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Use of the Normalized Difference 
Road Landside Index (NDRLI)-
based method for the quick 
delineation of road-induced 
landslides
Yinjun Zhao1,2, Yuying Huang2, Hanhu Liu3, Yongping Wei1,2, Qing Lin1,2 & Yuan Lu1,2

Recognition and classification of road-related landslides are a critical requirement in pre- and post-
disaster hazard analysis. They are primarily done through field mapping or manual image interpretation 
from commercial satellites images. This paper developed a Normalized Difference Road Landside 
Index (NDRLI)-based method to delineate road-induced landslides and enhance their presence in 
remotely sensed digital imagery based on free Landsat Operational Land Imager (OLI) sources. The 
NDRLI-based method includes NDRLI, Shape Index of Spectral Curve (SISC), and other optimizing steps 
such as deleting shadow and slope <20° area to recognise landslides. The test results show that the 
NDRLI-based method is effective in extracting road-induced landslide information, although the Kappa 
coefficient should be further improved.

Roads constitute an archetypical example of the tension between human development and environment degra-
dation, especially in mountainous areas, as they are necessary for the former and can lead directly to the latter1. 
Landslides are one of the world’s worst natural disasters and lead to loss of life and property, blocking of roads 
and rivers, disruption of communication and triggering of floods2. Based on major disasters between 1980 and 
2002, 640 persons in Colombia in 1987, 472 persons in Nepal in 2002 and 400 persons in India in 1995 were killed 
by slides, including avalanches and landslides, while Nepal suffers 116.25 average deaths per landslide and 71.41 
in China3. Many landslides are derived from or related to road networks4. In particular, mountain roads are the 
most prodigious source of landslide sediments of all widespread land uses5. During road construction, roads are 
embedded into or through steep hillsides by blasting and excavating, which can create large areas of instability by 
the use of cut- and fill- construction. Cutting into hillsides and then removal of the toe of slopes or filling slopes to 
widen and reinforce roads both effectively reduce the slope cohesion and strength, and contribute to slope failures 
(Fig. 1). On the down slope side of built roads, stack areas of discarded material from road construction are com-
mon. Moreover, road construction interrupts surface drainage, ditches and culverts, and alters subsurface water 
movement, changes the distribution of mass and increase erosion because of road-related deforestation and con-
struction activities2,5. All of the above factors could facilitate landslides during and after road construction. For 
example, the volume of slide material in the western Cascade Range, Oregon, removed from road right-of-way 
has been 65470 m3/km2, which is 30 times the rate of slide activity in undisturbed forested areas6. Unprecedented 
rates of landslides and surface erosion were noted after the construction of Weixi-Shangri road (23.5 km) in 
Yunan province, China. These rates averaged up to 9600 t ha−1 5.

However, along with social and economic development, people in mountainous areas who are always poor 
have a strong desire to be wealthy. Constructing transportation networks is usually the first and key step to sup-
port tourism, trade, agricultural development and local travel. Thus, considerable scientific literature has been 
published regarding the development of a landslide inventory, including susceptibility7–10 and hazard zoning for 
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land-use planning, avoiding landslide-prone areas, engineering design11 and developing efficient ways to reduce 
future damage, but only a few studies have directly focused on road-induced landslides4,12–15.

Based on the development of computer and satellite technologies, Remote Sensing (RS) techniques have been 
widely used in landslide studies and are well suited to acquire and analyse spatial data related to landslides16. 
Satellite imagery offers an economical and fast method to monitor and map landslides over large and inaccessible 
areas. The last few decades have witnessed the increasing use of RS techniques, such as interpretation of aerial 
photography, stereoscopic image analysis, interferometry studies, and Light Detection and Ranging (LiDAR) for 
identifying, detecting, monitoring, cataloguing, assessing risk, and mapping17–22, but few studies have reported 
the automated methods for extracting road-related landslide inventories16,23. Borghuis24 showed how unsuper-
vised classification could detect 63% of all landslides mapped manually. The automated and semi-automated 
methods can improve working efficiency compared to time-consuming visual interpretations, which are fraught 
with the subjectivity of the visual interpreters, and lower workload19,20.

