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Negativity volume of the 
generalized Wigner function as an 
entanglement witness for hybrid 
bipartite states
Ievgen I. Arkhipov1, Artur Barasiński  1,2 & Jiří Svozilík1,3,4

In a recent paper, Tilma, Everitt et al. derived a generalized Wigner function that can characterize 
both the discrete and continuous variable states, i.e., hybrid states. As such, one can expect that 
the negativity of the generalized Wigner function applied to the hybrid states can reveal their 
nonclassicality, in analogy with the well-known Wigner function defined for the continuous variable 
states. In this work, we demonstrate that, indeed, the negativity volume of the generalized Wigner 
function of the hybrid bipartite states can be used as an entanglement witness for such states, provided 
that it exceeds a certain critical value. In particular, we study hybrid bipartite qubit–bosonic states and 
provide a qubit–Schrödinger cat state as an example. Since the detection of the generalized Wigner 
function of hybrid bipartite states in phase space can be experimentally simpler than the tomographic 
reconstruction of the corresponding density matrix, our results, therefore, present a convenient tool in 
the entanglement identification of such states.

Hybrid quantum systems, multipartite quantum systems composed of both discrete and continuous subsystems, 
are one of the central topics in quantum information theory. Their study opens up a new path in the development 
of the universal transfer and processing of information between both the discrete and continuous degrees of 
freedom of quantum systems1,2. Particularly, hybrid entanglement can be used in hybrid teleportation protocols 
which are also at the center of teleportation science3,4.

The first attempt to give a thorough classification of hybrid entanglement between discrete (DV) and contin-
uous (CV) variable states was presented by Kreis and van Loock in ref.5. At the same time, the progress in the 
experimental realizations of hybrid states, namely the entangled states between coherent optical field and single 
optical qubit, were implemented and described in refs6–9.

With that, the ability to experimentally identify and characterize a generated hybrid state, i.e., to perform its 
state tomography10 brings another problem. For DV systems, the state tomography can be performed readily, 
since the state resides in the finite Hilbert space and, thus, finite set of measurements are needed for its recon-
struction. For CV systems, the situation is more complicated because one has to deal with infinite Hilbert space 
of the system. In that case, the state tomography is implemented by means of homodyne detection11, i.e., the 
information about the state is obtained from the reconstructed Wigner function12,13.

To characterize the nonclassicality of a hybrid state, the Wigner function of CV subsystem can be used, which 
is obtained by projecting the hybrid state onto one of the finite basis of DV subsystem. Such an idea was intro-
duced in ref.14, and later was also experimentally implemented in ref.7, and further generalized in ref.9.

Naturally, for the characterization of the hybrid states the use of the corresponding hybrid Wigner function 
would be preferable, as the properties of both the DV and CV states could be incorporated into one continuous 
phase space. That also represents partial motivation of our study.
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Recently, a concept how to define the Wigner function for hybrid states within the same framework has 
been presented in ref.15. The series of simulations and experiments have proved practical usefulness of that new 
approach in the characterization of the discrete variable states in the continuous phase space16–18. In the first 
case such a Wigner function can exhibit negativity even for separable spin states16 and in the latter case it was 
suggested that the Wigner function can serve as an indicator of the purity of single qubits17. This could imply that 
such observed negativity cannot uniquely be utilized in the characterization of the nonclassicality in the discrete 
domain. As shown in19, one needs also to distinguish between different kinds of nonclassicality originating in the 
DV or CV domain. As such one cannot rely on the negativity of the Wigner function defined for hybrid states for 
the characterization of their nonclassicality.

In this paper, we study the negativity volume of the Wigner function of both the qubit and bosonic states, as 
well as the hybrid bipartite states constructed from them. We show that the negativity volume of any qubit state 
is completely determined by the purity of the state, meaning that the negativity volume serves as an identifier of 
the purity, not nonclassicality, for qubit states. Nevertheless, we demonstrate that by using the negativity volume 
of the generalized Wigner function one can identify the presence of entanglement, as one of the forms of nonclas-
sicality, for hybrid qubit – bosonic states, provided that the negativity volume exceeds a certain critical value. As 
such, we show that the negativity volume of the generalized Wigner function can serve as an entanglement wit-
ness for hybrid states, i.e., it becomes a sufficient but not a necessary condition for the detection of entanglement. 
As an example, we consider entangled qubit–coherent Schrödinger cat states subject to decoherence. We provide 
a comparison between the entanglement negativity, which is a good entanglement monotone for 2 × 2 bipartite 
states20,21, and the negativity volume of the Wigner function of the given states, to show that the latter serves as 
the entanglement witness.

