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RNAm5Cfinder: A Web-server for 
Predicting RNA 5-methylcytosine 
(m5C) Sites Based on Random 
Forest
Jianwei Li1,2, Yan Huang  1, Xiaoyue Yang1, Yiran Zhou2 & Yuan Zhou2

5-methylcytosine (m5C) is a common nucleobase modification, and recent investigations have 
indicated its prevalence in cellular RNAs including mRNA, tRNA and rRNA. With the rapid accumulation 
of m5C sites data, it becomes not only feasible but also important to build an accurate model to predict 
m5C sites in silico. For this purpose, here, we developed a web-server named RNAm5Cfinder based on 
RNA sequence features and machine learning method to predict RNA m5C sites in eight tissue/cell types 
from mouse and human. We confirmed the accuracy and usefulness of RNAm5Cfinder by independent 
tests, and the results show that the comprehensive and cell-specific predictors could pinpoint the 
generic or tissue-specific m5C sites with the Area Under Curve (AUC) no less than 0.77 and 0.87, 
respectively. RNAm5Cfinder web-server is freely available at http://www.rnanut.net/rnam5cfinder.

RNA modification plays an important role in all three domains of life1–3. To date, more than 150 kinds of RNA 
modifications have been discovered, while 5-methylcytosine (m5C) is one of the most prevalent modification 
types4. Thanks to the novel applications of high-throughput sequencing technique for detecting RNA m5C mod-
ification (e.g., bisulfite sequencing and aza-IP), a pilot whole-transcriptome map of m5C sites have become avail-
able, where the modification sites mainly appear in the anticodon loop and the variable region of tRNAs and 
rRNAs, and the coding sequences in mRNAs5–9. Similar to other nucleobase modifications in RNA, m5C also 
influences RNA structural stability and translation efficiency, and further researches revealed that it could pro-
mote mRNA export and regulate tissue differentiation10,11. But the functions of m5C in RNA are still not fully 
understood, partly because the experimental identification of m5C sites is still expensive and labor-intensive. For 
this purpose, here, we developed a web-based tool named RNAm5Cfinder to predict m5C sites, which would help 
researchers to screen potential m5C sites easily and quickly and provide a new tool to dig functional implication 
of m5C.

RNAm5Cfinder is a platform with an easy-to-use web interface to predict m5C modification sites in RNA 
sequences. It adopts one-hot encoding for coding RNA sequences and random forest algorithm which is a super-
vised machine learning method for solving classification problems. In view of the fact that m5C is a tissue-specific 
modification, we built independent predictor for every tissue/cell type respectively. Finally, we optimized each 
predictor independently by cross-validation and benchmarked the predictors by independent tests. To our best 
knowledge, RNAm5Cfinder is the first m5C predictor that allows for predicting tissue-specific m5C sites with 
competitive precision.

Results and Discussion
Establishment of the predictor and performance benchmarking. The m5C modification data cov-
ering 7 tissues of mouse and human Hela cells were collected from previous studies10,12. We first integrated all 
m5C sites to build a comprehensive (generic) predictor. In the training process, we continuously optimized the 
ratio of the positives and the negatives of the training data set and changed the number of the decision trees in 
the random forest predictor by five-fold cross-validation. The results suggest that the optimal parameters are 1:30 
ratio and 300 decision trees, respectively. In order to verify the performance of the predictor, we benchmarked 
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and compared its performance with other state-of-the-art published web servers for predicting RNA m5C sites 
on the same independent test set. We found two available online servers for predicting RNA m5C sites which are 
iRNA-PseColl developed by Feng et al. and M5C-HPCR developed by Zhang et al.13,14. Both of them can predict 
m5C sites in RNA sequences, but they don’t permit tissue-specific prediction. Therefore, we compared the per-
formance of our comprehensive predictor with iRNA-PseColl and M5C-HPCR. Note that the thresholds of the 
servers above are fixed, resulting in a single point in the ROC (receiver operating characteristic curve) curve that 
corresponds to their performance (Fig. 1). As for the strategy for coding RNA sequence, RNAm5Cfinder adopted 
one-hot encoding and by trying to re-train our predictor with Feng’s coding strategy and found that the perfor-
mance was slightly reduced (Fig. 2), indicating that one-hot encoding is at least comparable to the current state-
of-art method for RNA m5C site prediction. Another reason for picking one-hot encoding is that it is timesaving 
and could give the users a good experience comparing to other strategies.

