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Injection-Locked, Single Frequency, 
Multi-core Yb-doped Phosphate 
Fiber Laser
V. Demir1, M. Akbulut2, D. T. Nguyen3, Y. Kaneda2, M. Neifeld2 & N. Peyghambarian2

For the first time, we demonstrate injection locking and single frequency operation of a multi-core Yb-
doped phosphate fiber laser (MCF). The 19 MCF laser cores operated in CW mode at 1030 nm. Each laser 
core was locked to the frequency and polarization of the single-frequency master laser, and produced 
milliwatts of power with similar lasing thresholds. The pump beam was homogenized with a simple 
technique to increase uniform lasing behavior of the cores. This behavior was verified using a MCF laser 
model developed in-house. This unique MCF laser can be useful for applications of coherent, coupled 
oscillator networks, for example in an all-optical coherent Ising machine configuration.

Optimization problems are ubiquitous across natural and social sciences, and the demand for their efficient solu-
tions has been growing for significant impact almost in all areas of sciences and technologies, even in society1–4. 
The more challenging problems are classified as non-deterministic polynomial time (NP)-hard or NP-complete. 
These are known to be difficult to solve for exact solutions as the time and cost for solving such problems expo-
nentially increases with the size of the problem5. Conventional solutions involve implementing mathematical 
algorithms such as stimulated annealing using digital computers resulting in approximate or “good solutions”. It 
has been contemplated that coupled laser networks may enable accelerated solutions to the NP-hard optimization 
problems due to the similarities of laser network energy functions to the Hamiltonian functions for the complex 
problems. In 2014, the first optical coherent Ising machine (CIM) based on a “network of 4 degenerate optical 
parametric oscillators (DOPO)” has been demonstrated by Yamamoto, et al.6. Mapping of Ising model to the 
alternative “injection locked laser array” architecture have also been theoretically proposed for semiconductor 
lasers by Yamamoto, et al.7.

In order to increase the number of oscillators from 4 to 19 and beyond, we have started to implement a new 
injection locking, slave-master multi-core fiber laser approach for the CIM application. Injection locking of sem-
iconductor laser arrays have been extensively studied since the 80 s, albeit generally in the reference frame of 
coherent combination and/or linewidth narrowing8,9. The required injection locking of multi-core fiber lasers has 
not been done before and particularly for the CIM application that the requirements are different. For CIM appli-
cation, we need all the lasers to act independently so that they can be injected into each other for the nonlinear 
network energy function evolution. This is in addition to the requirement that all the laser network nodes of the 
machine have to lase in a single longitudinal mode and should be identical.

In our work reported here, we propose mapping of the Ising model to the coherent, coupled laser network 
formed by an injection locked, Yb-doped MCF laser as a variation of the architecture in7,10. We have selected 
MCF lasers due to our expertise in MCF fabrication, and the fact that MCF lasers are known to be compact, 
robust and scalable to hundreds of cores with many developing applications11–15. Other benefits of MCF lasers 
include reduced component count, simplified synchronization, and potential for coherent operation of the cores 
through evanescent coupling (although we purposefully avoid this functionality in our work since we want inde-
pendent but degenerate lasers). In this paper, we discuss the first step towards an optical CIM, namely a 19-core, 
single-frequency Yb-doped MCF laser that operates at 1030 nm. Single-frequency and single polarization oper-
ation of all cores are achieved via an intra-cavity volume Bragg grating (VBG) and injection locking. We believe 
this is the first demonstration of such an MCF laser.
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Experiment Setup and Mcf Laser Model
Figure 1 shows the cross section of the Yb-doped phosphate MCF. The fiber has an all glass double-cladding 
design for cladding pumping, with 19 equivalent cores placed in a honeycomb format. The fiber is made by NP 
Photonics Inc. from proprietary phosphate glasses and doped in the core with 6 wt% Yb2O3. The individual core 
diameters are 3.8 μm with core-to-core spacing of ~12 μm, and core numerical aperture (NA) of 0.15. The inner 
and outer cladding diameters are 72 μm and 120 μm, respectively. The NA of the inner cladding is 0.23, which is 
ideally suited for fiber coupled 975 nm pump lasers. The Yb-doped MCF is intentionally designed to have high 
gain and weak evanescent coupling among the cores for the signal wavelength of 1030 nm. Especially, in the short 
fiber lengths of 5–6 cm used in our experiments, the couplings are negligibly weak, and therefore we do not expect 
the supermodes which are the modes of coupled cores in strong coupling regimes. The MCF was mounted to a 
metal block with a V-groove by applying a thermally conductive compound. Less than one mm of the fiber tips 
were allowed to hang out of both sides of the metal V-groove in order to reduce the vibration of the fiber tip due 
to airflow and improve cooling and stability of the laser.