Therefore, in view of huge successes using Normalized Difference Vegetation Index (NDVI) and free 
Landsat Operational Land Imager (OLI) sources, our study aimed at designing a new remote sensing index, 
Normalized Difference Road Landside Index (NDRLI), in conjunction with object-oriented classification meth-
ods using Landsat OLI satellite images and digital elevation model (DEM) derived slopes to automatically classify 
road-induced landslide (i.e., cutslope and fillslope failures resulting from cut-construction and fill-construction, 
respectively) locations and area. The NDRLI-based method was tested in Yunnan province, southwest China, the 
most landslide-prone area in the country, which has experienced or is currently experiencing extensive roads 
construction. This method is a new solution for mapping landslides for road management and other relevant 
applications.

Results
According to NDRLI-based, road-induced landslide classification method, described in Materials and Proposed 
NDRLI-based method section, we calculated the NDRLI to classify potential road-induced landslides and the 
Shape Index of Spectral Curve (SISC) to reduce bare soil and farmland noise. Then, we removed shadow areas 
using object-oriented classification methodology and further reduced farmland by using the angle of slope rule. 
The entire process was performed using ENVI, ArcGIS and Google Earth. The final classification of road-induced 
landslides was shown in Fig. 2. The total area of road-induced landslides in study area is 4.38 km2 and accounts 
for 4.47% of the total study area.

The accuracy of classification is the primary issue for the application of NDRLI-based methods in many 
fields, including road planning and risk assessment. Therefore, it is necessary to evaluate the performance of 
NDRLI-based methods. We sampled some validated areas from Google Earth as real surface regions of interest to 
calculate a confusion matrix. Precision evaluation was performed for the classified images by using the confusion 
matrix in image processing software. The overall accuracy is 98.49%, and the Kappa coefficient is 0.51, which 
belongs to moderate level. By comparison, error classification increases with the distance to roads. Previous 
research has shown that the distance from roads increases the landslides constituting declines and landslides 
usually occurred at the distance range of 0~50 m25. In addition, Fig. 2 also clearly shows that most landslides are 
near the S233 road and the accuracy will decrease with the increase of distances to roads. The Kappa coefficient 
increased to 0.74 when we reduced our study area to a 100 m buffer area along the road.

Figure 1. Typical road-induced landslides: fillslope failure (FSF) and cutslope failure (CSF) are their main 
interpretation keys of remote sensing. Both main scarps of FSF and CSF are relatively obvious border and 
brighter than surrounding colour. From image texture, we can see the traces and stacks caused by movement 
of the displaced material and surface erosion. The vegetation coverage is relative low. The CSF with excavation 
signs always locate above and adjacent roads with steep slope, and the FSF always locate under and adjacent 
roads with relative big slope. The image was provided by DigitalGlobe and obtained from Google Earth 7.1.
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Conclusion and Discussion
The NDRLI-based method is new method that has been developed primarily to extract road-induced landslides 
and to enhance their presence in remotely sensed, digital imagery, while simultaneously removing bare soil, 
farmland, water and vegetation features in cooperation with other information. This new method can quickly 
and efficiently discriminate road-induced landslides from background. Noise from vegetation, water, bare soil 
and farmland can be reduced and even removed. This method is automatic and would be very useful for large 
regions, especially low accessibility mountainous areas. In a non-road situation, the landslides caused by human 
engineering activity may be extracted by the NDRLI-based method because of their similarity with road-induced 
landslides, but the accuracy is probably lower due to the increase of misclassification with the distance to roads.

Sentinel-2 sensor is very similar to Landsat-8 at least in the bands 1–7 used in this study, and has the advan-
tage in spatial resolution over Landsat 8. We firstly assumed that Sentinel-2 images will perform well in the 
NDRLI-based method, and then the adaptation was done step by step. Sentinel-2A data of the study area (20 m 
and 10 m spatial resolution) from European Space Agency (https://scihub.copernicus.eu/) were downloaded and 

Figure 2. The distribution of road-induced landslides from Normalized Difference Road Landside Index 
(NDRLI)-based method based on Landsat 8 OLI data26. The map was generated using ArcGIS10.1 (http://www.
esrichina.com.cn/softwareproduct/ArcGIS/).

