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Crossing exceptional points 
without phase transition
Qi Zhong & Ramy El-Ganainy

We show that the theoretical framework linking exceptional points (EPs) to phase transitions in parity-
time (PT) symmetric Hamiltonians is incomplete. Particularly, we demonstrate that the application 
of the squaring operator to a Jx PT lattice dramatically alter the topology of its Riemann surface, 
eventually resulting in a system that can cross an EP without undergoing a symmetry breaking. 
We elucidate on these rather surprising results by invoking the notion of phase diagrams in higher 
dimensional parameter space. Within this perspective, the canonical PT symmetry breaking paradigm 
arises only along certainprojections of the Riemann surface in the parameter space.

Exceptional points (EPs) are peculiar singularities associated with multivalued complex function1. They also 
arise as special degeneracies in the spectra of parity-time- (PT-) symmetric (and in general non-Hermitian) 
Hamiltonians at which the eigenvalues and the corresponding eigenvectors become identical2,3, thus signaling a 
collapse of the eigenspace dimensionality, which in turn gives rise to a host of intriguing effects in the vicinity of 
these singularities4,5. One particular characteristic feature that has been studied thoroughly in literature is phase 
transitions across EPs in PT-symmetric arrangements6. When the symmetry of the eigenvectors are studied as a 
function of one parameter of the PT Hamiltonian, one finds that on one side of the EP, the eigenvectors respect 
PT symmetry (i.e. they commute with the PT-symmetric operators) whereas on the other side of the EP, they 
violate the PT symmetry (in fact applying PT operator to one eigenvector yields another eigenvector). This phase 
transition between the PT phase and broken PT (BPT) phase, which is also known as PT spontaneous symmetry 
breaking, is accompanied by complex eigenvalue bifurcation. This behavior has been experimentally demon-
strated in various physical platforms in optics7–10, electronics11 and acoustics12. For more information, see refs13,14.

In light of these intense theoretical and experimental activities, it is perhaps not surprising that EPs are always 
associated PT phase transitions. What is surprising though, is the lack of any rigorous mathematical proof for this 
statement. In this work, we show that this is not a coincidence, and that this widely accepted picture of PT phase 
transition is in fact incomplete.

Before we proceed, we briefly review the archetypal discrete PT-symmetric Hamiltonian, which was the 
subject of detailed investigation in several studies7,9,10,15,16. It consists of two coupled elements, having coupling 
coefficient κ and balanced gain/loss profile characterized by the non-Hermitian parameter γ. This Hamiltonian 
respects PT symmetry in the κ − γ plane. However, as γ is varied from γ < κ to γ > κ, the associated eigenvectors 
undergo a spontaneous symmetry breaking from the PT phase to the BPT phase13,14. The transition point sep-
arating these two phases (γ = κ) is an EP. This behavior, which we call canonical PT phase transition, has been 
reported in more complex discrete and continuous systems. This in turn led to the common belief that crossing 
EPs along straight lines and PT phase transitions are inseparable notions.

In this work, we show that this is not the whole story and that this picture is indeed incomplete. To do so, we 
use the squaring operator to construct a simple Hamiltonian that violates the canonical PT phase transition in 
the following sense: as one parameter is varied continuously and monotonically along a straight line, the system 
crosses an EP without any PT symmetry breaking. As we will shortly see, this is an outcome of the non-trivial 
topological features incurred on the Riemann surface by the squaring operation. For more detailed discussion on 
how square and square root operations can give rise to altogether new topological structures, see ref.17.