We would like to stress that the hybrid entangled bipartite states considered here have been recently generated 
in refs6–9, and, as such, our results can be tested and used in the present running experiments.

The paper is organized as follows. In Section Theory, we briefly review the basic concepts of the generalized 
Wigner function for hybrid states. In Section Negativity volume of the qubit and bosonic states, we study the 
negativity volume of the generalized Wigner function of qubit and bosonic states. There, we also show that the 
negativity volume of a qubit is determined by the qubit purity. In Section Negativity volume of hybrid bipartite 
qubit–bosonic states, we discuss the entanglement condition for hybrid qubit–bosonic states which is expressed in 
terms of the negativity volumes of the reduced qubit and bosonic states. We demonstrate the applicability of the 
obtained results with the example of hybrid entangled qubit–Schrödinger cat states in Section Example. Entangled 
hybrid qubit–Schrödinger cat state. Section Conclusions summarizes the obtained results.

Theory
Tilma, Everitt et al., in ref.15, derived the formula for the Wigner function defined for quantum states consisting 
of both the discrete and continuous variables. In particular, for a hybrid bipartite state ρ̂, composed of a qubit and 
bosonic field, that formula reads as

φ θ β ρ φ θ β= ∆ ⊗ ∆ˆ ˆ ˆW( , , ) Tr[ ( , ) ( )], (1)q b

where Tr stands for trace, and

φ θ β
π

∆ = Π ∆ = Πˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †
U U D D( , ) 1

2
, ( ) 2 , (2)q q b b

are kernel operators corresponding to the qubit and bosonic field, respectively. The operator Û  is a rotational 
operator in SU(2) algebra, namely = σ φ σ θ σ Φˆ ˆ ˆ ˆU e e ei i i3 2 3  with Pauli operators σ̂i, =i 1, 2, 3, and angles φ πΦ ∈, [0, 2 ], 
θ π∈ [0, ].  σΠ = −ˆ ˆ ˆ3q 2 3 is a parity operator of the qubit. The operator D̂ is a displacement operator of the 
coherent state, i.e., = β β−ˆ ˆ ˆ† ⁎

D ea a , where â ( ˆ†a ) is annihilation (creation) bosonic operator. The corresponding 
bosonic parity operator reads as Π = πˆ ˆ ˆ†

eb
i a a.

The normalization condition ∫ Ω =Wd 1 is obtained by means of the appropriate integral measure dΩ, that is a 
product of normalized differential volume of SU(2) space corresponding to a qubit with the Haar measure dν22,23, 
and differential volume of the coherent field space d2β, and which reads as follows

ν β
π

θ φ θ βΩ = =d d d 1 sin2 d d d , (3)
2 2

with allowed integrating range of angles φ π∈ [0, 2 ], and θ π∈ [0, /2]24.
A nice feature of the Eq. (1) is that it enables one to define common continuous phase space for states with 

finite and infinite Hilbert spaces.
For the reduced qubit ρ ρ=ˆ ˆTr [ ]q

b , and bosonic ρ ρ=ˆ ˆTr [ ]b
q  states, the Wigner function reads as

∫φ θ ρ φ θ φ θ β β= ∆ =ˆ ˆW W( , ) Tr[ ( , )] ( , , )d , (4)q
q

q
2

for qubit, and as

∫β ρ β φ θ β ν= ∆ =ˆ ˆW W( ) Tr[ ( )] ( , , )d , (5)b
b

b
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for bosonic state, respectively. In what follows, when writing a density matrix in the form ρ̂y
x, the superindex x will 

refer to the reduced qubit ( =x q), or bosonic ( =x b) state, and the subindex y will be used to refer to a certain 
class of a state, e.g., pure state ( =y p), diagonal mixed state ( =y d), etc.

