induced significant increase in the expression of the chaperone GRP 78/BiP 
compared to the control group. The increased GRP 78 expression was parallel to the increase of phosphorylated 
IRE1-α expression, which was extended throughout the other experimental periods.

In addition to the ER stress marker, the treatment of podocytes with 1 mg/mL of BSA for 1, 3 or 24 hours, but 
not for 30 minutes, induced significant increase in the expression of phosphorylated PKC-δ compared to control 
group (Fig. 3c and Table 2).

p38MAPK and caspase-12 mediate albumin-induced podocyte apoptosis. Considering that 
both IRE1-α and PKC-δ can mediate apoptosis through activation of the mitogen-activated protein kinase path-
way19,20, we next evaluated the expression of the phosphorylated p38MAPK. As shown in Fig. 4a and Table 2, 
podocytes treated with BSA (1 mg/mL) at 37 °C for 1, 3 and 24 hours, but not for 30 minutes, showed a significant 
increase of phosphorylated p38MAPK protein expression compared to control group. In addition, the stimulatory 
effect of albumin on the expression of phosphorylated p38MAPK for all treatment periods is closely related with 
the increase of cleaved caspase 12 expression (Fig. 4b and Table 2).

Apoptosis, % Control Alb −1 mg/mL Alb −5 mg/mL Alb −10 mg/mL

Early 3. 23 ± 0.15 (9) 5.22 ± 0.54*** (7) 5.60 ± 0.17***(6) 4.50 ± 0.21* (7)

Late 9. 78 ± 0.58 (9) 14.25 ± 0.60 ***(7) 10.65 ± 0.77 (7) 5.70 ± 0.12 ***(6)

Total 12.95 ± 0.69 (7) 19.47 ± 0.90*** (7) 15.83 ± 0.96 (6) 10.12 ± 0.30 (7)

Table 1. Effect of albumin on apoptosis in control and treated podocytes. The values are mean ± SEM; Number 
of experiments in parentheses. ***p < 0.001 and *p < 0.05 versus control (untreated), Alb, albumin.

Figure 2. (a) Fluorescent images demonstrating that the albumin internalization in podocytes is temperature 
and time-dependent. The signal was detected as green vesicles distributed in the cytosol and enlarged images are 
also represented. Bar, 20 μm. (b) The fluorescence intensity was expressed as arbitrary units (A.U) of 9–20 cells.
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Figure 3. Relative expression and representative bands of GRP 78 (a) phosphorylated IRE1-α (b) and 
phosphorylated PKC-δ (c), in the control and treated podocytes. GAPDH was used as an internal control; the 
values (fold change from control) are mean ± SEM of 4 experiments.

Proteins, fold change Control

Alb −1 mg/ml

30 min 1 h 3 h 24 h

GRP 78 1.0 ± 0.0 (4) 1.54 ± 0.09 (4) 2.21 ± 0 0.41**(3) 1.41 ± 0.30 (4) 1.45 ± 0.03 (4)

Phospho IRE-1α 1.0 ± 0.0 (4) 2.06 ± 0.21 *** (4) 1.76 ± 0.09** (4) 1.63 ± 0.01** (4) 1.80 ± 0.10*** (4)

Phospho PKC-δ 1.0 ± 0.0 (5) 1.23 ± 0.50 (5) 1.70 ± 0.20** (4) 1.51 ± 0.09* (5) 1.75 ± 0.18 ** (4)

Phospho P38MAPK 1.0 ± 0.0 (4) 1.25 ± 0.10 (4) 2.15 ± 0.19*** (4) 3.47 ± 0.26*** (4) 2.78 ± 0.12 *** (3)

Cleaved Caspase 12 1.0 ± 0.0 (4) 1.23 ± 0.06 (4) 1.46 ± 0.13* (4) 2.43 ± 0.18*** (3) 1.62 ± 0.14 ** (3)

Table 2. Proteins expression in control and treated podocytes. The values are mean ± SEM; Number of 
experiments in parentheses. ***p < 0.001, **p < 0.01 and *p < 0.05 versus control (CTL), Alb, albumin; min, 
minutes; h, hours.

