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Consistent Reanalysis of Genome-
wide Imprinting studies in plants 
Using Generalized Linear Models 
Increases Concordance across 
Datasets
stefan Wyder  1, Michael t. Raissig1,2 & Ueli Grossniklaus  1

Genomic imprinting leads to different expression levels of maternally and paternally derived alleles. 
Over the last years, major progress has been made in identifying novel imprinted candidate genes in 
plants, owing to affordable next-generation sequencing technologies. However, reports on sequencing 
the transcriptome of hybrid F1 seed tissues strongly disagree about how many and which genes are 
imprinted. This raises questions about the relative impact of biological, environmental, technical, and 
analytic differences or biases. Here, we adopt a statistical approach, frequently used in RNA-seq data 
analysis, which properly models count overdispersion and considers replicate information of reciprocal 
crosses. We show that our statistical pipeline outperforms other methods in identifying imprinted genes 
in simulated and real data. Accordingly, reanalysis of genome-wide imprinting studies in Arabidopsis 
and maize shows that, at least for Arabidopsis, an increased agreement across datasets could be 
observed. For maize, however, consistent reanalysis did not yield a larger overlap between the datasets. 
This suggests that the discrepancy across publications might be partially due to different analysis 
pipelines but that technical, biological, and environmental factors underlie much of the discrepancy 
between datasets. Finally, we show that the set of genes that can be characterized regarding allelic bias 
by all studies with minimal confidence is small (~8,000/27,416 genes for Arabidopsis and ~12,000/39,469 
for maize). In conclusion, we propose to use biologically replicated reciprocal crosses, high sequence 
coverage, and a generalized linear model approach to identify differentially expressed alleles in 
developing seeds.

In a diploid cell, the maternal and paternal alleles of a given gene usually share the same expression state in a spe-
cific tissue, meaning that they are either both expressed or both silent. Important exceptions to this rule are genes 
regulated by genomic imprinting, where the expression state depends on the parental origin of the alleles, and 
only one is expressed while the other remains silent or is weakly expressed. The two alleles do not differ in their 
sequence but rather carry parent-specific, epigenetic imprints that allow the cell to distinguish the two alleles1–8. 
Genomic imprinting evolved independently in mammals and flowering plants (angiosperms) (reviewed in9–15). 
In both groups, offspring develop within the mother and depend solely on her to supply nutrients for growth 
and development. This common reproductive strategy results in an intragenomic parental conflict over resource 
allocation, which likely underlies the evolution of genomic imprinting, at least for loci that control growth14,16,17. 
Accordingly, some imprinted genes in both, mammals and plants, have a role in controlling growth (e.g.18–26). 
Consistent with this function, many imprinted genes are preferentially expressed in the tissues that support 
embryonic growth, i.e. the placenta in mammals or the triploid endosperm in the seeds of flowering plants.

Over the last decade, the advent of Next-Generation Sequencing (NGS) allowed (nearly) genome-wide 
imprinting studies by sequencing the transcriptome of hybrid F1 seed tissues: Given exonic polymorphisms 
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between the parents, reads overlapping heterozygous SNPs can be assigned to their parent-of-origin, and recip-
rocal crosses allow the discrimination between parent-of-origin-dependent and strain-specific genetic effects. 
Accordingly, a number of research groups performed genome-wide, allele-specific transcriptome profiling studies 
of hybrid seeds in Arabidopsis and maize to identify genes that are preferentially expressed from one parental 
allele27–38. As a result, the total number of imprinted genes increased from around 206 to over 900 potentially 
imprinted plant genes28–33,35,36,38.

However, comparisons of the identified imprinted candidate genes revealed little overlap between the stud-
ies30,34,39. In general, the analysis of RNA-sequencing (RNA-seq) data to identify allele-specific expression is prone 
to false positives due to both, biological and technical variation40–42. Thus, even studies with seemingly similar 
design heavily disagree on the number of imprinted genes in the mouse brain, e.g. ranging from less than 20040 to 
over a thousand43. To date, although guidelines for the analysis of allele-specific expression have recently become 
available42, many different methods have been applied to filter, normalize, and statistically assess allelic imbalance 
from RNA-seq data. For the analysis of allele-specific expression, several analysis methods and software42 have 
been developed, yet only very few are suitable for an analysis of imprinted expression. Moreover, no specialized 
method is available for statistical testing of imprinting in the triploid endosperm, where the expected allelic ratio 
is 2:1 because the mother contributes two genomes to this tissue. In plants, many authors have used count tests 
(such as Chi-Square, binomial, or Fisher’s exact tests), which heavily underestimate the count dispersion typically 
observed in RNA-seq data41,42,44, resulting in increased numbers of false positives particularly for large counts. 
Highly expressed transcripts may appear imprinted with high statistical significance, as count tests are sensitive 
to very small allelic imbalance at high counts, requiring additional filtering with somewhat arbitrary imbalance 
cut-offs.

Here, we present a new statistical approach to call imprinted genes from large allele-specific RNA-seq datasets 
from endosperm that outperforms other methods in simulated and real data. We propose a generally applicable 
approach using generalized linear models (GLM) implemented in edgeR45, which is based on the negative bino-
mial distribution to deal with potential count overdispersion46 as it is typically seen in RNA-seq data. The pre-
sented pipeline outperforms other methods using simulated data. Furthermore, we reanalyze the raw data from 
seven studies to assess the relative importance of differences in data generation and data analysis. The consistent 
reanalysis by the proposed pipeline results in a larger overlap of imprinted candidate genes across Arabidopsis 
datasets, but showed little improvement across maize datasets. In conclusion, consistent data analysis can improve 
concordance between datasets but biological and technical variation in data generation contributes most to the 
differences among datasets.