For pumping of the Yb-doped MCF, a fiber-coupled multi-mode pump laser diode at 975 nm was used. Up 
to ~4.1 W power from the pump laser fiber was free-space coupled to the inner cladding of the MCF fiber. The 
MCF fiber had one side flat-cleaved and serving as one of the cavity mirrors (~4% reflection), and the other 
side angle-cleaved to prevent instability due to feedback. For straightforward and stable injection locking, we 
have decided to build the free-running MCF laser cavities to operate close to the master laser frequency, and 
with as small number of modes as possible14. For this purpose, we have acquired a VBG with 1030 nm central 
wavelength, <0.1 nm FWHM and >90% efficiency (made by OptiGrate Inc). The VBG was used as the other 
high-reflection (HR) cavity mirror, and the flat cleaved fiber facet was used as the low-reflection (LR) cavity mir-
ror. The overall cavity length was ~45 cm (including the ~6 cm gain fiber), yielding a nominal ~310 MHz between 
cavity modes. In the free running regime, the laser longitudinal modes are mainly defined by the VBG reflection 
spectrum, which has a FWHM of 0.05–0.1 nm FWHM. This corresponds to 14–28 GHz of bandwidth at 1030 nm. 
Considering the nominal 310 MHz mode spacing, many random and dynamic longitudinal lasing modes exist for 
each slave laser. However we did not observe significant differences in the FSR of each slave laser modes (investi-
gated using a free-space scanning Fabry-Perot interferometer). This is somewhat expected since all the slave laser 
cores reside in the same mechanical fiber. Therefore thermal fluctuations in the length of the MCF fiber affect all 
slave cores in a similar fashion. Once the master laser (ML) is injected, all the random longitudinal lasing modes 
collapse into a stable single-frequency.

The ML source was a single frequency tunable diode laser at 1030 nm (Toptica DL-100) that was amplified up 
to ~200 mW of average power using a low-noise Yb-doped fiber amplifier. This increased power from the ML was 
required since the ML output was imaged to the inner cladding of the MCF, therefore injecting every core with 
a fraction of this power (less than 1 mW per core). The imaging lenses were carefully chosen and aligned for low 
coupling losses and aberrations. An optical isolator was placed after the ML to prevent any destabilizing feedback 
from the MCF laser to the ML. A half-wave plate enabled the selection of any linear polarization for injecting the 
MCF cores. This in turn enables us to injection-lock the MCF laser cores to any desired polarization state. The full 
experimental setup can be found in Fig. 2.

Uniform multi-laser behavior and injection-locking requirements require each MCF core to lase with similar 
threshold and efficiency. In order to understand and optimize performance of MCF laser, we have simulated the 
transverse beam profiles across the fiber length and gain per MCF core (shown in Fig. 3(a,b)) using our own 
modeling software based on an effective beam propagation method16. Note that, BPM can describe multimode 

