
1SCientifiC RepoRTS |         (2018) 8:17913  | DOI:10.1038/s41598-018-36421-0

www.nature.com/scientificreports

CT Slice Thickness and Convolution 
Kernel Affect Performance of a 
Radiomic Model for Predicting 
EGFR Status in Non-Small Cell Lung 
Cancer: A Preliminary Study
Yajun Li1, Lin Lu2, Manjun Xiao1, Laurent Dercle2,3, Yue Huang5, Zishu Zhang1, 
Lawrence H. Schwartz2, Daiqiang Li4 & Binsheng Zhao2

We evaluated whether the optimal selection of CT reconstruction settings enables the construction of 
a radiomics model to predict epidermal growth factor receptor (EGFR) mutation status in primary lung 
adenocarcinoma (LAC) using standard of care CT images. Fifty-one patients (EGFR:wildtype = 23:28) 
with LACs of clinical stage I/II/IIIA were included in the analysis. The LACs were segmented in four 
conditions, two slice thicknesses (Thin: 1 mm; Thick: 5 mm) and two convolution kernels (Sharp: B70f/
B70s; Smooth: B30f/B31f/B31s), which constituted four groups: (1) Thin-Sharp, (2) Thin-Smooth, 
(3) Thick-Sharp, and (4) Thick-Smooth. Machine learning algorithms selected and combined 1,695 
quantitative image features to build prediction models. The performance of prediction models was 
assessed by calculating the area under the curve (AUC). The best prediction model yielded AUC 
(95%CI) = 0.83 (0.68, 0.92) using the Thin-Smooth reconstruction setting. The AUC of models using thick 
slices was significantly lower than that of thin slices (P < 10−3), whereas the impact of reconstruction 
kernel was not significant. Our study showed that the optimal prediction of EGFR mutational status 
in early stage LACs was achieved by using thin CT-scan slices, independently of convolution kernels. 
Results from the prediction model suggest that tumor heterogeneity is associated with EGFR mutation.

Lung cancer is the leading cause of cancer death for men and women in the U.S. and worldwide1. Adenocarcinoma 
is the main histological subtype of non–small cell lung carcinoma. A key mechanism of the tumorigenesis of ade-
nocarcinoma is somatic mutations of the epidermal growth factor receptor (EGFR) gene, which leads to the over-
expression of EGFR tyrosine kinase receptor in lung tumor tissue2. When ligands bind to the EGFR receptor, the 
molecule is phosphorylated and activates a downstream signaling pathway that inhibits apoptosis and mediates 
cancer cell growth, proliferation, and invasion. This creates autocrine and paracrine growth factor loops which 
promote tumor growth.

The diagnosis of EGFR mutational status on a per patient basis is a key biomarker for defining personalized 
treatment strategies. The mutation occurs frequently, especially in specific populations including non-smoking 
females and Asians (the reported frequency of EGFR mutations is 48% in China and 23% in the US3), and is 
therapeutically actionable. Gefitinib is a targeted molecular agent that inhibits EGFR. The EGFR mutation is, 
therefore, a strong predictor of prolonged progression-free survival and of higher response rate to Gefitinib4–9. 
The efficacy of Gefitinib treatment typically translates into a small magnitude of tumor size decrease and a symp-
tomatic improvement10,11.
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Individualized cancer treatment strategies are enabled by radiomic signatures associated with a specific gene 
mutation. Current results suggest that EGFR-mutant tumors have a unique imaging phenotype as compared to 
ALK-mutant12–14 or EGFR-wildtype tumors12–22, so that imaging could be used to select patients who will poten-
tially benefit from Gefitinib and direct those without EGFR-mutant tumors to other therapies. Largely due to 
the lack of reliable software (e.g., tumor segmentation and characterization tools), preliminary data in this area 
have used qualitative imaging features visually assessed by radiologists which are observer dependent, require 
training, and are time-consuming to measure. Furthermore, current studies suffer from several limitations. First, 
most models used qualitative and basic imaging features or a limited set of radiomic features17,19. Second, most 
radiomic studies used retrospective imaging datasets that had heterogeneous imaging settings16–19 (e.g., recon-
struction kernel, slice thickness) which could affect radiomic features and thus critically alter the accuracy of 
radiomic signatures16,18,19,23–26.