Results
Comparison of Genome-wide Imprinting studies in plants: Biological, technical, and statistical 
Differences. To shed light onto discrepancies between published studies and potential biases, we compared 
the genome-wide, allele-specific transcriptome profiling studies of hybrid seeds in Arabidopsis and maize that 
were designed to identify imprinted candidate genes in the endosperm. All studies were based on reciprocal 
crosses of two polymorphic inbred strains, and all studies used manually dissected endosperm. For simplicity, 
we only compared studies using Ler and Col-0 accessions (Arabidopsis) or B73 and Mo17 inbreds (maize). First, 
we set out to identify the genes that can be evaluated for imprinting by all studies and reanalyzed the raw data 
from the seven published studies starting from the raw reads. We examined all reads overlapping with previously 
known exonic SNPs (see Methods), separated and counted maternal and paternal reads overlapping SNPs, and 
summed up informative (i.e. SNP containing) reads across transcripts. After discarding very lowly expressed 
genes (<10 counts per gene), median reads per transcript were 95–654 for the different datasets.

The power of allelic imbalance detection depends mainly on the degree of allelic bias, the sequencing read 
length and coverage (expression strength), as well as the divergence of the crossed strains (number of SNPs 
per transcript)47. Although the three Arabidopsis studies all use the same accessions, the number of callable 
genes ranges from 7,792 for the Hsieh dataset to 14,229 for the Pignatta dataset (Fig. 1A): Among the 27,416 

Figure 1. Power of detecting imprinted candidate genes in reanalyzed datasets. (A) Callable genes assessable 
for genomic imprinting were required to overlap with at least 1 exonic SNP and to have read counts of at least 
10. Number of genes are shown as percentages of the total number of genes. (B) Venn diagrams showing the 
overlap of callable genes for Arabidopsis and maize datasets.
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protein-coding Arabidopsis genes, 31% do not overlap with any exonic SNP and their imprinting cannot be 
assessed. Another 17–39% of the genes are not or only very weakly expressed (<10 allelic counts overall), and 
were thus discarded from further analysis. Ultimately, only 28–52% of all predicted Arabidopsis genes can be 
assessed for genomic imprinting in the three different studies, because only those have a sufficient number 
of allele-specific reads to identify statistically significant biased expression (Fig. 1A). 7,499 genes (27% of all 
Arabidopsis genes) can be assessed for genomic imprinting in all three datasets (Fig. 1B).

Among the 39,469 maize protein-coding genes, 33% do not overlap with any exonic SNP (Fig. 1A) between 
the B73 and Mo17 inbreds. Another 26–33% were not or very weakly expressed (<10 counts overall) and were 
discarded (Fig. 1A). In the end, between 34% (Zhang11) and 41% (Waters) of maize genes can be assessed for 
genomic imprinting per dataset and only 31% of all maize genes (12,354 genes) can be assessed in all datasets 
(Fig. 1A,B). In conclusion, even after consistent reanalysis, the set of genes that can be assessed for genomic 
imprinting differs considerably between the datasets. For all the following analyses, we considered only genes that 
could be evaluated for imprinting in all datasets.

In Arabidopsis, a total of 185 genes that could be evaluated by all datasets were proposed to be maternally 
expressed imprinted genes (MEGs) in at least one study using the Landsberg erecta (Ler) and Columbia-0 (Col-0) 
accessions (Fig. 2). The three studies proposed between 55 and 89 MEGs28,29,38. The large majority of genes (81%) 
were unique to a single study, and only eleven MEGs were identified as imprinted in all three studies (6%; Fig. 2). 
Thirtyfive genes were proposed to be paternally expressed imprinted genes (PEGs) in at least one study with five 
PEGs being commonly identified in all three studies (14%; Fig. 2). In maize, the four available studies using the 
inbreds B73 and Mo1731,33,36,37 listed 182 different MEGs and 182 PEGs (Fig. 2). The majority of genes (65% and 
41% for MEGs and PEGs, respectively) was proposed by a single study only. The overlap between studies was also 
small, with 14 MEGs (8%) and 23 PEGs (13%) being commonly identified by all four studies.

The low concordance between studies could be due (i) to intrinsic, biological differences (e.g. developmental 
stage analyzed), (ii) to technical differences (particularly library preparation and complexity, sequencing depth 
and batch effects, reviewed in41,42, and/or (iii) to the varying bioinformatics/statistical analysis protocols applied. 
As summarized in Table 1, all studies differ in terms of developmental stage and some use different accessions cre-
ating considerable biological variation. Technical differences like library preparation, sequencing platform, read 
length, and single-end vs. paired-end sequencing introduce a further level of variation. Particularly, the observed 

Figure 2. Venn diagrams showing the number of imprinted genes in hybrid endosperm reported by different 
studies in Arabidopsis Ler/Col accessions and in maize B73/Mo17 inbreds. Only genes were considered that 
could be evaluated for imprinting in all datasets. Numbers in brackets denote the percentage of non-shared 
genes relative to the full set reported. The “Xin” and “Zhang11” sets comprise genes identified at 10 days after 
pollination and “Zhang14” comprises genes at 12 days after pollination. Genes with an accession/inbred-specific 
bias in expression were excluded from the analysis.
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differences in sequencing depth, expected read-mapping biases48, as well as in the completeness and quality of 
available SNP annotations, present likely technical sources of inconsistency (Table 1). Regarding statistical analy-
sis, all studies applied count statistics (Table 1), which do not properly model count dispersion of RNA-Seq data, 

Wolff 2011 Gehring 2011 Hsieh 2011 Pignatta 2014 Waters 2011 Zhang 2011 Xin 2013 Waters 2013 Zhang 2014