Figure 1. Cross section of 19-core Yb-doped double-cladding phosphate glass multicore fiber (MCF).
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propagation of the multimode pump beam in multi-core fibers very well. The method only requires fundamental 
parameters of the system such as core sizes, core and cladding refractive indices and positions of each waveguide. 
It doesn’t require any pre-calculated parameters such as propagation constants, numerical aperture (NA) or over-
lap factors, etc. Next, we present a brief description of the BPM for simulating cladding-pumped Yb-doped MCF 
in this work. The paraxial wave equation for the slowly varying electric field envelop of light propagating along 
the waveguide can be written as16:
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Figure 2. Experimental schematic of master/slave laser configuration. MCF: Multicore fiber laser; HWP: 
Half wave plate; Filter: Passes 1030 nm, reflects 975 nm; BS: Non-polarizing beam splitter; VBG: volume Bragg 
grating.

Figure 3. (a) Transverse pump beam profile vs. fiber length; (b) and gain of MCF laser with pump power of 
4 W.
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where nb is the background or reference refractive index and λ is the free-space wavelength, ∆ = −n n x y z n( , , ) b 
is the refractive-index profile relative to reference refractive index, and α x y z( , , ) is the power absorption/loss of 
the waveguide.

A small propagation step is implemented using the following approximation:
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where ∆eD z/2 means take a half step of diffraction alone, and ∆eV z means take the whole step of linear propagation 
alone. This calculation is third-order accurate in the step length and requires that the change produced by each step is 
small compared to unity. Equation (2) can be solved very effectively by a fast Fourier transformation (FFT). Details of 
the calculation method are presented elsewhere16. It is worth to note, that the most difficult problem of cladding-pumped 
fiber amplifiers is how to accurately describe multimode beam propagation of pump in fiber amplifiers. The main rea-
son for the difficulties is the combination of multimode propagation of the pump beam in complicated fiber structures 
such as cladding shapes, multiple cores, and the amplification processes. In our simulation method, the rate equations 
are solved numerically giving accurate solutions α x y z( , , ) for the pump absorption in all cores for BPM equation (1). 
The profile of pump beam that couples to each core along the fiber length can be obtained by BPM. Incorporating the 
pump profiles into propagation equation of signals for all cores, all characteristics of the amplifiers such as gains, noise 
figure in all cores of MCF16. The simulation results are in very good agreement with experiments having many different 
structures and also different concentrations of Er/Yb, as presented in our previous publications16.

Figure 4. Pump beam profile snapshot (a) before and (b) after homogenization.

Figure 5. (a) Total free-running laser emission from the MCF; (b) The MCF cross-section imaged by a CCD camera.
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Based on these simulations, we have optimized the length of the MCF for uniform lasing. It was found that 
5–6 cm the 19-core MCF yielded uniform gain across the 19 cores, and gains are high enough for all cores to lase 
even without external mirrors (both ends of the fiber flat cleaved). As described earlier, the fiber cores are highly 
doped with Yb concentration (6wt %) so that single-pass gains for the low signal regime can reach more than 
15 dB at 6 cm fiber length, high enough for lasing without external feedback. Note that, the reflection at the inter-
face between phosphate glass and air is about ~13 dB. The final MCF length that was used in the experiment was 
~5.6 cm. The operation of MCF in such a short fiber length has two folds: (i) the gains are highly uniformed for 
all cores, and (ii) crosstalk among the cores is negligible. It is worth to stress here that we intentionally design the 
fiber that the signal is strongly confined in the cores so that crosstalk due to evanescent couplings among the cores 
are negligible in short distance. Because of negligible couplings, all cores operate as independent laser cavities, 
and there is no super-mode effect. As can be seen in this paper, our experiments using 5.6 cm Yb-doped MCF 
achieved not only uniformed gains but also lasing without external feedback device.