Covariance Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

Band 1 (Coastal) 88.28

Band 2 (Blue) 87.64 88.02

Band 3 (Green) 115.82 117.15 163.22

Band 4 (Red) 138.08 140.77 197.88 245.28

Band 5 (NIR) 227.75 230.87 352.55 434.57 1051.28

Band 6 (SWIR1) 261.01 267.28 395.52 499.86 1029.84 1142.92

Band 7 (SWIR2) 195.94 200.48 290.08 365.87 698.80 805.75 580.92

Table 1. The covariance matrix of each band of Landsat 8 × 103.

https://scihub.copernicus.eu/
http://www.esrichina.com.cn/softwareproduct/ArcGIS/
http://www.esrichina.com.cn/softwareproduct/ArcGIS/
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pre-processed. The NDRLI was made the corresponding changes (Equation 1) according to the band differences. 
The SISC used 1.15 as the threshold value obtained through the trial-and-error attempts described in Optimizing 
results section. After that, the road-induced landslides were extracted from Sentinel-2A. Moreover, we build a 
7.5 m buffer according to actual road width along a digitized centreline of provincial road S233 in Google Earth to 
delete the road noises due to the coarse resolution of Shuttle Radar Topography Mission (SRTM) DEMs. Finally, 
the area of road-induced landslides was identified to be 5.52 km2 which accounts for 5.63% of the total study area 
(Fig. 3). The overall accuracy is 94.63%, and the Kappa coefficient is up to 0.81. Compared to Landsat results, 
the landslide areas and Kappa coefficient have increased by 1.14 km2 and 0.07, respectively, mainly due to the 
increase of spatial resolution of Sentinel-2A. The overlap area of these two results accounts for 70.3% of total 
landslides area derived from Landsat-8, while the unoverlap area mostly comes from small landslides derived 
from Sentinel-2.

=
−
+

SWIR BLUE
SWIR BLUE

NDRLI
(1)

There are still several aspects for further study. First, terrain shadow is an important impact factor on classi-
fication accuracy. Extracting landslides from shadow OLI images is very difficult, so our method didn’t consider 
this situation. Second, misclassification of bare soil and farmland still exists. If the threshold value of NDRLI is 
appropriate, the noise could be removed. These thresholds should be tested to find suitable values for different 
areas. Third, each pixel of Landsat 8 OLI image is up to 900 m2, so the edges of landslide pixel may have other fea-
tures. Mixed pixels will reduce classification accuracy. Fourth, we used Google Earth images as the ground truth 
map of the landslides without field investigation21 or using LiDAR22, which might be slightly unreliable.

Although Kappa coefficient is not high, we still believe that this study will be meaningful because of the mixed 
characteristics of landslides. In the future, shadow effect can be overcome by collaboration with shadow enhance-
ment and detection, and high resolution images. Using other features (e.g., texture) are directions to try. This 
method could provide insights for further studies.

Figure 3. The distribution of road-induced landslides from NDRLI-based method based on Sentinel-2 data.
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Materials and Proposed Ndrli-Based Method
Study area and data. The Lancang River runs through the Hengduan Mountains with its complex land-
forms. This area is known as a remote mountainous region and is the most landslide-prone area in the country, 
especially in the midstream region. Approximately 1184 km of roads, including highways, national roads and 
provincial roads, were built in the midstream region with its steep mountains and deep valleys. The road density 
is extremely high. Thus, we selected a section of S233 (a provincial road) and G214 (a national road) along the 
middle of the Lancang River as targets to build a 2 km wide road buffer to establish our study areas (Fig. 4).

Landsat 8 OLI images (24-12-2014, Path 132/ Row 041) were downloaded from the United States Geological 
Survey (http://glovis.usgs.gov/)26. SRTM DEMs with 30 m spatial resolutions were generated by National 
Aeronautics and Space Administration and provided by the Data Center for Resources and Environmental 
Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). Google Earth was chosen as the major 
data source to extract and validate road-related landslide as it allows users to obtain free high-resolution satellite 
images from around the world and to measure the length and height of target objects. It becomes a very popular 

Figure 4. Locations and basic information of the study area, generated by ArcGIS10.1 (http://www.esrichina.
com.cn/softwareproduct/ArcGIS/). The length of the S233 in the validation area is 49 km.

Figure 5. Workflow for NDRLI-based road-induced landslides classification.

http://glovis.usgs.gov/
http://www.resdc.cn
http://www.esrichina.com.cn/softwareproduct/ArcGIS/
http://www.esrichina.com.cn/softwareproduct/ArcGIS/
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and reliable data source or an additional option in many studies27–29. For example, Goudie27 used Google Earth to 
quantify pan and creek characteristics of salt marshes on Google Earth imagery at 100 × 100 m scale.