Organism Arabidopsis Arabidopsis Arabidopsis Arabidopsis Maize Maize Maize Maize Maize

Strains Col-0, Bur-0 Col-0, Ler Col-0, Ler Col-0, Ler, Cvi B73, Mo17 B73, Mo17 B73, Mo17 B73,Mo17,Ki11,Oh43 B73, Mo17

Starting 
Material whole seeds

dissected 
endosperm/
embryo

dissected 
endosperm/
embryo

dissected 
endosperm/
embryo

dissected 
endosperm/
embryo

dissected 
endosperm/
embryo

whole kernels 
(0,3,5 DAP)/
dissected 
endosperm (7, 
10,15 DAP)

dissected endosperm dissected 
endosperm

Timepoint 4 DAP 6 – 7 DAP 7- 8 DAP 6 DAP 14 DAP 10 DAP 0,3,5,7,10,15 
DAP 14 DAP 12 DAP

Biological 
Replicates per 
cross

1 1 2 3 1 1 1 1 1

Sequencing 
Platform Illumina GAII Illumina GAII Illumina GAII Illumina HiSeq Illumina 

GAII/HiSeq Illumina HiSeq Illumina HiSeq Illumina HiSeq Illumina HiSeq

Read Length 36 bp 50/36 bp 76 bp 40/80 bp 2 × 76 bp 2 × 100 bp 2 × 90 bp 2 × 100/2 × 50 bp 2 × 100

NCBI SRA 
study ID SRP005700 SRP007424 SRP003799 SRP033371 SRP009313 SRP011991 SRP026399 SRP031872 SRP011991

Genome 
annotation TAIR 8 TAIR 9 TAIR 8 TAIR 10 B73 AGPv2 n/a B73 5b.60 n/a B73 (V2)

Total number 
of raw reads 
(hybrids)

122 mio 100 mio 165 mio 1,837 mio 245 mio 149 mio 379 mio 1,969 mio 154 mio

Total Number 
of SNPs 569,859 347,928 402,226 384,612 1.6 mio 51,416 exonic 6.5 mio 28,195–142,033 exonic 4.2 mio

Mapping

Mapping 
software vmatch TopHat Bowtie Tophat v2.0.8 GSNAP bwa TopHat2 TopHat TopHat

Number 
mismatches 
allowed

2/36 n/a 3/76 1/40 2/36 n/a n/a 2 n/a

Allele-specific 
mapping bias

Alignment to 
Col and Bur 
pseudoreference 
(only SNPs)

n/a

Alignment to 
Col and Ler 
pseudoreference 
(only SNPs)

n/a n/a
Mapping to 
SNP-masked 
genes

Mapping to 
both genomes 
(reference-
guided assembly 
of Mo17)

Mapping to SNP-
masked transcripts 
(filtered gene set 
v5b.60)

Mapping to 
SNP-masked 
genes

Counting and Statistics

Minimal 
coverage (allelic 
reads)

≥10 (≥30) ≥15 n/a n/a

≥10 reads 
assigned to 
one allele in 
both hybrids

≥10 per cross
≥40 (non-
stringent: ≥5 
per cross)

≥10 per cross n/a

Summing 
Reads across gene gene individual SNPs gene gene gene

Statistical Test Binomial Storer-Kim Fisher’s exact test Fisher’s exact test Chi-Square Chi-Square Chi-Square Chi-Square Chi-Square

Multiple Testing 
Correction yes (FDR 5%) no (p < 0.01) no (p < 0.001) yes (FDR 1%) no (p < 0.01) no (p < 0.05)

unknown 
adjustment 
(p < 0.001)

no (p < 0.05 or 
p < 0.01) no (p < 0.05)

Allelic bias 
filtering n/a only unique 

expression

MEGs: maternal 
score ≥ 4x 
paternal score; 
PEGs: paternal 
score ≥ 1.5x 
maternal score

MEGs: ≥ 85% 
maternal reads 
PEGs: ≥ 50% 
paternal reads

≥90% reads 
from one 
parent in both 
reciprocal 
crosses

≥83% reads 
from one parent

MEGs: ≥ 90% 
maternal reads 
PEGs: ≥ 70% 
paternal 
reads < 6 
paternally 
derived reads at 
0 DAP

Moderate MEGs: > 90% 
maternal reads 
PEGS: > 60% paternal 
reads. Strong MEGs/
PEGs: > 90% maternal/
paternal and p < 0.01

 ≥ 83% reads 
from one 
parent (reduced 
criteria: 
Chi-Square 
p < 0.05)

Filtering out 
potentially 
contaminating 
transcripts 
derived from 
the seed coat

Expression SLR in 
endosperm ≥ 3x 
seed coat and 
SLRs in vegetative 
tissues < 5 (less 
strigent criteria 
for low expressed 
genes)

MEGs 
expression in 
endosperm ≥ 2x 
higher than in 
the seed coat

Expression 
levels in 
endosperm < 4x 
than LCM-
disected 
endosperm

Expression 
levels < 2x higher 
in the seed coat 
than embryo or 
endosperm

n/a n/a n/a B73 expression atlas n/a

Table 1. Characteristics of data generation and data analysis of published genome-wide imprinting datasets 
in Arabidopsis and maize. Abbreviations: DAP, days after pollination; FDR, false discovery rate; LCM, Laser 
Capture Microdissection; MEG, maternally expressed imprinted gene; PEG, paternally expressed imprinted 
gene; SNP, single-nucleotide polymorphism; SLR, signal log ratio; SRA, short read archive (http://www.ncbi.
nlm.nih.gov/sra).
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resulting in increased numbers of false positives particularly for large counts41,44. Furthermore, the studies apply 
very different criteria for filtering potentially imprinted genes according to the allelic bias (Table 1). The require-
ment to call a gene’s expression parentally biased differed tremendously between the studies and ranged from 90% 
of all reads that have to derive from one parent31, over 5 times more reads from one parent33, to simply assessing 
deviations from the expected 2:1 ratio in the endosperm28. Lastly, to deal with potential contamination from the 
seed coat, transcripts that were highly expressed in this maternal tissue were filtered out in silico in most studies 
(Table 1). The filtering conditions and the expression data used varied considerably across studies.