The performance of the tissue-specific predictors. Taking into account the modification spectrum in 
different cell types or tissues are not the same, one comprehensive predictor can not accurately predict the m5C 
sites from each specific tissue or cell type. We further applied tissue-specific training and independent test sets 
where RNA m5C modification data was came from experiments on single tissue or cell to test and benchmark 
the tissue-specific m5C predictors (Table 1). In order to verify the robustness of the constructed tissue-specific 
predictors, we performed both intra- and inter-tissue independent tests for each tissue-specific predictor. For 
each independent test set, we removed the samples which were used to train the predictors for the rest of tissues. 
In other words, we only considered tissue-specific sites in the independent test for the intra- and inter-tissue 

Figure 1. Performance comparison between RNAm5Cfinder comprehensive predictor and other available 
servers on independent test.

Figure 2. The comparison between one-hot encoding and Feng’s encoding on independent test.
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independent tests. The results are summarized in Fig. 3. Clearly, the intra-tissue prediction performances, which 
are all above 0.87 in terms of AUC, are substantially better than inter-tissue prediction performance. This is con-
sistent with previous studies, where m5C is implied as a tissue-specific modification10. This result also supports 
that it is necessary to build tissue-specific m5C predictors.

The construction of RNAm5Cfinder web-server. To facilitate the community, we built a web-server 
named RNAm5Cfinder with the optimized comprehensive and tissue-specific predictors mentioned above. 
RNAm5Cfinder has a user-friendly interface and step-by-step guide. It takes the FASTA sequences as the input 
and provide the option to switch between the comprehensive predictor and the tissue-specific predictors. We 
also provide 3 levels of stringent thresholds, corresponding to the false positive rate values of 1%, 5%, 10%. 
Considering users may analyze large dataset which will spend plenty of time, RNAm5Cfinder also supports the 
function to send results to the submitted E-mail address.

Methods
Datasets. We gathered three available m5C datasets in GEO database including GSE90963 (human Hela 
cell), GSE93749 (human Hela cell; heart, muscle, brain, kidney and liver of mouse) and GSE83432 (mouse ESC 
and brain). Then m5C sites from the three datasets were first mapped to the Ensembl transcripts (queried at Feb, 
2018, the genome version is GRCh37 for human and GRCm38 for mouse)15. For multiple transcripts of the same 
gene, we picked the mRNA transcript which have relatively more modification sites to insure the quality and reli-
ability of data. One quarter of the m5C site data was randomly selected as the independent test set while the rest 
was used to train the predictors. The negative samples were randomly selected from the non-modified C sites in 
the transcripts. Since the ratio of positive and negative training samples could affect the precision of the predic-
tion model, we preliminarily tested 3 ratios (1:10, 1:30, 1:50) and finally considered the best one (1:30) based on 
cross-validation. In order to fit the real-world data, as for the independent test sets, all of the non-modified C sites 
were used as the negative samples (Table 2).

Cell types AUC

mouse_ESC 0.902

mouse_Heart 0.772

mouse_Kidney 0.768

mouse_Liver 0.768

mouse_Muscle 0.767

mouse_Small-Intestine 0.769

mouse_Brain 0.775

human_Hela 0.765

Table 1. AUC of independent test of different predictors.

