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On the Hydrogen Bond Strength 
and Vibrational Spectroscopy of 
Liquid Water
Deepak Ojha1, Kristof Karhan1 & Thomas D. Kühne1,2

In the present work, we introduce two new metrics i.e. hydrogen-bond strength and charge-transfer 
between the donor/acceptor water molecules as a measure of hydrogen-bond rearrangement dynamics. 
Further, we also employ a simple model based on energy flux through the donor-acceptor water pairs to 
quantify the extent of the local hydrogen-bond network reorganization. Most importantly, we report 
a linear relationship between the OH stretch frequency and the charge and energy transfer through 
donor-acceptor water pairs. We demonstrate that the vibrational frequency fluctuations, which are used 
to determine third-order non-linear spectroscopic observables like the short-time slope of three pulse 
photon echo, can be used as an analog of the fluctuations in the hydrogen-bond strength and charge-
transfer. The timescales obtained from our hydrogen-bond strength correlation and charge-transfer 
correlation decay are in excellent agreement with the computed frequency-time correlation function, as 
well as with recent vibrational echo experiments.

The role of liquid water in several physical, chemical, biological, atmospheric and geophysical processes has been 
extensively studied1–3. In liquid water, each water molecule forms multiple hydrogen-bonds (HBs) with its neigh-
bors that leads to the formation of a strong HB network. The spatial and temporal evolution of the HB network is 
often responsible for many of the observed anomalous properties of liquid water. While the time-averaged local 
structure can be easily studied using X-ray and neutron scattering experiments4–7, the time-dependent evolution 
of the local solvent structure has been successfully elucidated with the advent of recent non-linear vibrational 
spectroscopic techniques like three-pulse photon echo peak shift (3PEPS) and two-dimensional infrared spec-
troscopy (2D-IR)8–14. To support these non-linear spectroscopic studies, several numerical and molecular dynam-
ics (MD) studies have also been performed, which have helped to shed more information about the detailed 
mechanism of HB rearrangement15–25. In most of these studies, vibrational dephasing is associated with the mem-
ory loss of the electric field or the electrostatic force projected along on OH/OD modes.

Recently, the condensed-phase energy decomposition analysis based on absolutely localized molecular orbit-
als (ALMO-EDA) has been utilized to determine the strength of donor-acceptor interactions of individual HBs 
in liquid water26–29. Specifically, ALMO-EDA involves the separation of the total interaction energy into several 
physically meaningful components like donor-acceptor interactions, polarization of electron clouds between two 
molecules and some higher-order relaxation terms.

In the present work, we employ the ALMO-EDA method to investigate the relationship between the vibra-
tional fluctuations of the OH stretching modes with the HB charge-transfer and corresponding energy stabiliza-
tion in liquid water. While the HB strength and charge-transfer is computed using the ALMO-EDA technique, 
the instantaneous fluctuations in the ground-state frequencies of the OH modes are calculated using the Wavelet 
method of time-series analysis21–23. The calculation of nonlinear vibrational spectrum including non-Condon 
effects necessitates the determination of response functions that are expressed in terms of four-point dipole cor-
relation functions30. Due to the fact that these calculations requires too much statistics to be viable within the 
employed ab-initio MD framework, the slope of three-pulse photon echo (S3PE), which is a theoretical analog of 
3PEPS experiments, is calculated within the second-order cumulant approximation31–33. The ability of non-linear 
spectroscopic observables of the OH modes to capture fluctuations within the HB strength and charge-transfer 
is also investigated.
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The frequency fluctuation dynamics of the OH modes in liquid water is often connected to the reorganization 
of the local solvent network. However, being a collective phenomenon, it is difficult to quantify the extent of reor-
ganization in the local HB network. Therefore, we use a simple model based on the energetic balance to propose a 
novel linear relationship that permits to quantitatively predict the extent of reorganization in the HB network cor-
responding to a given stretching mode. In addition, the decay of the frequency-time correlation function (FTCF) 
is compared to the here proposed HB strength correlation function (HBCF), charge-transfer correlation function 
(CTCF) and local solvent reorganization index (LSRI). Furthermore, we compare these metrics with other more 
traditional approaches based on the HB lifetime (SHB(t))34,35, as well as HB number fluctuations (NHB(t))36.