To this end, consider the following family of PT Hamiltonians HM (which can be generated by using the recur-
sive bosonic algebra method18) whose matrix elements are given by:

γδ κ δ κ δ= + ++ − +H n l i n g g( , ) 2 , (1)M n l n n l n n l, 1 , 1 , 1

where γ and κ are the gain (or loss) and coupling coefficients, respectively and = + − +g N n N n( )( 1)n ; with 
n, l = −N, −N + 1, …‥, N − 1, N and M = 2N. Note that the value of N can be integer or half-integer.
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The eigenvalues of HM are given by μ κ γ= − −M m( 2 )M m,
2 2  where m = 0, 1, 2, ‥‥, M18; and they feature 

higher order EPs19–22 at γ = κ with a phase transition across this point from PT phase (γ > κ) to the BPT phase 
(γ > κ)18,23. The crucial observation here is that the eigenvalues are pure real (imaginary) in the PT (BPT) phase. 
Let us now consider a new Hamiltonian = HM M

2 . First we note that M  respects PT symmetry since 
 = =− − −PT PT PTH PT PTH PT( ) ( ) ( )M M M M

1 1 1 . Furthermore, The eigenvalues of  are given by λ = μ2. The 
eigenspectrum of M is thus composed of degenerate subspaces with positive real eigenvalues when γ < κ and 
negative real eigenvalues when γ > κ. A schematic representation of how this degeneracy arise is shown in Fig. 1. 
Clearly, the spectrum of M does not undergo complex eigenvalue bifurcation as the parameter γ is swept across 
a straight line that passes through the point γ = κ. Additionally, an important consequence of the two-fold degen-
eracy of the spectrum of M  is that, it is always possible to construct PT symmetric eigenstates for any γ and κ 
which is not the case for HM (see Supplementary Note A for more detailed discussion). It thus appears that the 
point γ = κ is not associated with phase transition. Naturally, one would then ask if it is an EP. In order to check 
this and without in loss of generality, we consider the case where M = 3 (the Hamiltonian 3  has dimensions 
4×4) and we set κ = 1. In general the Hamiltonian 3  has four different eigenstates forming two degenerate sub-
spaces. Figure 2(a) depicts the Hermitian angle (Θ) between the two planes consisting of the degenerate eigenvec-
tors (see Supplementary Note B for the definition of Hermitian angle between two planes). One indeed sees that 
at γ = 1, the two planes are identical (Θ = 0), which indicates a collapse of the eigenspace dimensionality as would 
be expected at an EP. Interestingly however, at this point 3 exhibit two different eigenvectors whereas H3 has 
only one. We elaborate more on this feature in Supplementary Note A. Figure 2(b) and (c) plot the values of 

 λΛ = − ′ −I( )3
1  as a function of the parameter λ′ for two different cases when γ = 0.1 (away from the EP) 

and γ = 0.9 (close to the EP). The spread of the high values of Λ in the λ′ plane indicates the system sensitivity to 
perturbations (see Supplementary Note C for detailed definition of pseudospectrum method). As can be inferred 
from the figure, this is indeed the case in the vicinity of point γ = 1. Based on the above analysis, we indeed con-
clude that, as the Hamiltonian 3 is swept across the straight line passing through the point γ = 1, it crosses an EP 
without experiencing a phase transition. The above example thus presents a very interesting scenario that demon-
strates the possibility of violating the canonical PT symmetry breaking (in Supplementary Note D we show that 
this example is not unique).

In order to better understand these results within a general framework that encompass all the possible differ-
ent situations, we invoke the notion of phase diagrams. In statistical mechanics and nonlinear dynamics, phase 
diagrams are used to classify the system’s behavior into different phases as a function of some external parameters. 
In the context of our discussion of 3 , one should in general study the classification of the eigenstates as a func-
tion of 32 different parameters (16 complex matrix entries). Fortunately, we can gain an insight into the behavior 
of 3  by considering a low dimensional projection of this higher dimensional parameter space. Here we do so by 
fixing κ and de-correlate some of the other parameters by allowing (1, 1)3  and  (4, 4)3  to vary as a function of 
γ1 while the rest of the matrix elements vary with γ2. This choice provides a 2D projection of the phase diagram 
while at the same time guarantees that 3  still respect PT symmetry. Figure 3(a) and (b) depict the Riemann 
surfaces for the real and imaginary components of the eigenvalues of 3  in the γ1 – γ2 plane, where one can iden-
tify the distinct PT phases. Figure 3(c) plots the phase diagram as extracted from Fig. 3(a). Figure 3(d) presents a 
more detailed blow up of the area surrounded by the rectangle in (c). Figure 3(d) clearly demonstrates the differ-
ent phases are separated by curved lines of EPs. As one varies one or more of the system’s parameter, the behavior 
can be very different depending on the trajectory taken in the parameter space. For example, no phase transition 
is observed if γ1 is varied while γ2 = 0. On the other hand, fixing γ2 = 1 and sweeping γ1 from negative to positive 
values will lead to a PT-BPT phase transition followed by a BPT-PT transition (blue line). One can also fix 
γ = − ≈ .100 12 69 0 5662  to a value that guarantees that the line swept by varying γ1 will just touch one EP 
without any phase transition (green line touching EP2). The particular case we discussed earlier for 3 corre-
sponds to the line γ1 = γ2 which also touches the boundary at one EP (red line crossing EP1) without any phase 
transition. The concept of higher dimensional phase diagram thus provides a unified umbrella to treat all the 
rather special cases of phase transition, reverse phase transition, EP without phase transition, no EP and no phase 