Figure 3. The results of intra- and inter-tissue independent tests for each tissue specific predictor. (A) The color 
correlates with the performance (AUC). (B) ESC, embryonic stem cell.
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Sequence encoding. To train the machine learning model, the RNA sequence flanking the modified/
non-modified sites should be translated to the numeric feature encoding. In this study, two kinds of encoding 
strategies were tested and compared, which were the one-hot encoding16 and Feng’s encoding14. The one-hot 
encoding uses n bits of 0 or 1 to represent n kinds of nucleotide state. For each position, the A, G, C, T are trans-
lated into vectors of (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), respectively. Feng’s encoding also uses four 
bits to represent specific nucleotide. But unlike one-hot encoding, the first three bits in Feng’s encoding represent 
three kinds of physicochemical characters (which are the ring number, the chemical functionality and the num-
ber of hydrogen bonds). And the fourth bit of Feng’s encoding represents the accumulated occurrence frequency 
of the nucleotide in the sequence. Therefore, A, G, C, T are translated into vectors of (1, 1, 1, FreqA), (1, 0, 0, 
FreqG), (0, 1, 0, FreqC) and (0, 0, 1, FreqT), respectively. The size of flanking sequence window to be encoded by 
the one-hot and Feng’s encodings are both 10, which were optimized by five-fold cross-validation. According to 
their performance and complexity we finally chose one-hot encoding strategy.

Machine learning algorithm. We have tested four methods of machine learning which are logistic regres-
sion, naïve Bayes, Decision Tree (with parameters minsplit = 35, cp = 0.00001 and maxdepth = 30) and Random 
forest (RF) with integrated RNA m5C sites. The performance of each algorithm is shown in Table 3. Considering 
both efficiency and accuracy, we finally chose RF as our preferred algorithm. RF algorithm is a robust machine 
learning framework that has been widely used in medicine and biology information fields17. RF consists of a large 
ensemble of classification and regression trees (CARTs). The number of CARTs is defined as n_tree, which was 
also optimized by cross-validation. The random forest algorithm was implemented by using the ‘randomForest’ 
package in R18.

Performance evaluation. In this study we used ROC (receiver operating characteristic) curve, which is 
less affected by the unbalanced test data set, to evaluate the performance of predictors. ROC curve reflects the 
overall relationship between sensitivity and specificity when different thresholds are applied. The sensitivity and 
specificity are defined as

=
+

Sensitivity TP
TP FN (1)

=
+

Specificity TN
TN FP (2)

where TP, TN, FP and FN represent the number of true positive, true negative, false positive and false negative 
samples, respectively. The larger the area under the curve (AUC), the higher the prediction performance. We 
benchmarked our predictors on the independent test sets. We also compared the comprehensive predictor of 
RNAm5Cfinder with iRNA-PseColl and M5C-HPCR on the same independent test set. The binary (yes or no) 
prediction results of iRNA-PseColl and M5C-HPCR were obtained by submitting the RNA sequences to their 
servers.

Tissues

Training set Test set

pos neg pos neg

Comprehensive 19,798 593,941 6636 1,924,243

ESCa-specific 3440 103,201 828 299,610

Heart-specific 12,703 381,091 100 30,433

Kidney-specific 12,700 381,001 122 37,088

Liver-specific 11,937 358,111 125 37,844

Muscle-specific 11,826 354,781 118 36,519

Small-Intestine-specific 11,372 341,161 107 32,170

Brain-specific 19,141 424,231 472 155,409

Table 2. The sample size of different tissues’ training and test datasets. The ratio of the positives and the 
negatives of the training set and test set were set to 1:30 and 1:all respectively. As for the test sets of tissue-
specific predictors, samples which were used to train predictors for the other tissues were discarded. aESC, 
embryonic stem cell.

Algorithm AUC

logistic regression 0.700

naïve Bayes 0.686

Decision Tree 0.726

Random forest 0.773

Table 3. Performance of different machine learning algorithm.
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Construction of web-server platform. The user interface and message response mechanisms were based 
on JavaScript and Ajax. The data processing module was written by PHP5 and could process the input sequences 
into the numeric sequence encoding for subsequent random forest prediction.

Conclusions
From above analyses, we can draw a conclusion that RNAm5Cfinder is an efficient tool to predict m5C sites. 
Comparing with other predictors, RNAm5Cfinder has two advantages: (1) Larger and more updated dataset, 
which together with the random forest machine learning framework, results in a better performance. (2) Ability 
to predict tissue-specific m5C sites. We believe that RNAm5Cfinder has great potentials and with more m5C site 
data become available, the performance of RNAm5Cfinder could be further improved.
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