Therefore, in this study, we evaluated whether the optimization of reconstruction settings (i.e. Thin/Thick 
slice thicknesses, Sharp/Smooth convolution kernels) could allow the construction of a better radiomic signature, 
derived from a large number of quantitative image features, to predict the EGFR mutation status in primary lung 
adenocarcinoma (LAC) using standard of care CT imaging.

Results
Patient Characteristics. A total of 51 patients were included in this study and scanned with all four CT 
imaging settings formed by the combinations of two slice thicknesses (1 mm and 5 mm) and two convolution 
kernels (Sharp and Smooth). Fifty-one primary lung adenocarcinoma tumors (one tumor per patient) were iden-
tified for analysis. The patient and tumor characteristics of the 51 patients are provided in Table 1 (The informa-
tion about plerual invasion and tumor density (solid/partial-solid/GGO) were provided by Y.L., an experienced 
radiologist with 20-year experience of CT interpretation. The evaluation was done blinded from the tumor muta-
tion status). We can see that female and non-smoker patients were more likely to have EGFR mutant tumors, sug-
gesting that our study cohort was typical of Asian populations27. For tumor characteristics, such as size, density 
and pleural invasion, there were no significant difference between EGFR mutant and Wild Type groups (t-test for 
continuous data and chi-squared test for categorical data).

Reproducible Features. For each lesion in each image group, 1,695 quantitative image features were 
extracted. By employing the same-day repeat CT dataset25, 954, 1,182, 812, and 964 features were identified as 
reproducible features for the four image groups (Thin-Shp, Thin-Smo, Thick-Shp and Thick-Smo), respectively. In 
the coarse feature selection, a concordance correlation coefficient (CCC) threshold of 0.8 was applied to generate 
a compact list of candidate features, removing as redundant all features with correlation greater than 0.8. After 
applying the correlation threshold, the compact feature list contained 104, 98, 92, and 86 candidate features for 
the four image groups, respectively. In each compact feature list, only the top ten features were retained for the 
subsequent fine feature selection and model building.

Optimal EGFR Prediction Models at Different Imaging Settings. The purpose of our study was 
to compare prediction models built upon images grouped according to the different acquisition parameters. 
Thus, we identified four optimal prediction models for the four imaging setting groups (Thin-Shp, Thin-Smo, 
Thick-Shp and Thick-Smo). In addition, we constructed a ‘mixture’ group of images for the comparison of pre-
diction models built on homogenous image series vs. those built on heterogeneous acquisition parameters. In 
the mixture group, the image series for each patient was randomly collected from one of the four image groups 
and the image features were those reproducible across all the four image settings. For the sake of randomness, we 
studied ten random ‘mixture’ groups. For the ‘mixture’ model, the performance was the average of the ten ran-
domly constructed models. The performance of the optimal model for each image groups is presented in Fig. 1. 
The features selected for building those optimal modes are presented in Table 2.

As shown in Fig. 1, Thin-Smo and Thin-Shp were identified as the best imaging settings to build EGFR pre-
diction models, with the Thin-Smo model (AUC = 0.83) performing slightly better than the Thin-Shp model 
(AUC = 0.82) (P = 0.345). Thick-Smo and Thick-Shp were identified as the worst imaging settings to build 
EGFR prediction models, with the Thick-Smo model (AUC = 0.77) slightly worse than the Thick-Shp model 
(AUC = 0.79) (P = 0.0756). There were statistically significant differences (P < 0.001) between Thin and Thick 
models. Compared to the four homogenous imaging settings, the Mixture setting group was identified as the 
worst image group to build EGFR prediction model, significantly worse than the other four settings (P < 0.001). 
Moreover, the numbers of support vectors for the four optimal prediction SVM models, one for each of the 
four imaging settings (Thin-Shp, Thin-Smo, Thick-Shp and Thick-Smo), were 10, 12, 16 and 16, respectively, 
i.e., 19.6%, 23.5%, 31.3% and 31.3% of patients were used as the support vectors for the final models, respec-
tively. It is noted that models based on thin-section imaging settings were more generalizable than that based on 
thick-section imaging settings.