Figure 4. Relative expression and representative bands of non-phosphorylated and phosphorylated p38MAPK 
(a) or cleaved caspase 12 (b) in control and BSA (1 mg/mL)-treated podocytes for 30 minutes, 1, 3 or 24 hours. 
GAPDH was used as the internal control; the values (fold change from control) are represented as mean ± SEM 
of 3–4 experiments.
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Because the stimulatory effect of albumin on phosphorylated p38MAPK and cleaved caspase 12 expression 
reached the maximum in 3 hours, we next co-treated the cells with albumin 1 mg/mL and/or SB203580 (0.1 μM) 
at 37 °C for 3 hours. In this condition, SB203580 significantly reduced the stimulatory effect of albumin on both 
phosphorylated p38MAPK and cleaved caspase 12 expression (Fig. 5a,b and Table 3).

Discussion
In the present in vitro study, we demonstrated that albumin in a concentration- and time-dependent manner 
induces podocyte injury and apoptosis. These changes are associated with intracellular albumin overload, ER 
stress, upregulation of PKC-δ, p38MAPK and caspase 12.

Micropuncture studies in rats demonstrated that under physiological conditions, the albumin concentra-
tion in Bowman’s space is approximately 22.9 µg/mL6,21 and that this value can increase approximately 40-fold in 
nephropathy states22. On the other hand, in vitro studies revealed that in proximal tubular cells albumin endo-
cytosis (range of 100 µg/mL to 1 mg/mL) was effective within 30 minutes23. However, the exposition of human 
podocytes to extracellular high concentrations of albumin (range of 5 to 10 mg/mL) for 24 and 48 hours led 
to increased cell death24,25. In the current study, using flow cytometry, we observed that prolonged exposure 
(24 hours) of immortalized mouse podocytes to albumin 1 mg/mL resulted in increased apoptosis. However, 
5 and 10 mg/mL albumin failed to induce apoptosis. In part, our results differ from those obtained by Yoshida 
et al.25, possibly due to differences in our experimental design, including time of stimulation and evaluation 
method, in addition to the mechanism of saturation kinetics26.

The albumin internalization mechanisms in podocytes have been the main target of several studies, espe-
cially for the relative contribution of the multiple pathways involved in endocytosis process, which remain to be 
clarified. Endocytosis process can occur through non-specific binding of the molecule to the cell membrane and 
its subsequent internalization, or may be mediated by specific receptors27. Although the albumin endocytosis 
pathway has not been the focus of the current study, in a previous experimental trial, we observed that mouse 
podocyte express protein such as clathrin, caveolin-1, V-ATPase E-subunit, megalin and cubilin, which have been 
demonstrated as mediators of albumin endocytosis in kidney cells28–31. However, for the immunofluorescence 
analysis, we used an accurate method described by Bitsikas et al.32, which count overlap of different staining pat-
terns, and we did not observe significant overlap of FITC-BSA and each protein investigated (data not shown), 

Figure 5. Relative expression and representative bands of non-phosphorylated and phosphorylated p38MAPK 
(a) or cleaved caspase 12 (b) in control and BSA (1 mg/mL) and/or SB203580-co-treated podocytes for 3 hours. 
GAPDH was used as the internal control; the values (fold change from control) are presented as mean ± SEM of 
3–4 experiments.

Proteins, fold change Control Alb 3 h Alb + SB 3 h

Phospho P38MAPK 1.0 ± 0.0 (4) 1.40 ± 0.09* (3) 0.95 ± 0.11# (4)

Cleaved Caspase 12 1.0 ± 0.0 (4) 1.58 ± 0.07*** (4) 1.36 ± 0.02# (3)

Table 3. Proteins expression in control and 1 mg/ml albumin and/or SB203580 (0.1 µM) treated podocytes 
for 3 hours. The values are means ± SEM Number of experiments in parentheses. ***p < 0.001, *p < 0.05 versus 
control (CTL); #p < 0.05 versus Alb (albumin); min, minutes; h, hours.
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suggesting that in our experimental model the albumin internalization process can be mediated by other ways, 
including free fatty acids (FFAs) bound to albumin, G-protein-coupled receptors and Ras-related C3 botulinum 
toxin substrate 1 (RAC1)33.