In addition to MCF fiber length, pump beam homogeneity was another critical parameter for lasing uniform-
ity. The multi-mode pump diode laser had an output fiber with a core size of 105 µm and NA of 0.22. The pump 
beam from this fiber was observed to have randomly moving speckle pattern therefore causing non-uniform 
lasing thresholds in the cores. In order to eliminate this effect, first a commercial mode-scrambler that uses 
fiber-bending was utilized, however this caused too much pump power loss. Next, a custom vibration setup was 
designed and built in house, where the pump diode laser delivery fiber was gently shaken by a fast piezoelectric 
transducer. We picked a sinusoidal vibration pattern with a period of ~80 μs. Since this is much faster than the Yb 
lifetime of ~1 ms in the fiber, the MCF cores effectively see a uniform, flat top pump beam profile as shown on a 
~1 ms response time CCD camera as shown in Fig. 4(a,b).

Results
The free-running MCF laser pump power vs. total signal power, and the relative intensities of the cores captured 
with a CCD camera image shown in Fig. 5(a,b), respectively. The pump power threshold for lasing was ~2.5 W 
and all of the cores started lasing at a pump power level of ~3.6 W. The top corner cores of the MCF are shown 
lasing with lower power in this picture due to non-optimal alignment of the pump beam.

Figure 6. (a) Establishing the injection locking with ML tuning; (b) injection power optimization for the 
central core.
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An initial investigation was conducted to find the optimal ML wavelength that would be close to one of the 
strong MCF cavity modes. For this purpose, we kept the MCF cavity stable while we tuned the ML frequency 
at ~500 MHz steps (~0.018 nm). Output of the MCF laser spectrum for the central core was measured through 
a free-space scanning Fabry-Perot interferometer. The results are shown in Fig. 6(a), where more than one free 
spectral range (FSR) can be seen. Due to the narrow bandwidth of the VBG, we were only able to find one strong 

Figure 7. Transmission of (a) self-oscillating and (b) injection locked MCF laser cores to a master laser through 
scanning Fabry-Perot for 3 FSR.

Figure 8. (a) Ratio of the powers of the master laser to self-oscillating MCF cores; (b) estimated full injection 
locking bandwidth for the MCF cores.
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mode that is close to the ML frequency. This exercise was also conducted to gauge the feasibility of cavity-locking 
using the ML frequency tuning feature (cavity-locking is briefly discussed towards the end).

Additionally, the ML power was tuned from 0 to 200 mW to find the suitable injection power range for the 
central core as shown in Fig. 6(b). Stable injection locking for the central core was observed for ≥100 mW input 
power. However, due to the Gaussian nature of the ML injection beam, the off-center cores requires more power 
for stable injection-locking. Therefore, the ML was operated at ~200 mW. It was also verified that, at the main 
output of the MCF laser (as shown in Fig. 2), all the cores followed the polarization state of the ML input. This 
input polarization could easily be varied via waveplates. The secondary output of the laser through the VBG exit 
port did not exhibit single polarization behavior.

The injection locking quality of each MCF laser core was investigated similarly to the central core with the 
help of the scanning Fabry-Perot interferometer. A CCD camera was also used to observe changes in the intensity 
of the locked slave lasers. Figure 7(a) shows the free-running MCF laser core spectra. As can be seen, the MCF 
lasers show multi longitudinal mode operation in the free-running mode. Upon injection of the ML into the inner 
cladding of the MCF with optimized power and wavelength as described above, the spectra of each MCF collapses 
to a single-frequency as measured through the scanning shown in Fig. 7(b).

In order to estimate the injection locking bandwidth of each slave laser, we would need to calculate the injec-
tion power ratio for each core. For this purpose, a Gaussian model coupled with a geometrical filling factor was 
used. The calculated injection power ration (I1/I0) of ML to free-running MCF laser cores are shown in Fig. 8(a). 
Finally, the injection locking bandwidths were calculated and the results shown in Fig. 8(b). The variation in the 
injection locking bandwidth across the MCF cores is expected to be due to non-uniform master laser power and 
imperfect alignment of the master laser beam, pump beam, lenses and VBG in the cavity.