When applying the best model built using the Thin-Smo imaging setting to the other four imaging setting 
groups, the Thin-Shp group’s performance stayed almost unchanged. The two Thick groups’ performances 
dropped, but the Mixture group’s performance increased (Fig. 2).

It is noticeable that the top two features selected to build the Thin-Smo and Thin-Shp models were the 
same, LoG_Entropy_Sigma2.5_2D and LoG_Z_Uniformity_Sigma2.5_2D. The higher the ‘LoG_Entropy_
Sigma2.5_2D’ value, the more heterogeneous the lesion. As shown in Fig. 3, the median values of ‘LoG_Entropy_
Sigma2.5_2D’ on EGFR mutant lesions were larger than those on EGFR wild-type lesions in all four imaging 
setting groups. Among the four groups, median values of ‘LoG_Entropy_Sigma2.5_2D’ on EGFR mutant lesions 
decreased from Thin-Shp to Thick-Smo groups, but remained relatively stable on EGFR wild-type lesions.
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Discussion
In this study, we demonstrated that the optimal selection of reconstruction parameters on CT-scan could enhance 
the predictive value of a radiomics signature to identify EGFR mutation status in early-stage lung adenocarci-
noma. We also found that heterogeneous tumors were more likely to harbor the EGFR mutation. Our results 
showed that thin slices are the optimal reconstruction setting among the four most commonly used CT imaging 
parameters, as using thick slices significantly altered the predictive value of radiomics (P < 10−3).

Our study demonstrated that the thin slices yielded AUCs of 0.82 and 0.83 for the prediction of EGFR muta-
tion using sharp and smooth convolution kernels respectively. As a comparison, thick slices yielded AUCs of 
0.79 and 0.77 using sharp and smooth convolution kernels respectively. The impact of convolution kernel was 
not found to be significant. This may be because the two most significant features selected for the thin-smo and 
thin-shp image series, Laplacian of Gaussian Entropy and Laplacian of Gaussian Uniformity, were computed 
from the images pre-processed by a smoothing filter (Gaussian-filter with a larger-sized filter length). This pre-
processing procedure reduced the differences between smooth and sharp images. On a broader perspective, this 
report further demonstrates the importance of rigorous image acquisitions previously indicated by our group 
(i.e. impact of reconstruction settings23, interobserver variability28, and acquisition protocols29). Interestingly, 
a previous study reported that non-contrast, thin-slice, and standard convolution kernel-based CT in solitary 
pulmonary nodule was more informative and increased the diagnostic performance of a radiomics signature25.

Laplacian of Gaussian entropy was a key feature selected in three out of four reconstruction settings. The 
Laplacian of Gaussian will smooth the image, which might explain why this feature was selected using both 
sharp and smooth reconstruction settings. This feature captures a heterogeneity pattern in pixel spatial distribu-
tion and, interestingly, has been previously found to be associated with tumor phenotype30, tumor gene expres-
sion, tumor metabolism, tumor stage31,32, patient prognosis33–36, and treatment response. Laplacian of Gaussian 
entropy may be considered as a tumor-specific imaging biomarker that is also a function of the primary tumor 
type, the size of the tumor, and the metastatic site30. In this work we show that the difference in this biomarker 
between EGFR-wildtype and EGFR-mutant is influenced by the reconstruction settings, increasing when using 
Thin-Sharp reconstruction setting and decreasing when Thin-Smooth, Thick-Sharp and Thick-Smooth recon-
struction settings are used. Two example cases, one EGFR mutant and one EGFR wild-type, were presented in 
Fig. 4.