Results
ALMO Energy Decomposition Analysis. In spite of the fact that the ALMO-EDA method has been 
described in detail elsewhere26–29, in the following we will briefly review its key concepts. In particular, the 
ALMO-EDA technique is a first-principles based approach to decompose the molecular binding energies into 
physically meaningful components. For that purpose, the total molecular binding energy (ΔETOT) is segregated 
into the interaction energy of unrelaxed electron densities of the molecules (ΔEFRZ) and the density relaxation 
energy. The latter can be further decomposed into an intramolecular polarization contribution (ΔEPOL) that 
is associated with the deformation of electron clouds on the molecules within their mutual fields, two-body 
donor-acceptor interactions (ΔEDEL) and a very small amount of higher-order relaxation terms (ΔEHO). The 
two-body donor-acceptor interactions arise due to the delocalization of electrons from the occupied orbitals of a 
donor molecule D to the virtual orbitals of an acceptor molecule A (ΔED→A). Thus, the total energy can be written 
as the sum of the aforementioned terms as computed by the ALMO-EDA method, i.e.

Δ = Δ + Δ + Δ + ΔE E E E E , (1a)TOT FRZ POL DEL HO

where
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The configurations for the ALMO-EDA analysis were obtained from our ab-initio MD trajectory. More pre-
cisely, 5000 equally distributed configurations separated by 5 fs each were extracted to compute the HBCF and 
CTCF correlation decay.

Frequency Fluctuations Analysis. The instantaneous fluctuations of the ground-state frequencies of the 
intramolecular OH modes are computed by means of the Wavelet method of time-series analysis19,21,22,37. This 
method is based on the principle that a time-dependent function can be expressed in terms of basis functions 
obtained by the translations and dilations of a mother Wavelet
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which is represented in the Morlet-Grossman form in the present study38. An important condition for the mother 
Wavelet to be applicable for time-series analysis is that it should rapidly decay to zero for t → ∞ and t → −∞. The 
coefficients of the Wavelet expansion are given by the Wavelet transform of f(t), i.e.
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where a and b are both real quantities with a > 0. Here, a is the so called scale parameter and is directly related to 
the frequency content of the system over a small time interval around t = b. Therefore, depending upon the fluc-
tuations in f, the wavelet transform Lψf(a, b) gives the spectral information of the time-series f for the short time 
domain centered around t = b. Mathematically, for a wavelet ψ with centers t* and radius Δψ, Lψ f(a, b) localizes 
the function within with the time window of domain [b + at* − aΔψ, b + at* + aΔψ]. Similarly, for a wavelet with 
its Fourier transform Ψ and central frequency ω*, the frequency fluctuations are obtained within the domain of 
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. Since the present wavelet method permits the simultaneous delocalization of frequency 

and time, it is employed to study non-periodic time-dependent fluctuations in the vibrational frequency of the 
OH stretching modes. The value of the scaling parameter a, which maximizes the modulus of the wavelet trans-
form of f at time t = b is used to determine the most significant frequency component for the corresponding 
interval. The time-series, i.e. f(t), is constructed as a complex function with its real and imaginary parts corre-
sponding to the instantaneous bond length and momentum of an OH mode projected along the OH bond. This 
method is then applied to all the OH modes present in a given system.

The probability distribution of vibrational frequencies of all OH stretching modes versus the energy ΔED→A 
and charge-transfer ΔCTD→A from a donor molecule to an acceptor molecule through a HB are shown in Fig. 1. 
We note that on average, the vibrational frequency is inversely related to the HB strength (ΔED→A) and HB 
charge-transfer (ΔCTD→A). Based on a simple least-square fitting, we obtain a linear relationship between the 
instantaneous vibrational OH stretch frequency and the corresponding HB strength and charge-transfer, i.e.

ωΔ = . − .→
−E kJ mol cm( / ) 0 0392 150 6 ( ) (4a)D A
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where ω is the vibrational OH stretch frequency. The root mean square error (RMSE) for the two fits are 
7.27 kJ/mol and 0.004 a.u., respectively. These linear relations can be easily used to determine the extent of 
charge-transfer and corresponding stabilization energy between a pair of hydrogen-bonded water molecules cor-
responding to a given vibrational OH frequency of an acceptor water molecule.