Technical framework. NDRLI-based methodology includes three major stages: sampling road-induced 
landslides; designing RS indexes; and optimizing results to eliminate other mixed types as shown in Fig. 5. In the 
first stage, the locations and areas of cutslope and fillslope failures along roads were depicted and randomly sam-
pled using Google Earth by visual interpretation according to interpretation keys (Fig. 1). To reduce the impact 
of moisture on landslide interpretation results, images during drought periods are good options because the 
landslide surfaces were often mixed soil, rock, and detrital grain. Landsat OLI satellite images were pre-processed, 
including radiometric calibration, atmospheric correction and image cutting. For the second stage, we identified 
the location of known, road-induced landslides and then sampled spectral signatures at the same locations in OLI 
images. Plotting spectrum curves and analyzing the correlation of 7 bands of OLI images provided some differ-
ent spectral laws between landslides and other surface features that helped to develop a new RS index method 
(NDRLI). In the final stage, other mixed surface features like bare land from potential road-induced landslide 
region were eliminated to optimize final landslide area.

Designed NDRLI. According to Fig. 5, 194 samples, including 155 fillslope and 39 cutslope failures, were 
depicted along S233 and G214 road in Google Earth. Spectrum curves of these points were then plotted in Fig. 6. 
Spectrum curves are mainly determined by material composition, such as soil, sand and rock, and are affected 
by moisture.

Figure 6 clearly shows that reflectance of major road-induced landslides reaches its maximum level at band 6 
and its minimum level at band 2. Ground objects with high temperatures typically have a high shortwave infrared 
(SWIR) reflectance. Thus, landslides primarily covered by bare soil, gravel and detrital grain have a higher reflec-
tance at SWIR than other objects at ambient temperatures (e.g., vegetation, water, soil) because of the landslide 
surface has a higher temperature. Spectrum curves of landslide peak magnitudes based on SWIR (1.6 μm) were 
at a minimum at the Blue band (0.45 μm). While band 6 is better in identifying bare soil and low water content 
areas, band 2 is better at identifying soil and vegetation.

Figure 6. Cumulative spectrum curves of road-induced landslides (n = 194).

Correlation Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

Band 1 (Coastal) 1.00

Band 2 (Blue) 0.99 1.00

Band 3 (Green) 0.96 0.98 1.00

Band 4 (Red) 0.94 0.96 0.99 1.00

Band 5 (NIR) 0.75 0.76 0.85 0.86 1.00

Band 6 (SWIR1) 0.82 0.84 0.92 0.94 0.94 1.00

Band 7 (SWIR2) 0.87 0.89 0.94 0.97 0.89 0.99 1.00

Table 2. The correlation matrix of each band of Landsat 8.
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To find further differences among the 7 bands, the principal component analysis between bands was con-
ducted after atmospheric correction of the images. According to the covariance matrix (Tables 1 and 2), band 
6 has the maximal covariance with other bands, which means that band 6 could represent more information. 
Table 2 shows that near-infrared reflectance (NIR) band has relatively better independence than other bands in 
general, and next is band 2 and band 6. The correlation coefficient between band 2 and band 6 is 0.84 that is the 
second smallest. Band 6 is carrier of with ample information.

The band-ratio method takes advantage of the differences in the reflectance of different wavelengths of light 
from any given surface30. For example, NDVI uses the condition where the features that have higher NIR and 
lower red light reflectance will be enhanced, while those with low red light reflectance and very low NIR reflec-
tance will be suppressed or even eliminated.

Figure 7. Spectral reflectance patterns of road-induced landslides (155 FSF and 39 CSF), farmland (n = 133), 
and bare soil (n = 99), in raw Landsat OLI satellite images23.

Figure 8. Scatter plots of the band 4 digital number (DN) with the average DN of the band 3 and band 4 (a) FSF 
(n = 155), (b) CSF (n = 39), (c) farmland (n = 133) and (d) bare soil (n = 99).
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In conclusion, the NDRLI was designed using similar principles that were learned from NDVI. The NDRLI is 
calculated as follows:

=
−
+

NDRLI SWIR1 BLUE
SWIR1 BLUE (2)

where BLUE is blue light band, and NDRLI ranges from −1 to +1. The index is designed to (1) maximize reflec-
tance of road-induced landslides and probable bare soil by using SWIR1, (2) minimize the low reflectance of blue 
light by water and (3) take advantage of the high reflectance of SWIR by road-induced and bare soil features. As a 
result, road-induced landslides and bare soils are enhanced, while water usually has negative values and therefore 
is suppressed. In addition, vegetation and farmland are also more enhanced than road-induced landslides. After 
many trial-and-error attempts, we found that the NDRLI range of 0 to 0.5 are probably road-induced landslide 
areas, around 0.4~0.7 is probably farmland and bare soil, and around 0.7~1 is probably vegetation. Thus, there are 
overlaps in the NDRLI thresholds among road-induced landslides, farmland and bare soil. This is consistent with 
the mixed characteristics of road-induced landslides.