Our study reported that EGFR tumors are heterogeneous. This is in line with the current literature indicat-
ing that EGFR-mutant tumors have a unique imaging phenotype12–22, with differences in ground glass opacity, 
tumor size, pleural retraction and air bronchogram the most frequently reported imaging features. Other EGFR 
mutant-related features were reported anecdotally such as tumor shape, heterogeneous enhancement, calcifica-
tion, peripheral fibrosis/emphysema, border definition, spiculation, pleural attachment/effusion, tumor location, 
nodules in primary tumor lobe, nodules in non-tumor lobes, N-stage, and M-stage12–22. Consequently, our study 
provides an external validation using quantitative image features that enhance the knowledge about the imaging 
phenotype associated with EGFR mutation in LACs. The independent validation of those EGFR mutant-related 
imaging features in our series is of crucial significance since type I errors and over-fitting is expected in radiomics 
studies.

More importantly, we validated our optimal radiomics-EGFR signature (AUC = 0.83) using both homoge-
neous and heterogeneous CT acquisition settings, a wide range of imaging features (n = 1695), and a machine 
learning approach. The improvement of the accuracy of the radiomics model in our series is of interest since most 

Figure 1. Performances of the optimal models built on different image groups (Thin-Shp, Thin-Smo, Thick-
Shp, Thicl-Smo and Mixture).
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previous models were built using basic imaging features, mostly qualitative rather than radiomic per se12–15,18–22,37. 
Prior radiomics studies used a limited number of imaging features (18316, 517, 29918, 3019) compared to the new 
imaging features implemented in our study. The AUC of previous models based on radiomic features were only 
0.6716 and 0.7118, outperformed by our model (AUC = 0.83). Our study data included patients from a single 
Chinese institution, allowing them to be benchmarked against previous models which were also designed at a 
single center institution, mostly in Asia (China, Korea)12–14,16–22.

We believe that these results could have major applications since CT-scans guide decision making throughout 
the course of NSCLC, including screening38–40, characterization of lung nodules, TNM staging, biopsy guiding, 
radiation treatment planning, and response assessment. The outcome of TNM staging is defined by quantitative 
imaging metrics such as tumor size41–43 or binary metrics derived from medical images (such as the involvement 
of the main bronchus or the presence of atelectasis, pneumonitis, or a diaphragm invasion)44–46. Furthermore, 
guiding personalized treatment by imaging biomarkers offers the prospect of a “virtual biopsy”, which is attrac-
tive because conventional biopsies are limited to the sampling site and have a low negative predictive value 
(68%) and a significant false negative rate (9%)47, especially in the case of a large lesion and a sub-solid nodule48. 

Figure 2. Performances of applying the Thin-Smo optimal model to the other four image groups.

Figure 3. Feature value distributions of Laplacian of Gaussian-Entropy at different imaging setting groups.
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Additionally, CT-guided lung biopsies are associated with complications such as pneumothorax and parenchymal 
hemorrhage49,50.

One limitation of our model is that it was built in early stage lung adenocarcinoma, for which treatment is 
surgery and external beam radiation therapy rather than EGFR inhibitor. However, the definition of the radiom-
ics signature in this model offers several advantages. First, because all patients included in our series had surgery, 
our reference standard for the identification of EGFR status is robust compared to the determination of EGFR 
mutational status using biopsies, which suffer from sampling bias. Second, the contours of early stage lung cancers 
are well defined compared to invasive and/or infiltrative advanced stage lung cancer, in which the determination 
of the border of the tumor is challenging due to atelectasia, pleuresia, and invasion of other structures by can-
cer. Third, because biopsies are not always performed in early stage treatment prior to external beam radiation 
therapies, this is a case in which virtual biopsy through imaging biomarkers is most likely to be useful. Another 
limitation of this study is the small number of patients, i.e., only 51 patients met the data inclusion criteria. We 
plan to continue the data collection, from multiple institutions, to validate our findings in the future.