Several theoretical and experimental studies have shown that the loss of correlation within OH stretching 
modes is related to the HB rearrangement dynamics14. Nevertheless, it is not straightforward to quantify the 
extent of this local HB network reorganization due to its highly collective and spatially localized features. We 
therefore use a simple model based on the energetic balance to quantify the degree of solvent reorganization39. 
Specifically, for each H-bonded pair of water molecules, we compute the order parameter

= + − −O D A D A , (5)h Acc Don Don Acc

where D denotes the energy transfer of the donor, whereas A identifies the acceptor water molecule. The subscript 
Acc signifies if the energy transfer is through the accepting and Don through the donating HB.

The nomenclature as described above is also illustrated in Fig. 2. However, since in the present work Oh is 
used to capture the HB reorganization kinetics, we will use the term local solvent reorganization index (LSRI) 
instead of Oh from now on. Our LSRI is based on the concept that the HB network reorganization around a water 
molecule can be associated with the charge-transfer induced net energy flux through its HB acceptors/donors. As 
a consequence, this allows us to partition the energy flux of each hydrogen-bonded water pair into its DAcc, ADon, 
DDon and AAcc contributions as shown in equation 5.

With that, we are now able to determine the relationship between LSRI and the fluctuations in the vibrational 
frequency, as shown in Fig. 3. It is evident that the OH stretching frequency exhibits a strong dependence on the 
LSRI. Again, by means of a least-square fit of our computed data, we propose a very simple linear model that 
allows to predict the LSRI for a given frequency of the OH stretching mode, i.e.

Figure 1. Time-averaged probability distributions of frequency versus (a) HB strength and (b) HB charge-
transfer.

Figure 2. Illustration of different terms involved in the definition of the local solvent reorganization index in 
Eq. 5.



www.nature.com/scientificreports/

4SCienTifiC REPORTS |         (2018) 8:16888  | DOI:10.1038/s41598-018-35357-9

ω= − . + . .−LSRI kJ mol cm( / ) 0 01755 72 34 ( ) (6)1

Previous MD simulations have shown a strong dependence of OH stretching frequency fluctuations on the 
local electric field/potential, as well as on the photon echo peak shift15–18,30,32,33,36,40–43. Similarly, experimental 
peak shift based studies have demonstrated that the time-evolution of the vibrational frequency can be used as a 
direct experimental probe of HB breaking/reformation8,9. Earlier, natural bond order analysis has also been used 
to provide an energy-based definition of hydrogen-bonding44. Our ALMO-EDA method, however, is also able 
to divide the total interaction energy into several chemical sensible components corresponding to many-body 
effects and donor-acceptor interactions26–29. The strength of this method is that it permits to rigorously quantify 
the amount of charge-transfer by locating the variationally lowest energy state without charge-transfer. Thereby, 
the issues of under/overestimation of charge transfer, contamination due to charge overlap effects are circum-
vented. Therefore, the time-dependent fluctuations in the energy ΔED→A and charge-transfer ΔCTD→A can be 
used as a theoretical probe to observe the time-dependent evolution of hydrogen-bonding associated with a 
particular OH mode. In the next section, we demonstrate how these two-body interaction terms can be used to 
define new metrics to study the HB rearrangement dynamics.

Discussion
Having demonstrated the existence of an overall correlation between the HB strength and charge-transfer and 
the LSRI with the OH stretching frequency, let us now examine the temporal decay of correlation in the LSRI 
and the HB strength and charge-transfer. The elegance of these metrics is again that they are solely based on the 
two-body delocalization-energy ΔED→A, as well as charge-transfer ΔCTD→A components, which can be readily 
used to study the HB rearrangement dynamics without incorporating any geometry-based criterion of a HB. For 
that purpose, we compute what we call the HBCF CHBs(t) and the CTCF CCT(t) that are defined as