Analysis of Allelic Bias Using edgeR Outperforms other Methods. It was previously noticed that a 
large part of the differences between publications is owed to different statistical pipelines to call imprinted genes. 
When the two Arabidopsis datasets that analyzed the same accessions and a similar developmental stage and tis-
sue (Gehring and Hsieh datasets) were analyzed in the same way, the overlap increased substantially (from 14 to 
56 MEGs and from 6 to 18 PEGs28). Therefore, we created a statistical pipeline to identify genes with statistically 
significant allelic imbalance from the expected, endosperm-specific 2:1 ratio. Our pipeline is based on edgeR45 
and analyzes counts by a generalized linear model (GLM), based on a negative binomial distribution in a paired 
design (parentals of the same cross) with two or more biological replicates (or reciprocal crosses). Importantly, 
edgeR models count overdispersion as shown exemplarily for the Pignatta dataset (Supplementary Fig. S1).

We then tested the performance of our statistical pipeline compared to other methods based on synthetic 
data, where we could control the settings and the true genomic imprinting status of each gene. We simulated 
counts using negative binomial distributions, with mean and dispersion parameters estimated from real data (see 
Material and Methods). Imprinted genes were introduced by adding 200 genes with a parent-of-origin-specific 
allelic bias: 50 MEGs each with strong (99% maternal reads) or moderate (85% maternal reads) allelic bias, as well 
as 50 PEGs each with strong (34% maternal reads) or moderate (48% maternal reads) allelic bias. Random allelic 
read sampling was modeled by sampling from a binomial distribution.

We evaluated the performance of three different methods: our edgeR-based pipeline, Fisher’s exact test, and 
Stouffer’s method. Fisher’s exact test is the analysis method used in most published plant studies where a Fisher’s 
exact test is performed with allelic counts of summed reciprocal crosses. From now on this method will be called 
“Fisher-summed”. Stouffer’s method49 is a method to combine p-values bearing the same null hypothesis. We 
combined the two p-values per gene calculated by Fisher’s exact tests comparing to expectations for each recip-
rocal cross separately, and calculated a combined adjusted p-value using Stouffer’s method. From now on this 
method will be called “Fisher-combined”.

In the simulation setting, our pipeline (edgeR) identified the largest number of observed true positives 
(spiked-in MEGs and PEGs) (Fig. 3A), identifying 131 true positives (of 200, 66% true positive rate [TPR]) with 
8 false positives (falsely detected as imprinted), whereas the second-best method, Fisher-summed, identified only 
102 true positives (51% TPR) with 0 false positives (0% FPR). Fisher-combined was close third, identifying 93 
true positives (47% TPR) with 0 false positives (0% FPR).

The Venn diagram (Fig. 3A) shows that 93 genes were identified between all three methods, 9 were shared 
between edgeR and Fisher-summed, 37 genes were only identified by edgeR, and 61 true positive genes were not 
identified by any method. Considering the genes that were simulated to be imprinted as the true positive group, 
and the remaining genes as the true negative group, we computed the false positive rate and the true positive 
rate for all possible score thresholds and constructed a ROC (Receiver Operating Characteristic) curve for each 
method (Fig. 3B). edgeR and Fisher-summed had a small performance advantage in detecting the spike-in genes 
over Fisher-combined. We divided the assessed genes into four equally sized bins according to their number of 
counts. As expected, the true positive rate (TPR) increased with larger counts per gene for all methods (Fig. 3C; 
Supplementary Fig. S2). TPR was highest for edgeR in all categories with a large advantage in the two categories 
with the lowest counts, while the other two methods only passed the 50% TPR for the two quartiles of genes with 
the largest counts. True positive rates also depended on the degree of allelic imbalance: at a 5% False Discovery 
Rate (FDR) cut-off, edgeR achieved TPRs of 80% and 54%, respectively, for strong and weak MEGs, and TPRs 
of 70% and 58%, respectively, for strong and weak PEGs. In contrast, the second best method Fisher-summed 
achieved TPRs of 74% and 44%, respectively, for strong and weak MEGs, and TPRs of 58% and 28%, respectively, 
for strong and weak PEGs. Simulations with count distributions similar to the largest observed datasets showed 
that edgeR still performed better than the other methods (data not shown). EdgeR outperformed the other meth-
ods when 200 genes with an accession-specific bias in expression were added to the 200 simulated imprinted 
genes (data not shown). In addition, the performance of edgeR was robust against varying proportions of simu-
lated strongly and moderately expressed imprinted genes (Supplementary Table S4) and against varying numbers 
of imprinted genes, as long as the total number did not drop below 50 genes (Supplementary Table S5).

Consistent Reanalysis of Published Imprinting Studies with edgeR Identifies More Common Imprinted  
Candidate Genes in Arabidopsis but not in Maize. To test our statistical pipeline on real data, we identified 
genes with statistically significant allelic imbalance from the expected, endosperm-specific 2:1 ratio using edgeR45 with 
reanalyzed data starting from raw reads. We identified between 165–319 candidate MEGs and 21–65 candidate PEGs 
for the examined datasets using a 5% FDR cut-off (Fig. 4). Diagnostic plots exemplary for the Pignatta dataset display a 
good model fit (Supplementary Fig. S3). A list of the called imprinted candidate genes in Arabidopsis and maize can be 
found in Supplementary Tables S1 and S2, respectively.