Given the apoptotic effect of albumin, we focused our attention on the intracellular albumin overload-mediated 
podocyte apoptosis signaling in a time-dependent manner. Incubating podocytes with FITC-BSA (1 mg/mL), we 
observed that albumin-containing vesicles were evidenced in 30 minutes, 1 h and 3 h, but not after 24 hours of 
treatment. The time-dependent albumin overload occurred in parallel with apoptosis.

It is known that part of the albumin-containing vesicles in podocyte migrate through the cell body to lyso-
somal degradation3. However, persistent intracellular albumin overload may perturb cellular functions through 
reactive oxygen species generation and ER stress34. ER is the site of synthesis and folding of the secreted, 
membrane-bound and organelle-targeted proteins. Thus, the accumulation of unfolded and/or misfolded pro-
teins in the ER can be referred to as ER stress35. In this condition, ER membrane protein kinase R (PKR)-like 
ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) activate the 
unfolded protein response (UPR). Under physiological conditions, the ER stress sensor proteins such as PERK, 
IRE1 and ATF6 interact with the chaperone GRP 78, which suppresses their activity. However, in response to 
ER stress, GRP 78 is recruited from ER stress sensor proteins to promote protein folding. In this condition, the 
ER stress sensor proteins are auto-activated and phosphorylate their target36. Using HEK293 cells, Zhu et al.15 
reported that in response to ER stress, activated IRE1-α recruits the adaptor molecule TNF-receptor-associated 
factor 2 (TRAF2) to the ER membrane and activates the c-Jun N-terminal kinase (JNK). In addition, it is known 
that in in vivo and in vitro studies, the PKC-δ participates in ER-stress-induced apoptosis, primarily activating 
the JNK pathway20,37–39. In the current study, the treatment of podocytes with BSA 1 mg/mL for 1 hour resulted in 
increased GRP 78, phosphorylated IRE1-α and PKC-δ expression. Together, these results indicate that the GRP 
78/IRE1-α/PKC-δ signaling pathway contributed to ER stress and induction of albumin-overload-dependent 
podocyte injury. Additionally, we observed that with 1 mg/mL BSA, the increase of phosphorylated IRE1-α 
expression (30 min) was prior to the increase of phosphorylated PKC-δ expression, which was significantly 
increased in 1 hour, and both proteins sustained the phosphorylated states during the apoptotic process, con-
firming their pivotal role in the cell death. Given that the phosphorylation of PKC-δ is associated with ER stress 
response in podocytes treated with albumin, it is important to understand the key mechanisms by which PKC-δ 
initiates and maintains the apoptotic process.

We have recently demonstrated that both PKC-δ and p38MAPK are involved in the angiotensin-II-mediated 
podocyte apoptosis process40. In addition, PKC-δ has been shown to interact with several members of the 
mitogen-activated protein kinase (MAPK) family, including p38MAPK20 and NH2 terminal kinase (JNK)20,39. 
Other in vitro studies reported that podocytes from patients with nephrotic-range proteinuria or podocytes 
from mice exposed to albumin, resulted in p38MAPK-mediated apoptosis25,41. However, the pathway linking 
p38MAPK and podocyte injury was not demonstrated. Our data revealed that albumin-mediated expression of 
phosphorylated p38MAPK and cleaved caspase 12, as well as podocyte apoptosis, was prevented by SB203580. 
Together, these results reinforce the role of the p38MAPK/caspase 12 interaction on albumin-induced podocyte 
apoptosis. Thus, our data provide new evidences that albumin-mediated podocyte apoptosis involves complex 
intracellular pathways including GRP 78/IRE1-α/PKC-δ/p38MAPK/caspase 12 activation (Fig. 6).