Optimizing results. The information of delineated, road-induced landslide was often mixed with the noise 
from farmland, bare soil and a little built-up land. This happens because most road-induced landslides are mix-
tures, and the surfaces of bare soil with lower vegetation coverage rate and pre-planting farmland are mostly bare. 
For example, some unstable landslides are fully or partly covered with vegetation after several years of road con-
struction. Their reflectance pattern in the blue light band and SWIR1 is similar to that of road-induced landslides, 
i.e., they both reflect shortwave infrared light more than they reflect blue light. As a result, the computation of the 
NDRLI also produces a positive value for farmland and bare soil.

To remove the farmland and bare soil noise from NDRLI’s potential landslide area, we carefully plotted the 
spectral reflectance patterns of common land cover types and landslides (cutslope and fillslope failure) from 
the test area of this study. A detailed examination of the signatures in Fig. 7 reveals that the average reflectance 
derived from farmland and bare soil at bands 3 (green band), 4 (red band) and 5 (NIR band) formed concave 
curves, but landslides approximated convex curves. Therefore, if the mean of band 3 and band 5 is divided by 

Figure 9. (a) FSF (n = 155), (b) CSF (n = 39), (c) farmland (n = 133) and (d) bare soil (n = 99).

Types

Total 
number 
of 
samples

Scenario 1
SISC > 1.100

Scenario 2
SISC > 1.075

Scenario 3
SISC > 1.050

Accuracy 
rate (%)

Accuracy 
rate (%)

Accuracy 
rate (%)

Bare soil 42 64.3 66.0 81.0

Farmland 46 89.1 89.1 89.1

FSF 84 99.0 97.6 92.9

CSF 34 95.4 82.3 58.8

Table 3. Three test scenarios with different SISC values. Note: If SISC > 1.100, ground objects are classified into 
farmland or bare soil, ground objects are landslides. Same rules are for SISC > 1.075 and >1.050 scenarios.
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band 4, farmland and bare soil should be greater than 1, but landslides, less than or equal to 1. Based on this 
assumption, we designed a SISC to remove noise. The SISC can be expressed as follows:

=
+SISC (GREEN NIR)/2

RED (3)

To further assess the result of SISC, we plotted the scatter plots to compare the band 4 to the mean of band 3 
and band 5, from the test areas of this study, as shown in Fig. 8. It is very clear that the computations of SISC for 
farmland and bare soil are greater than 1, while the landslide results are close to 1. In view of the fact that most 
road-induced landslides usually contain soil, rock, and vegetation, we have tested the threshold of SISC and, after 
many trial-and-error attempts (Table 3), found 1.100 to be a suitable value to remove farmland and bare soil 
noise, e.g., while ground objects with higher SISC values (>1.100) will be removed as noise (Fig. 9).

The geometry and radiometry of satellite imagery are significantly affected by the topography of mountain-
ous areas due to shadow effects31. Many classification methods fail in mountainous areas, where terrain shadow 
effects are wide and difficult to eliminate. The same features under terrain shadows have different spectral 
reflectance. Therefore, we did not consider landslides in the shadow area. We randomly selected 20 shadow and 
non-shadowed samples from the image after atmospheric correction for region of interest statistical analysis in 
ENVI 5.3. We found the smallest overlap of spectral values of each band between shadow and non-shadowed area 
is within the range from 0~380 in NIR band. Then spectral values from 0~380 in NIR band was used to create a 
classification rule for extracting shadow area with the Feature Extraction tool of ENVI 5.3. Finally, the shadow 
area was eliminated from the study area with an object-oriented classification method.

We also can use slope to remove farmland from potential road-induced landslides. The relationship between 
landslides and slope is well understood. Slope is a key factor of landslides and internal conditions that trigger 
landslides. Many statistics indicated that landslide-prone slope is 20°~50° 32. On the other hand, most farmland 
is located at slopes less than 15°. If farmland has a slope greater than 25°, it should be returned to forestland in 
China. Therefore, a slope of less than 20° was used as a threshold to further remove farmland and improve clas-
sification accuracy.
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