= Δ ⋅ Δ→ →C t E E t( ) (0) ( ) (7a)HBs D A D A

and

= Δ ⋅ Δ→ →C t CT CT t( ) (0) ( ) , (7b)CT D A D A

respectively.
The loss of correlation in the HBCF and CTCF exhibits a biphasic decay, as shown in Fig. 4. For both of the 

cases, the correlation decay shows a fast short-time decay within the initial 100 fs followed by a slower decay that 

Figure 3. Time-averaged probability distribution of frequency versus LSRI.
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Figure 4. Time-dependent decay of fluctuations in the HB strength, HB charge-transfer, vibrational OH stretch 
frequency, continuous HB and HB number correlation functions, as well as the fluctuations in the LSRI.



www.nature.com/scientificreports/

5SCienTifiC REPORTS |         (2018) 8:16888  | DOI:10.1038/s41598-018-35357-9

extends up to a few picoseconds. For the purpose of extracting the timescales, the raw data of the HB strength 
and charge-transfer fluctuations are represented by a least-squares fit to the following bi-exponential function

τ τ
=





−






+ −




−






f t a exp t a exp t( ) (1 ) ,
(8)

0
0

0
1

where τ0 and τ1 are two characteristic time constants. In the case of the HBCF a strong oscillatory behavior is 
visible in short-term regime, which is less pronounced in the CTCF. In both cases, the decay patterns of both 
correlation functions are essentially overlappingly at long timescales, which is why the long-time decay con-
stant τ1 was found to be 1.02 (±0.04) ps and 1.02 (±0.05) ps for both of them. The LSRI time-correlation func-
tion (LSRI-TCF) exhibits a slower initial decay, but a somewhat faster long-term decay with a timescale of 0.93 
(±0.05) ps. Interestingly, τ1 of the HBCF, CTCF and LSRI-TCF are in very good agreement with the timescale of 
HB rearrangement, as reported in previous experimental and theoretical studies10,23. Interestingly, HBCF, CTCF 
and LSRI-TCF are not completely identical to each other. We note that our model, which is based on a linear 
fitting of HB strength, CT and LSRI as a function of vibrational frequency, entails a finite error bar for each of the 
metrics. Nevertheless, even considering serial correlation, the deviations observed in the time-dependent decay 
of these metrics are small enough to be within the provided error range.

In addition, we computed the FTCF for the OH stretch frequencies, which is also shown in Fig. 4. The 
long-term decay component was found to be 1.01 (±0.05) ps, which is in very good agreement with the times-
cales of our HBCF, CTCF and LSRI-TCF, respectively. The same also holds for the decay of the frequency fluctua-
tions that is in agreement with the initial short-time and long-term decay of the HB strength and charge-transfer. 
As a consequence, it is evident that the vibrational frequency fluctuations and HB rearrangement can be used as a 
measure of the fluctuations in the HB strength due to HB charge-transfer between the donor and acceptor water 
molecules. The error bars were calculated using the block averaging method45. As the timescale of decay is nearly 
1 ps, we divided the trajectory into three mini-trajectories of 8 ps length each in order to compute the timescale, 
as well as the corresponding error bar.

To test the applicability of our HBCF, CTCF and LSRI-TCF for aqueous solutions, we have compared them 
with more traditional approaches to quantify the HB dynamics such as continuous HB (SHB(t)) and HB number 
correlation (NHB(t)) functions34–36. The continuous HB correlation function determines the probability that an 
initially H-bonded pair of water molecules remains continuously intact until time t. The HB number correlation 
function is defined as

δ δ
δ

=
⋅

C t
n t n

n
( )

( ) (0)
,

(9)2

where δn(t) = n(t) − 〈n〉 and n(t) is the number of HBs that a water molecule forms at time t. The time-dependent 
decay of SHB(t) and NHB(t) are also shown in Fig. 4. The timescales of correlation loss were again obtained using 
Eq. 8. The long-term decay component of NHB(t) was found to be 0.74 (±0.04) ps, which is substantially faster 
than that of FTCF. Similarly, the HB lifetime obtained from SHB(t) was found to be 1.2 (±0.04) ps. We find it 
important to note that in spite of the agreement between SHB(t) and NHB(t) with the FTCF, the former quantities 
can be utilized to determine the HB lifetime, but not to accurately predict the short-time decay dynamics.