Figure 1.  Illustration of the spectral properties of HM and  = HM M
2 , as discussed in details in the text.
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transition as well as multiple phase transitions. This generalized perspective is very important to complex 
non-Hermitian systems and design next generation experiments.

As a side note, we emphasize that the exceptional lines separating the different phases in Fig. 3 curves in 
the parameter space, which are very different from previous studies that demonstrated exceptional lines in the 
Fourier space24,25.

In summary, we have revisited the concept of PT phase transition across EPs and demonstrated that, contrary 
to the common belief, crossing an EP along straight lines (the case of curved trajectories is rather trivial) in the 
parameter space can take place without PT spontaneous symmetry breaking. We have explained these results by 
introducing the concept of PT phase diagram and its different projections in the parameter space that character-
ize a PT symmetric Hamiltonian. Our work provides a new twist and a deeper understanding for the physics of 
non-Hermitian systems near EPs, with potential implication in various fields such as photonics14, acoustics12,26 
and electronics11,27,28. Particularly, the recent important work on driving Floquet PT symmetric systems offer a 
natural platform for confirming our predictions experimentally29.

(a) (b) (c)

Q1 Q2
Q1 Q2

Figure 2.  (a) The Hermitian angle Θ between the two planes spanned by the degenrate eigenvectors of that 
Hamiltonian 3  as a function of the non-Hermitian parameter γ. At the point γ = 1, the two planes are parallel, 
indicating a reduction of the eigenspace dimensionality. (b) and (c) depict the parameter λΛ = − ′ −I( )3

1  
as a function of the complex parameter λ′. Close to the point γ = 1, the system exhibits sensitivity to 
perturbation as indicated by the large values of Λ over a wider area in the λ′ plane (see SI for discussion on 
pseudospectrum). These results confirm that γ = 1 is indeed an EP of M.

Figure 3.  (a) and (b) Riemann surfaces for real and imaginary components of the spectrum of 3  are depicted 
as a function of the two parameters γ1,2 (see text for details). (c) The phase diagram associated with (a) and (b). 
(d) Magnified view of the central part of (c). The red line represents the trajectory γ1 = γ2 corresponding to 
Fig. 2(a) and crosses EP1 without phase transition. Other trajectories such as that shown by the green line and 
cross EP2 can also demonstrate similar behavior. On the other hand, the horizontal trajectory having γ2 = 1 
(blue line) is associated with phase transition.
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Our results also raise interesting questions about the evolution along closed loops30–37 in these higher dimen-
sional parameter spaces, which we plane to investigate elsewhere. Finally it is instructive to compare the behavior 
discovered here in this work with other systems studied in condensed matter physics. For example, by referring 
to the phase diagram of the quantum phase transition associated with the Bose-Hubbard Hamiltonian of inter-
acting chain38–40 (Fig. 4), we can see that it is possible to choose a trajectory that crosses the critical point on the 
boundary between the superfluid (SF) and Mott insulator (MI) phases from the SF side without having a phase 
transition.
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