We concluded that the optimal reconstruction setting on CT-scan to predict the presence of EGFR mutations 
in early stage LAC is thin slices. This could provide a noninvasive method to predict the genetic characteristics of 
LACs and help personalize patients care.

Method
Patients and Image Acquisition. Patient data were retrospectively collected from the Second Xiangya 
Hospital of Central South University, China. For retrospective study, the institutional review board approved the 
study before its commencement and waived the requirement for informed consent. Also, all experiments were 
performed in accordance with relevant guidelines and regulations of the institution. The primary patient cohort 
in this paper was collected by searching the institutional database for consecutive inpatients who met the follow-
ing criteria: (1) underwent molecular examination from May 2014 to Dec 2016; (2) had complete histological and 
clinical information; and (3) were diagnosed for primary Stage I-III lung adenocarcinoma by surgical resection 

EGFR Mutant EGFR WildType P

Number 23 28

Age (yr, 
mean ± SD) 58.6 ± 9.42 57.6 ± 9.99 0.714

Gender <0.01

   Male 9 23

   Female 14 5

Differentiation <0.01

   High/Mid 14 8

   Poor 6 20

   Not-known 3 /

Stage 0.250

   I 4 1

   II 4 5

   III 15 22

Size 39.45 ± 17.94(mm) 43.33 ± 17.22(mm) 0.436

N-Staging 0.252

   0 11 8

   1 1 2

   2 6 11

   3 5 7

Density*

   Solid 17 16 0.185

   Part-Solid 5 11

   GGO 1 1

Pleural invasion

   Yes 11 14 0.899

   No 12 14

Smoking status

   Non-smoker 17 10 <0.01

   Smoker 6 18

Table 1. Distribution of patient and tumor characteristics. *The definition of tumor density is, solid - nodule 
has homogenous soft-tissue attenuation; partial-solid -nodule consists of both ground glass and solid soft-
tissue attenuation components; GGO - nodule manifests as hazy increased attenuation in the lung that does not 
obliterate the bronchial and vascular margin.
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(the 8th Edition of TNM in Lung Cancer). In total, 355 patients were collected, and 315 of them had complete 
histological and clinical information. Among the 315 patients, 74 patients were diagnosed for primary lung ade-
nocarcinoma at Stage I-III.

Molecular examination was performed on all of these 74 patients using tumor specimens from surgical resec-
tion. EGFR wild-type and mutant status was determined by an amplification refractory mutation system real-time 
technology using Human EGFR Gene Mutations Fluorescence Polymerase Chain Reaction (PCR) Diagnostic Kit 
(Amoy Diagnostics Co., Ltd, Xiamen, China).

Figure 4. (a) An EGFR mutant case. (b) An EGFR wild-type case. The four setting images of the two cases 
were shown from left to right. Images shown at the second row of the sub-pictures were images processed by 
the Laplacian of Gaussian filter. The values of Laplacian of Gaussian-Entropy were shown at the top-left of the 
processed images.

Thin-Shp Thin-Smo Thick-Shp Thick-Smo

LoG_Entropy_Sigma2.5_2D LoG_Entropy_Sigma2.5_2D GLCM_ASM_2D Laplacian_Entropy_3D

LoG_Z_Uniformity_Sigma2.5_2D LoG_Z_Uniformity_Sigma2.5_2D GTDM_Contrast_2D Sigmoid_Slope_Std_3D