In Arabidopsis, we identified a larger number of potentially imprinted genes with clearly increased overlaps: 
143 common MEGs were found from all three datasets (87% of the smallest dataset [Pignatta], and 45% of the 
largest dataset [Gehring]) and, in addition, 60 MEGs (20% of the smaller dataset) were shared by the Gehring 
and Hsieh datasets (Fig. 4). Now only 31% and 29% of identified MEGs were unique to the Gehring and Hsieh 
datasets, respectively. In the Pignatta dataset, only a single MEG (1/165, 0%) and a single PEG (1/21, 5%) were not 
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shared with any other dataset, potentially owing to the fact that (i) the Pignatta dataset had the largest sequencing 
depth and therefore the largest gene coverage, and (ii) three biological replicates per cross could be analyzed, 
allowing the identification of high-confidence candidates with a small number of false positives. We also iden-
tified an almost three-fold increased number of PEGs (98 instead of 35 genes as originally published), although 
with an increased proportion of non-shared PEGs in the Hsieh dataset (from 17% [1/6] to 62% [40/65]).

In maize, we identified a large number of imprinted candidate genes, 218 MEGs and 221 PEGs (Fig. 4). 70 
MEGs (32%) and 83 PEGs (38%) were identified from at least two different datasets, leading to an overlap of 
MEGs similar to the one found in the originally published lists (Fig. 2). The number of candidate imprinted genes 
varied a lot between datasets, limiting the maximum number of genes shared by all four datasets. The proportion 
of non-shared MEGs and PEGs decreased for all datasets, except for Waters MEGs and PEGs, which increased 
from 22% to 48% and from 36% to 62%, respectively, likely due to the significant increase in the number of 
imprinted candidate genes (Fig. 4). In contrast, the Zhang datasets, as well as the PEGs identified from the Xin 
dataset, showed almost no exclusive candidate imprinted genes.

Furthermore, we identified the top50 imprinted candidate genes, which are statistically most significant for 
each dataset and compared the number of shared genes (Supplementary Fig. S4). Between 17–28 candidate genes 
were common to all compared datasets and the proportion of non-shared candidates decreased or was similar as 
in the originally published lists except for the Hsieh, Pignatta, and Xin PEGs.

In summary, a reanalysis of the datasets using our edgeR-based pipeline produced gene lists with a clearly 
larger overlap in Arabidopsis, despite identifying a larger number of imprinted candidate genes with less pro-
nounced allelic imbalance. Thus, the Jaccard similarity indices between Arabidopsis datasets were higher 
for MEGs and identical for PEGs after reanalysis with edgeR compared to the originally published gene lists 
(Supplementary Table S6). For maize, we saw an increase in dataset concordance after reanalysis for both MEGs 
and PEGs.

Reanalysis Using the edgeR Analysis Pipeline Identifies Novel Imprinted Candidate Genes in Comparison  
to the Original Analysis. Having identified imprinted candidate genes using our new analysis pipeline, we com-
pared the candidate genes pairwise with the lists from the original publications (Fig. 5). When comparing with our 

Figure 3. Benchmarking of three tested methods to identify imprinted genes using simulated data. (A) 
Overlap of detected spike-in imprinted genes between different methods (FDR 5%). (B) ROC curves. (C) True 
positive rates (TPR) and false positive rates (FPR) across four equally sized categories of genes with increasing 
expression levels (number of counts) at FDR 5%.
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candidate MEGs and PEGs at a 5% FDR cut-off, 0–71% of previously published imprinted candidate genes were also 
identified by our pipeline.

From the reanalysis we selected the genes with topmost significance to get the equivalent number of the 
previously published imprinted candidate genes and compared them to the original publications. Arabidopsis 
PEGs and maize MEGs and PEGs generally overlapped at 44–85% between the reanalysis and the original gene 
lists (Supplementary Fig. S5), much higher than for Arabidopsis MEGs, where often only negligible overlaps were 
observed.

In conclusion, the reanalysis with a standardized analytical pipeline identifies a large number of similar can-
didates but also additional novel candidate genes. Furthermore, it fails to identify previously called imprinted 
candidates, likely owing to the improved statistical analysis, which takes count overdispersion into account and 
neglects large allelic biases in transcripts covered by a low number of reads.

Consistent Reanalysis Using Fisher’s Exact Test Identifies Fewer Overlapping Imprinted Candidate  
Genes. We also reanalyzed the data from the seven studies using the “Fisher-summed” method in order to 
assess its performance with real data. We selected the genes with topmost significance to get for each dataset the 
equivalent number of the previously published imprinted candidate genes (Supplementary Fig. S6). A proportion 
of maternal reads of ≥85% and ≤50% was required for candidate MEGs and PEGs, respectively. In Arabidopsis, 
the number of genes identified from all three datasets (27 MEGs and 1 PEGs; Supplementary Fig. S6) was only a 
fraction of those identified after reanalysis with edgeR (41 MEGs and 5 PEGs; Supplementary Fig. S7). Also, the 
number of genes shared between at least two different datasets (63 MEGs and 10 PEGs; Supplementary Fig. S6) 
was smaller than after reanalysis with edgeR (70 MEGs and 19 PEGs; Supplementary Fig. S7). The proportion of 
non-shared genes was 29–68% per dataset, much higher than after reanalysis with edgeR, where proportions of 
non-shared genes were 4–32%. A reanalysis of the maize datasets using the “Fisher-summed” method produced 
a similar concordance between datasets as edgeR (Supplementary Figs S6 and S7). Accordingly, Jaccard similarity 
indices between datasets were markedly higher in Arabidopsis after reanalysis with edgeR for MEGs compared 
with the Fisher-summed reanalysis or the originally published gene lists (Supplementary Table S6). For PEGs, 
Jaccard similarity indices after reanalysis with edgeR were higher than after Fisher-summed reanalysis and iden-
tical with the originally published gene lists.