Discussion and Future Work
The MCF cores stay injection-locked for a period of tens of seconds in an open laboratory environment Although this 
time frame may seem short, it is more than enough to conduct the Ising Machine experiment described in ref.10, which 
requires milliseconds for the system to reach the steady state solution (proportional to the lifetime of the Yb ion in the 
MCF). For longer-term stable injection-locking, one would be inclined to use a stronger ML injection, however this 
has previously been shown to degrade the phase information and increase instability based on detuning17,18. Therefore 
we did not choose this route. Rather, we have started investigating cavity locking of the ML and the MCF. This can be 
achieved two ways, either by modulating the MCF cavity length, or by modulating the ML laser frequency. We have 
first tried the MCF cavity modulation scheme. The ML output was sent through a free-space Phase Modulator (PM) 
for Pound-Drever-Hall (PDH) cavity locking technique before being injected into the MCF. We have mounted the 
VBG on a piezo translation stage to be able to feed the PDH error signal to the MCF cavity. In the second scheme, we 
fixed the MCF cavity, and tried to modulate the ML frequency by feeding the PDH error signal to the ML frequency 
modulation input. However, due to the slight cavity differences for each MCF core, we have not achieved stable oper-
ation at this time. We plan to continue the cavity locking experiments in the future with a modified PDH approach.

As we have mentioned in the introduction, the main application in mind for this unique MCF laser is to build 
an all optical Coherent Ising Machine based on ref.7,10. For this application, we have focused on obtaining inde-
pendent yet degenerate slave laser cavities that can be coupled to each other. In this architecture, each MCF laser 
core that is lasing at the same frequency becomes a node of the Ising Machine. To convert our MCF laser in Fig. 2 
into the optical Ising Machine, we have implemented two additions to the MCF laser setup as shown in Fig. 9a. 
The first is the insertion of a programmable Spatial Light Modulator (SLM) after the ML to be able to impart 
changes on the ML injection polarization in a core-to-core fashion. This enables us to program an initial condi-
tion (Zeeman term) for the Ising Machine. The second addition is another programmable SLM (using multiple 
beamsplitters) that is used to inject light from one MCF core to the others with variable amplitude and phase. This 
is the programmable cross-coupling terms for the Ising Machine. Once all the Ising terms are programmed, and 
the lasing started, the system will reach a steady state (in milliseconds) where the output polarization state of each 
slave laser is expected to indicate a solution of the Ising problem that was programmed.

Figure 9b shows the experimental results of the optical CIM. For this experiment, MCF was pumped at 3.6 W, 
and ~200 mW of power of ML was injected into the inner cladding of the MCF. The lasing threshold of the central 

Figure 9. (a) Simplified schematics of Ising machine based on multicore fiber lasers, (b) Measured Ising states 
based on experimental Zeeman and coupling terms for the coherent Ising machine.
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core of the MCF was about 2.5 W. Initially, the Zeeman SLM was set at constant retardation, and cross-coupling 
section was mechanically blocked by a slow shutter (t < 50 ms in Fig. 7 left). Both the cross-coupling shutter 
and the Zeeman terms were abruptly turned on at t = 0 (t = 50 ms in Fig. 7 left), and the polarization states were 
recorded as a function of time until steady state was achieved (t > 75 ms in Fig. 9b). The tens of milliseconds con-
vergence time for the polarization states were limited to the slow speed of the mechanical shutter and the camera 
readout time. Each slave laser core polarization was observed to move towards right-hand (positive spin) or 
left-hand polarization (negative spin) as expected. The signal-to-noise ratio was high enough to easily distinguish 
between positive and negative spins for each core.

Conclusion
To conclude, we have demonstrated what we believe is the first injection-locked, single-frequency multi-core fiber laser 
at 1030 nm. Each of the 19 laser cores was locked to the frequency and polarization of the master laser, and produced 
milliwatts of power with mostly uniform lasing behavior. We have also developed a computer model that simulates and 
verifies the operation of the MCF laser. Finally, we have presented preliminary results in the application of this unique 
laser to an optical CIM. We plan to eventually use the MCF laser towards building a complete optical CIM setup.
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