GTDM_Coarseness_25D Volume_3D Sigmoid_Kurtosis_3D GLCM_Homogeneity_2D

Gabor_dir135_2D Shape_SI9_3D Sigmoid_Amplitude_3D

Gabor_dir45_3D Laws_8_3D

Table 2. Selected features for building the optimal models.
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CT images of the 74 patients were searched approximately one month before their surgery. For each patient, 
multiple imaging series of CT data were collected. For the contrast-enhanced CT, the IV contrast was injected at a 
rate of 2.5 mL/sec via a pump injector, and the total amount of IV contrast were 60~70 ml. The scanning on thorax 
began on 30-second delay of the contrast injection. Imaging protocols used to scan the patients are provided in 
Table 3. Raw data of each patient’s CT scan were reconstructed into four image series: the combinations of two 
slice thicknesses (Thin: 1 mm; Thick: 5 mm) and two convolution kernels (Sharp: B70f / B70s; Smooth: B30f/B31f/
B31s). That is, each patient had four groups of images: 1) Thin-Shp, 2) Thin-Smo, 3) Thick-Shp, and 4) Thick-Smo. 
The four different image groups differ on levels of image spatial resolution and noise, e.g. Thin-Shp resulted in 
images with high spatial frequencies and noise preserved, while Thick-Smo resulted in images with low spatial 
frequencies and noise decreased. As can be seen in Table 3, since all the four image groups were reconstructed by 
using the exactly same raw scanning data, there was no bias on the comparison among the four groups. Finally, 51 
patients having all four imaging settings were used as the study cohort in this paper.

Tumor Segmentation. Tumor segmentation is a procedure to define the lesion area from which radiomic 
features will be extracted. In our study, 51 lesions (one per patient) were segmented out from their surrounding 
background by using a semi-automated algorithm51 based on watershed and active contours image processing 
techniques. The semi-automated segmentation was performed by an experienced radiologist (YL with 20 year 
experience of CT interpretation) on all four image groups. For the sake of consistency, tumor segmentation was 
first performed on the Thin-Shp group, and then duplicated to the other three image groups. During the duplica-
tion, slice re-sampling was used to guarantee the same voxel-resolution between two image series. The radiologist 
was allowed to edit the duplicated contours if slice re-sampling caused pixel shifting on images.

Feature Extraction. For each lesion in each image group, totally 1,695 well-defined quantitative image 
features were extracted by using an in-house feature extraction algorithm implemented in Matlab 2016b 
(Mathworks, Natick, USA). The 1,695 extracted features are able to characterize tumor phenotypes in terms of 
size (e.g., largest diameter, volume), shape (e.g., roundness, compactness), sharpness (e.g., Sigmoid slope), texture 
patterns (e.g., tumor heterogeneity quantified by Laplacian of Gaussian image filter, Gray-Level Co-occurrence 
Matrix). The 1,695 features represented an expansion of the set of 89 imaging features used in our previous 
work23, achieved through increasing the scales of feature parameters. For instance, four scales of Laplacian of 
Gaussian filter, 0, 0.5, 1.5, and 2.5 sigma, were used in this study.

Reproducibility Analysis. A previously collected NSCLC test-retest dataset52 was used to assess the repro-
ducibility of the extracted quantitative image features. This test-retest dataset was a CT imaging dataset consisting 
of 32 NSCLC patients who underwent two repeat CT scans within 15 minutes. The 32 CT scans were recon-
structed into six imaging setting groups, four of which were similar to the four reconstruction parameters used in 
our study. For each image group of the 32 patients, 1,695 radiomics features were extracted from each lesion on 
both test and re-test scans using the same method presented above. Concordance correlation coefficient (CCC)53 

Image Group Thin-Shp Thin-Smo Thick-Shp Thick-Smo

Slice Thickness (mm) 1 1 5 5

Convolution Kernels B70f / B70s B30f/B31f/B31s B70f/B70s B30f/B31f/B31s

EGFR Mutant EGFR Wild 
Type p

Manufacturer SIEMENS 23 28 /

Scan Model 0.396

   Perspective 12 10

   Sensation 64 5 6

   SOMATOM Definition 
AS 2 1

   SOMATOM Definition 
Flash 4 9

   SOMATOM Force 0 2

KVP 0.319

   90 0 2

   110 11 10

   120 11 16

   130 1 0

Exposure (mean ± SD mAs) 123 ± 60 99 ± 55 0.143

Pixel Spacing (mean ± SD 
mm) 0.655 ± 0.053 0.630 ± 0.055 0.107

Pitch (mean ± SD mm) 1.31 ± 0.56 1.11 ± 0.21 0.153

Contrast Agent 0.753

   APPLIED 19 21

   Non-APPLIED 4 7

Table 3. Distributions of CT scanners and scanning parameters in EGFR mutant and Wild Type groupes.
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was used to evaluate the reproducibility of features for each image group. Features with a CCC larger than 0.9 
were included for the subsequent analyses.