Figure 4. Venn diagrams showing the overlap between imprinted candidate genes across datasets when 
reanalyzing the raw data using the same standardized method with generalized linear models/edgeR at a FDR 
cut-off of 5%. Only genes were considered that could be evaluated for imprinting in all datasets. Numbers in 
brackets denote the percentage of non-shared genes relative to the full set detected in the dataset. The “Xin” and 
“Zhang11” sets comprise genes identified at 10 days after pollination and “Zhang14” comprises genes at 12 days 
after pollination.
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Power of Detecting Imprinted Genes Is Relatively Small due to Non-saturating Sequencing Depth.  
The power-sample size relationship in allelic imbalance detection is not well understood as it depends mainly on 
the degree of allelic bias, the sequencing read length and coverage (expression strength), but also on the detection 

Figure 5. Pairwise comparison of imprinted genes between the originally published analysis and the reanalysis 
using generalized linear models and edgeR with a 5% FDR cut-off. Only genes were considered that could be 
evaluated for imprinting in all datasets. Numbers in brackets denote the percentage of non-shared genes relative 
to the full set detected in the dataset. For the “Xin” dataset only one timepoint (10 days after pollination) is 
shown. The “Zhang11” set comprises genes identified at 10 days after pollination and “Zhang14” comprises 
genes expressed at 12 days after pollination.
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procedure. We show that sequencing depth is far from being saturated, as shown by random subsampling of each 
dataset and detecting MEGs and PEGs by our edgeR-based pipeline (Fig. 6). For most datasets, the number of 
detected MEGs and PEGs do flatten to some extent with increasing sampling proportions. The low numbers of 
detectable genes in the Zhang 11 and Zhang 14 are likely due to low mapping rates and low sequencing depth. 
The relatively flat slopes for the total number of callable genes indicate that a huge increase in sequencing depth 
would be required to assess the remaining 4–10% genes that were expressed, but did not reach the minimal read 
coverage of 10 reads.

Discussion
Reanalysis of Imprinting Studies Reveals that Biological and Technical Differences Strongly Contribute  
to Biases in Identifying Imprinted Genes. Published studies strongly disagree in the extent and composition 
of imprinted genes in the endosperm (Fig. 2). We reanalyzed both simulated and real data from seven genome-wide 
imprinting studies in Arabidopsis and maize, using a standardized bioinformatics pipeline based on generalized lin-
ear models. In Arabidopsis, our analysis identified an increased number of imprinted genes co-identified by at least 
two different datasets, particularly for MEGs where the overlap between datasets was strikingly larger (Fig. 4 and 
Supplementary Fig. S4). In maize, consistent reanalysis identified a slightly increased number of imprinted genes shared 
between studies both for MEGs and PEGs. For MEGs, it is conceivable that the increased concordance is partially due 
to the fact that we did not filter out potential seed coat contamination in the reanalysis. However, as it has previously 
been shown that most imprinted genes in the embryo are also expressed in the seed coat50, such a filter could also elim-
inate truly imprinted genes.

It was previously proposed that the discrepancies might at least in part stem from different data analysis pipe-
lines to call imprinted genes and, in fact, using similar filtering conditions produced more overlap28,34. However, 
even after consistent reanalysis, a high number of imprinted candidate genes are unique to a single dataset, and 
reanalysis is able to increase the overlap across datasets only by a limited degree. This suggests that biological 
variation (such as different environmental growth condition, different developmental seed stage, stochastic allelic 
expression differences), technical differences (e.g., library preparation/complexity, batch effects41,42), and differ-
ences in sequencing depth inherent to the datasets contribute to these discrepancies and cannot be corrected for 
in silico.

Particularly in maize, reanalysis did not increase the concordance between datasets. Even though the develop-
mental seed stages did vary to some extent (Table 1; 10–14 DAP), we cannot fully explain this finding by biolog-
ical variation only. All original analyses used the same statistical test and highly similar conditions for allelic bias 
filtering. Possibly, the published original analyses of maize datasets used filtering conditions close to the optimum, 
such that edgeR-based reanalysis could not further improve concordance. Furthermore, the co-identification 
of imprinted genes is additionally hampered by unequal read coverage: 48 of 129 imprinted genes proposed 
by Zhang and colleagues33 had too few reads to characterize imprinted expression in the data of Waters and 
colleagues31. The relative importance of biological versus technical biases on the large discrepancy between the 
datasets from maize is currently difficult to assess.

A Statistical Approach that Uses Generalized Linear Models and Takes Replicate Information into  
Account Largely Increases Sensitivity. Our statistical approach involves modeling of count data and is 
quite different from the approach chosen by the authors in the original publications. Our approach relies on gen-
eralized linear models and edgeR, which is a commonly used, well-established and robust method for differential 

Figure 6. Saturation curves showing numbers of detected MEGs and PEGs from various datasets. The curves 
were generated by randomly sampling increasing proportions of each dataset and identifying imprinted 
candidate genes using the same pipeline. Values are means (and standard errors) of 10 random subsamples.
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expression analysis of RNA-seq data. By interpreting allelic counts of a cross as separate samples and imprinting 
analysis as a differential gene expression problem, we benefit from the power and flexibility of generalized linear 
models based on edgeR. The method is highly flexible, i.e. also batch effects can be modeled. The general meth-
odology used here is also applicable to imprinting analysis in other tissues, where a deviation from 1:1 is tested. 
A further advantage of our statistical approach is that it circumvents somewhat arbitrary minimum cut-offs of 
effect size (allelic imbalance), which would require an individual optimization for each dataset. Most genes are 
only partially imprinted and we believe that the current knowledge does not support the exclusion of genes with 
moderate allelic imbalance yet reaching statistical significance. Our approach also allows (nearly) genome-wide 
ranking of genes according to their likelihood of being imprinted, allowing downstream applications, such as 
gene set enrichment analysis, with increased statistical power (e.g. for Gene Ontology analysis).