Conclusion
ER stress conditions have been observed in numerous pathological events including cardiovascular and renal 
diseases. Despite its importance in pathological conditions, several complex questions remain regarding 
ER-stress-induced apoptosis. Given that ER stress mediators are well defined and specific, they could be useful 
targets for therapy. Therefore, our current study demonstrated a crosstalk between albumin overload/ER stress/
podocyte apoptosis and identified new targets for the prevention of podocyte injury in nephropathies associated 
with albuminuria.

Materials and Methods
Cell culture. The immortalized mouse podocytes were developed by Prof. Dr. Karlhans Endlich, University 
of Heidelberg, Germany and kindly provided by Prof. Dr. Niels Olsen Saraiva Camara, Institute of Biomedical 
Sciences, University of Sao Paulo. As previously described42, the cell culture was grown in 75-cm2 flasks (Corning, 
New York, NY, USA) coated with type I collagen and maintained in RPMI-1640 medium (Thermo Fisher 
Scientific INC, St Peters, MO, USA) supplemented with 10% fetal bovine serum (FBS, Thermo Fisher Scientific), 
30 IU/mL IFN-γ (Cell Sciences, Newburyport, MA, USA), 100 IU/mL penicillin, 100 μg/mL streptomycin and 
2 mmol/L L-glutamine (pH 7.4 ) at 33 °C in a 5% CO2 atmosphere. The culture medium was changed every two 
days until 85% confluence. Cells at passages 8 to 10 were detached by incubation with 5 mL trypsin-EDTA solu-
tion (Thermo Fisher Scientific, 0.05%) for 5 min at 37 °C. The cells were seeded for differentiation at specific cell 
densities into cell culture dishes with a diameter of 100 mm × 20 mm (Corning) in the same conditions, except 
for the absence of IFN-γ. The cells were differentiated for 10–15 days. Podocyte differentiation was confirmed by 
the identification of podocin and synaptopodin on protein expression. Phalloidin staining was used to identify 
the podocyte cytoskeleton.

Experimental design. Differentiated podocytes were distributed in control and experimental groups. In 
control or treated cells, albumin internalization was examined by immunofluorescence images using FITC-BSA 
(Sigma Aldrich), and the apoptosis levels were assessed by flow cytometry. The protein expression was evalu-
ated by immunoblotting. For p38MAPK inhibition, the cells were previously treated with SB203580, a specific 
p38MAPK inhibitor (0.1 μM, Merck Millipore, Temecula, CA, USA), for 1 hour, followed by BSA (1 mg/mL) 
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plus SB203580 for additional 3 hours. For the culture medium and experimental solutions, the osmolality was 
290 mOsm/kg H2O.

Annexin V/7-AAD staining and flow cytometry. As previously described42, control and treated podo-
cytes were trypsinized, and 3 mL of BioLegend Cell Staining Buffer (BioLegend, San Diego, CA, USA) was added 
to the cell samples. The cell suspensions were centrifuged at 2500 rpm for 5 minutes. This procedure was repeated 
once more, followed by suspension of the cells in Annexin V Binding Buffer (200 µL, BioLegend). 1 × 105 cells/
mL were transferred to a cytometry sample tube and 0.4 μL of FITC-Annexin V was added. Then, 0.6 μL of 
7-Aminoactinomycin −7-AAD (1 mg/mL, Thermo Fisher Scientific) was added. The samples were incubated in 
the dark for 10 min. Cell fluorescence was subsequently analyzed using a BD FACSCanto II Flow Cytometer (San 
Jose, CA, USA), calibrated to detect 10.000 events. Cells positive for FITC -Annexin V and 7-AAD were consid-
ered apoptotic. The values are shown as percentage (%).