Model Building. In our study, a ‘coarse’ to ‘fine’ strategy was employed to select informative and 
non-redundant candidate features from the large feature pool consisting of over a thousand features. The 
coarse selection was fast but only based on the properties of individual features, while the fine selection was 
time-consuming but based on the combination effect of multiple features.

The coarse selection included two steps, redundancy removal and feature ranking. In the step of redundancy 
removal, features with high correlation were regarded as redundant features and thus excluded from the following 
analysis. The procedure included first calculating correlation between features, then organizing all features into 
a hierarchical clustering tree according to their mutual correlations, and finally setting a correlation threshold to 
separate all features into a series of redundant groups (i.e. when setting correlation threshold as 0.5, it meant all 
candidate features are clustered into a series of redundant groups, within which correlation of all feature exceed 
0.5). For each redundant group, feature ranking algorithms were applied to rank those correlated features, and 
only the top-ranked feature was selected for the following analysis. In our study, six feature ranking algorithms 
were employed, i.e., RELIEF54, Chi-square score, Minimum redundancy maximum relevance55, T-test score, 
Wilcoxon score, and Univariance accuracy. Through coarse selection, we created six compact candidate feature 
lists. Top ten features in each candidate feature list were used for the following analysis.

Fine selection was then applied to determine optimal features to be used to construct EGFR prediction mod-
ules. In this step, ‘forward search’ was adopted to evaluate features sequentially. Forward search initiated on an 
empty set and selected a feature if and only if the addition of the feature could increase the performance of predic-
tion model. The procedure of forward search was repeated until all the candidate features in the compact candi-
date feature lists were evaluated. The Support Vector Machine algorithm56 was used to construct models. As there 
were six feature lists, a total of six candidate prediction models were generated. Among the six prediction models, 
the model that achieved the highest performance was selected as the final optimal model for each imaging group.

In the implementation, all the algorithms were coded or download as packages on the Matlab 2016b 
(Mathworks, Natick, USA) platform. Parameters involved were all used default settings except the 
Box-Constraint56 for the SVM algorithm. SVM algorithm is a machine-learning algorithm that performs clas-
sification by finding the hyperplane that maximizes the margin between two classes defined by the so-called 
support vectors, the percentage of the patient sample set56. Theoretically, SVM algorithm can fit any distribution 
of patients by using support vectors. However, the more the support vectors are used, the higher probability that 
the SVM model is overfitting. Therefore, SVM algorithm introduces the Box-Constraint, a parameter that con-
trols the maximum penalty imposed on margin-violating support vectors, to help to prevent overfitting, i.e., if 
Box-Constraint increases, then fewer support vectors will be used by the model. In our study, based on our previ-
ous experience, we empirically set the Box-Constraint = 100, one hundred times of the default Box-Constraint = 1 
in Matlab, to prevent overfitting.

Performance Evaluation. The performance of candidate prediction model was evaluated in terms of AUC 
(i.e. the area under the curve of receiver operating characteristic curve57). Due to the limited number of patients 
in the study cohort, we used three-fold cross-validation to estimate the performance of models instead of separat-
ing the study cohort into training and testing subsets. In the three-fold cross-validation, original data were ran-
domly partitioned into three groups. When one group was used for testing, then the other groups was retained for 
training. The training-testing procedures were repeated three times, until each sample in the data set was assigned 
a prediction score. The final AUC as well as its confidence interval (95%) were estimated based on the prediction 
score by using bootstrapping (1000 times)58. Also, a bootstrap-based approach presented in the literature59 was 
used to compare two models in terms of p-value.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author.
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