Prior to read counting, many steps are required to map, filter, and count allelic reads. To assess the importance 
of the preprocessing/counting relative to statistics, we reanalyzed the original allelic counts from28 using our 
method. We found a large discrepancy for MEGs and PEGs with original gene lists, whereas MEGs and PEGs 
largely agreed with the gene lists obtained from complete reanalysis with our analysis pipeline (data not shown). 
Given the large discrepancy, the statistical approach seems to have a larger relative contribution than the earlier 
steps required to obtain the variant counts.

Simulation Reveals that edgR-based Analysis Outperforms Other Methods. The edgeR-based 
approach performed well in our simulation setting and clearly outperformed the other methods we tested. 
Notably, the other methods based on Fisher’s exact test seem overly conservative and missed most spike-in 
imprinted genes. edgeR was the only method to predict false positives due to a relatively poor FDR control for the 
lowest quartile of counts (10–23 counts per gene) where 4 of edgeR’s totally 8 false positive imprinted genes were 
identified. edgeR’s specificity could be further increased by selecting a larger minimal number of counts per gene 
(e.g., a cut-off of 20 allelic counts per gene). In our simulation setting, edgeR’s sensitivity was highest at a minimal 
cut-off of 10 or 20 reads with TPRs of 0.66 and 0.65, respectively, but dropped markedly at a cut-off of 50 reads 
with a TPR of 0.54 (Supplementary Table S7).

Importantly, our simulation did not aim to model biological variability predicting biological replicates. All 
biological systems have inherent biological variation and edgeR can account for it, whereas Fisher’s exact test 
completely ignores the within-condition variability, as it requires counts from replicates to be summed up for 
each condition. Therefore, we expect that edgeR would outperform methods using Fisher’s exact tests even more 
strikingly when biological replicates are available.

Higher Coverage, Replicate Samples, and edgeR-based Analysis Could Improve the Identification  
of Imprinted Genes. The first generation of genome-wide studies identified many new imprinted genes in 
plants, yet a considerable proportion of genes could not be characterized due to low sequencing depth or insuf-
ficient genetic heterogeneity between the parents. Future experiments in genomic imprinting will be performed 
using paired-end reads with high sequencing coverage. With the rapid development in NGS, higher coverage is 
now readily achievable, which will notably increase the statistical power to detect imprinted genes. In the studies 
reanalyzed here, low counts were observed for many genes close to the minimal coverage cut-off of 10, where the 
variance is large and a large allelic bias is required to reach significance. Importantly, a sufficient number of bio-
logical replicates (i.e., at least three per reciprocal cross51) would permit to reliably estimate the variability from 
the data, enabling the performance of a more robust differential expression analysis and a more reliable estima-
tion of the total number of imprinted genes.

Biological Perspectives. When comparing datasets from different studies, we assume that the same set of 
genes is imprinted over the sampling time period. Partial or complete violations of the assumption also decrease 
the amount of overlap across datasets in addition to technical and analytic biases. Indeed, first studies showed 
dynamic expression of imprinted genes in maize36. Furthermore, we cannot solely rely on statistical significance 
in calling a gene imprinted or not. There are several ways to prioritize a gene list after statistically calling genes 
with an allelic bias in a given tissue. First, filtering the gene lists by fold difference between the two parental 
alleles could help to identify genes that can more easily be validated experimentally. Second, filtering the gene 
lists against tissue-specific expression data from seeds might identify genes relevant to the tissue of interest52,53. 
However, expression of a given gene in other (e.g. maternal seed coat) tissues does not exclude an allelic bias in 
the fertilization products50. Third, comparing the gene list against central cell and sperm cell expression data54–56 
can inform to what extent the allelic bias is a result of expression in the fertilization products or might at least 
partially represent carry-over of gametic transcripts that were produced prior to fertilization.

An improved assessment including larger gene sets (by using different sets of strains), as well as imprinted 
genes with moderate allelic imbalance, will provide further insights into the extent and biological significance of 
genomic imprinting. Having the full catalog of imprinted genes in several plant species will also allow the tack-
ling of evolutionary questions about genomic imprinting, including its origin and fixation, the conservation of 
imprinted genes, and their gain and loss of imprinting status on the phylogenetic tree.

Lastly, we have to stress that without further confirmation, gene lists are not representative with regard to the 
absolute number of imprinted candidate genes expressed in the endosperm. Considering this, it is indispensable 
to confirm bioinformatically identified imprinted candidate genes by alternative methods, such as allele-specific 
expression analysis using RT-PCR and Sanger sequencing, pyrosequencing, and/or reporter gene assays.

https://doi.org/10.1038/s41598-018-36768-4


www.nature.com/scientificreports/

1 1Scientific RepoRts |          (2019) 9:1320  | https://doi.org/10.1038/s41598-018-36768-4

Conclusions
A new, effective data analysis pipeline is reported that allows for an improved analysis of RNA-seq data from 
reciprocal F1 crosses. The pipeline allows for the modelling of biological replicates and is applicable to any diploid 
or triploid tissue. Furthermore, our genome-wide ranking of Arabidopsis and maize imprinted candidate genes, 
which integrates all available datasets, provides a useful resource to inform future experiments focused on under-
standing genomic imprinting in plants.