Finally, we have examined the suitability of our HBCF and CTCF to determine spectral observables of 
non-linear vibrational spectroscopic techniques like S3PE, which is obtained from the integrated echo intensity
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The short-time slope of the integrated echo intensity at initial time t = 0 is defined as S3PE. More precisely,
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is known to capture the loss of frequency correlation. The corresponding integrated echo intensity and 
time-dependent decay of S3PE, as obtained from the fluctuations of the HBCF, CTCF, FTCF and normalized 
3PEPS deduced from mid-infrared spectroscopic experiments43, are shown in Fig. 5. We find that the S3PE as 
obtained from fluctuations within the HB strength and charge-transfer are much closer to the experimentally 
obtained 3PEPS than the S3PE computed from the frequency fluctuations. Interestingly, the initial short-time 
oscillatory trend that is seen in the experimental 3PEPS, although less pronounced in magnitude, is correctly 
reproduced in our calculations based on the HB strength fluctuations. As before, the corresponding timescales 
were obtained using the fit function of Eq. 8. The long-term decay constant of S3PE as obtained from the HB 
strength, charge-transfer and frequency fluctuations are 1.32 (±0.04) ps, 0.91 (±0.04) ps and 0.99 (±0.05) ps, 
respectively, and as such rather similar to the experimentally known value of the HB rearrangement dynamics. 
This clearly demonstrates that non-linear spectroscopic experiments can be used as a direct probe to determine 
the time-dependent evolution of the HB strength and charge-transfer.
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Summary and Conclusion
To summarize, in present work we have introduced the HB strength and HB charge-transfer between the donor/
acceptor water molecules as a new metric of predicting the HB rearrangement dynamics. The great appeal of these 
metrics lies in the fact that they do not rely on any HB definition and can be readily obtained from ab-initio MD 
simulations. Based on that, we proposed a simple linear model to quantify the extent of HB reorganization using 
the ALMO-EDA energy flux through a donor-acceptor pair. We have also demonstrated the ablity of the intro-
duced metrics to represent spectral observables of non-linear spectroscopic experiments like 3PEPS. The results 
obtained using the HB strength and HB charge-transfer are in better agreement with the experiments as com-
pared to FTCF. Interestingly, HBCF also captures the short-time oscillatory pattern as reported in several infrared 
pump-probe experiments which is not seen in the decay of FTCF43. We conclude by noting that Eqs 4a,4b and 6 
opens the door to experimentally quantify the donor-acceptor charge-transfer and the corresponding stabiliza-
tion energy, as well as our LSRI by means of vibrational spectroscopy. Further, our model can also be employed 
to study the charge-transfer mediated HB stabilization in aqueous systems in general and at different surfaces, 
interfaces and also in confinement.

Methods
The ab-initio MD simulation of liquid water was performed using the second-generation Car-Parrinello MD 
method46–48, as implemented in the mixed Gaussian and plane waves code CP2K/Quickstep49,50. Therein, the 
Kohn-Sham orbitals are expanded in contracted Gaussians, whereas the electronic charge density is represented 
using plane waves. For the former, we use an accurate molecularly optimized double-ζ basis set with one addi-
tional set of polarization functions (DZVP)51, while for the latter a density cutoff of 280 Ry was employed. The 
BLYP generalized gradient approximation to the unknown exchange and correlation functional was used together 
with Grimme’s D3 dispersion correction52–54. The core electrons, however, were represented by norm-conserving 
Goedecker-Teter-Hutter (GTH) pseudopotentials55,56. Previous works have shown that these settings provides a 
realistic description of many important structural, dynamical and spectroscopic characteristics of liquid water, 
including the partial pair correlation functions, self-diffusion and viscosity coefficients, HB lifetime, vibrational 
spectra and magnetic shielding tensor components20,23,24,26,27,29. The eventual system consisted of 64 light water 
molecules in a cubic box of length 12.43 Å corresponding to the density of liquid water at ambient conditions 
(300 K and 1 bar)57. The system was initially equilibrated in the canonical NVT ensemble for 10 ps followed by a 
production run in the microcanonical NVE ensemble for additional 25 ps.

Data Availability
The data generated and analyzed during the current study are available from the corresponding author on rea-
sonable request.
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