Albumin internalization. To evaluate albumin internalization, podocytes cultured on glass coverslips were 
treated with FITC-BSA (1 mg/mL in serum free RPMI-1640 medium) at 4 °C or 37 °C for 30 minutes; 37 °C for 
1 and 3 hours. Cells were then fixed with 4% paraformaldehyde in PBS (0.15 M NaCl containing 10 mM sodium 
phosphate buffer, pH 7.4) for 4 minutes and permeabilized with 0.1% Triton X-100 in PBS for an additional 
5 minutes. Next, the glass coverslips were washed three times with PBS at room temperature, stained with 
4′6-diamidine-2′-phenylindole dihydrochloride (DAPI; Sigma Aldrich) for 5 minutes and the fluorescence signal 
was examined with a Zeiss LSM 788 confocal microscope equipped with 40x and 63x objective Plan-Apochromat, 
zoom factor 1, using a laser excitation of 488 nm to FITC-BSA acquisition and 405 nm to DAPI acquisition. The 
fluorescence signal is shown as fluorescence intensity (arbitrary units) and quantified using the ImageJ software 
(National Institute of Mental Health, Bethesda, MD).

Immunoblotting. Total proteins from control or treated podocytes were extracted using ice-cold RIPA 
buffer (Merck Millipore) with protease and phosphatase inhibitors (Sigma Aldrich). Immunoblot analy-
sis was performed on aliquots containing 30 μg/lane of proteins resolved in 8–10% SDS-PAGE as previously 
described43,44. The separated protein samples were transferred to a polyvinylidene fluoride (PVDF) membrane. 
After blocking with 5% albumin for 1 hour, the blots were probed in the same buffer overnight at 4 °C with specific 
primary antibodies. Next, the blots were washed four times with 1% Tris-buffered saline (TBS; 50 mM Tris-HCl, 
150 mM NaCl, pH 7.5) plus 0.05% Tween-20 (TBST), and incubated with recommended dilutions of secondary 
antibodies for 1 hour, followed by four washes and treatment with Enhanced Chemiluminescence (ECL) rea-
gent (GE HealthCare, Aurora, OH, USA). The bands were quantified by optical densitometry using the ImageJ 
software (National Institute of Mental Health). Protein expression was quantified as the ratio of a specific band 

Figure 6. Proposed model for albumin-induced podocyte apoptosis. The intracellular albumin overload leads 
to ER stress, activating the GRP 78/IRE1-α pathway and the subsequent phosphorylation of PKC-δ. Both 
IRE1-α and PKC-δ may phosphorylate the SB203580-sensitive p38MAPK, which cleaves caspase 12, resulting 
in podocyte apoptosis.
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to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Cell Signaling, #2118). The following primary anti-
bodies were used in this study: rabbit anti-podocin (1:3000, Sigma Aldrich, #P0372); rabbit anti-synaptopodin 
(1:4000, Santa Cruz Biotechnology, #SC50459 Dallas, TX, USA); rabbit anti-chaperone GRP 78 (1:8000, #SPC167 
StressMarq, Victoria, BC, CA); rabbit anti-phospho IRE1-α (1:3000, #AB48187 Abcam, Cambridge, MA, USA); 
rabbit anti-phospho PKC-δ (1:3000, #AB5658-50, Abcam); rabbit anti-p38MAPK and anti-phospho-p38MAPK 
(1:2000, #9212 and #4511, Cell Signaling); rabbit anti-caspase 12 (1:4500, #AB62484, Abcam, Cambridge, MA, 
USA) and rabbit anti-GAPDH (1:2000, #2118Cell Signaling). A horseradish peroxidase-conjugated goat second-
ary antibody against rabbit (#111-035-144, Jackson ImmunoResearch Laboratories, Baltimore, MD, USA) was 
additionally used. The values are represented as fold change compared to the control group.

Statistical analysis. The data are reported as the mean ± SEM. For comparisons among the groups, a 
one-way ANOVA followed by Bonferroni’s test (GraphPad Prism 6 Software, San Diego, USA) was performed. 
The differences with p < 0.05 were considered statistically significant.

Ethics approval. All of the experimental protocols were conducted in accordance with the ethical standards 
approved by the Institutional Animal Care and Use Committee of the University of Sao Paulo (Protocols no. 
792/2015).

Data Availability Statement
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information Files).
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