Methods
Read Mapping and Counting. FASTQ-formatted raw reads were downloaded from the NCBI Short 
Read Archive (SRA) for endosperm experiments for Arabidopsis (GSM674847, GSM674848, GSM756822, 
GSM756824, GSM607727, GSM607728, GSM607732, GSM607735, GSM1276498, GSM1276500, GSM1276502, 
GSM1276504, GSM1276505, GSM1276508, GSM1276509, GSM1276512, GSM1276514, GSM1276515) and for 
maize (SRX105679, SRX105678, SRX114629, SRX114630, SRX047539, SRX047544, SRP031872, GSE48425). 
Hsieh samples obtained through laser capture microdissection were not included in the analysis as their inclusion 
reduced the overlap with other datasets (data not shown). Reads were quality-checked with the FastQC applica-
tion (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). To reduce the bias in mapping reads towards 
reference alleles, we aligned the reads to a masked reference genome, in which bases at known polymorphic sites 
were replaced with “N”. Reads were mapped to the genome using STAR v2.3.0e57. Only reads that mapped to a 
unique position in the genome were considered for further analysis.

For Arabidopsis the genome annotation TAIR10 (http://www.arabidopsis.org/) was used, and for maize 
AGPv3 annotated genes were downloaded from Ensembl Plants Release 31 (http://plants.ensembl.org/)58. 
Arabidopsis SNP annotation files were obtained from the 1001 Genomes project59 http://1001genomes.org/data/
MPI/MPISchneeberger2011/releases/2012_03_14/). Maize hapmap v3.2.1 SNP variants60 in VCF format (Release 
date 3/3/2016) were obtained from the Panzea database (http://cbsusrv04.tc.cornell.edu/users/panzea/download.
aspx?filegroupid=15) and filtered for high-confidence (flag LLD) biallelic SNP variants, which were polymorphic 
between B73 and Mo17 and homozygous in both inbred strains. Allelic reads were counted at previously identi-
fied SNP positions between homozygous parentals, using Python v3.2 with pysam v0.8.461, while positions with 
low sequencing quality (phred quality <20) were excluded. No more than one SNP was counted per read to pre-
vent pseudo-replication. Counts were summed up per gene and variants with less than 10 reads (summed across 
the two reciprocal crosses) were discarded.

Testing for Allele-specific Expression. To assess allele-specific expression, we used edgeR version 3.4.245. 
It uses an empirical Bayes estimation based on the negative binomial distribution. For library size normaliza-
tion and to eliminate composition biases between libraries, we used the TMM (Trimmed Mean of M-values) 
method. TMM normalization keeps the ratio between maternal and paternal allelic reads in a cross at approx. 
2 (data not shown). Experiments were analyzed using a generalized linear model with a paired design (the two 
allelic counts of the same cross treated as paired samples) and at least two biological replicates (the two reciprocal 
crosses). When biological replicates were available, they were included in the model. We used tagwise dispersion 
estimates. False Discovery Rate (FDR) was calculated according to Benjamini and Hochberg62. The R software 
version 3.0.363 was used for statistical analysis and for creating the graphs.

simulation of genomic imprinting. To generate synthetic data we used the function makeExampleDESe-
qDataSet of the DESeq2 version 1.2.1046 R/Bioconductor package. Mean and dispersion parameters that were 
used in the simulation were estimated from real RNA-seq data (interceptMean = 2, interceptSD = 3). Two biolog-
ical replicates were simulated to serve as the two reciprocal crosses. No outlier counts and differential expression 
were introduced. The total number of genes in each simulated dataset was 15,000, and their true proportion of 
maternal reads was set to 2/3. Then we randomly picked 200 genes and modified their imprinting status, 50 each 
of strong MEGs (99% maternal reads), weak MEGs (85% maternal reads), strong PEGs (34% maternal reads) 
and weak PEGs (48% maternal reads). Random allelic read sampling was modeled by sampling from a binomial 
distribution with the probability of success set to the true proportion of maternal reads.

We evaluated three methods for identifying genes with parent-of-origin-specific expression: edgeR, Fisher’s 
exact test, and Stouffer’s method. Fisher’s exact test does two separate statistical tests for the two reciprocal crosses, 
and the resulting two p-values per gene were combined with Stouffer’s method (calculated by sumz function of 
R package metap). Benchmarking was performed using Venn diagrams and Receiver Operating Characteristic 
(ROC) curves with iCOBRA64 https://github.com/markrobinsonuzh/iCOBRA.

Comparison with Published Gene Lists. Published gene lists were compiled from the Supplementary 
Data of the respective publications. For the Waters B73xMo17 comparison, the updated list from35 was used, not 
the original one31. If lists of imprinted genes were available at various stringencies, we used the least stringent list 
(e.g. moderately imprinted genes for the Waters dataset). Genes with an accession/inbred-specific bias in expres-
sion were omitted. The Zhang14 dataset comprised only the lists of 106 MEGs and 91 PEGs at 12DAP (Prof. 
Xiaomei Lai, personal communication) described in37 but not the endosperm samples at 10DAP which were 
already described in33 and contained in the Zhang11 dataset. Genes that could not be evaluated for imprinting in 
all datasets were filtered out.

saturation plots. In order to assess the degree of undersampling, we performed random subsampling on the 
count data and performed the same processing and statistical analysis steps as for the full data.
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Data Availability
Scripts and data used in this manuscript are available on github (http://www.github.com/swyder/Reanalysis_
plant_imprinting) and as supplementary files.
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