Since, in what follows, we would like to show that the negativity volume (NV) of the generalized Wigner 
function can be used as a nonclassicality identifier, in particular, as an entanglement identifier, we write down its 
formula accordingly,

 ∫ ∫= | | − Ω = | | Ω − .( )W W W1
2

( )d 1
2

d 1 (6)

We also write down the formulas for the NV of the reduced qubit and bosonic states given in Eqs (4) and (5), 
as following

 ∫ ∫ν β= | | − = | | − .( ) ( )W W W W[ ] 1
2

d 1 , [ ] 1
2

d 1 (7)q q b b
2

Negativity Volume of Qubit and Bosonic States
Qubit states. In this subsection, we study the negativity volume of qubit states. We also demonstrate that the 
negavity volume of the Wigner function of a qubit is explicitly determined by the purity of the state.

As it was recently suggested16,17, the negativity of the Wigner function of the qubit might characterize rather 
the purity of the qubit state than its nonclassicality. Below we validate that suggestion. First, we would like to show 
that the Wigner function can be negative even for classical states of the qubit.

For a general pure qubit state ρ = | 〉〈 |ˆ q qp
q , where

χ π| 〉 = | 〉 + − | 〉 ∈ ∈χq a e a a0 1 1 , [0, 1], [0, 2 ], (8)i

the Wigner function, according to Eq. (4), attains the following form

ρ θ χ φ θ= − + + − + .ˆW a a a[ ] 3 (1 ) sin2 cos( 2 ) 3
2

(1 2 )cos2 1
2 (9)q p

q

The Wigner function in Eq. (9) can acquire negative values already for classical states of ρ̂p
q, i.e., when =a 0, 1. 

Indeed, by applying Eqs (7) to (9), one finds that the NV for the pure qubit state ρ̂p
q equals

ρ = − ≈ .ˆ( ) 1
3

1
2

0 077,
(10)p

q

regardless of the values of a and χ.
Interestingly, even for diagonal mixed qubit states ρ̂d

q of the form

ρ = | 〉〈 | + − | 〉〈 | ∈ˆ a a a0 0 (1 ) 1 1 , [0, 1], (11)d
q

its Wigner function

ρ θ= − +ˆW a[ ] 3
2

(1 2 )cos2 1
2 (12)q d

q

also attains negativie values. The NV of the Wigner function ρ̂W [ ]q d
q  in Eq. (12) acquires the following values

 ρ =
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Figure 1 vizualizes the dependence of the NV ρ̂( )d
q , given in Eq. (13), on the parameter a. The dependence of 

NV  ρ̂( )d
q  on a is symmetrical with respect to the value =a 1/2. The maximum value of NV  ρ̂( )d

q  coincides with 
the negativity volume corresponding to the pure qubit state in Eq. (10).

The purity   of a qubit described by some quantum state ρ̂ can be calculated along the following formula

ρ= .ˆTr[ ] (14)2

The values of the purity   can range between 1/2 and 1, that corresponds to the completely mixed and pure 
qubit state, respectively. By combining Eqs (11) and (14) one obtains the purity for the diagonal mixed qubit state 
ρ̂d

q, as following

ρ = − − .ˆ a a( ) 1 2 (1 ) (15)d
q
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Expressing now the parameter a by   in Eq. (15), and introducing the latter into Eq. (13), one obtains

V

P

P

P
P

ρ

ρ

ρ

ρ
ρ

=











≤ ≤
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(16)

d
q

d
q

d
q

d
q d

q

By observing Eq. (16), one concludes that the NV   of the Wigner function of the diagonal mixed state ρ̂d
q is 

determined by the purity   of the state (see also Fig. 2).
A general qubit state ρ̂g

q can be written in the following form

ρ σ= + → ⋅ →ˆ a1
2

( ), (17)g
q

2

where the vector → ∈a 3, σ→ is the vector of Pauli matrices, and 2 is 2 × 2 identity matrix. The density operator 
ρ̂g

q must be positive-semidefinite, from which it follows that |→| ≤a 1. The purity   of the state ρ̂g
q is found as

 ρ =
+ |→|

.ˆ a( ) 1
2 (18)g

q
2

Thus, for pure states |→| =a 1.
The calculation of the NV   for the state ρ̂g

q in Eq. (17) is more involved. Nevertheless, the numerical results 
indicate that even for the general qubit state ρ̂g

q, the dependence between the NV   and the purity   has the same 
form as in Eq. (16), and which is displayed in Fig. 2. Although numerical simulations provide strong evidence that 
for any mixed qubit state the negativity volume of the Wigner function becomes a sole function of the purity of 
the state, the rigorous mathematical proof is still needed.

Bosonic states. For bosonic states, the negativity of the Wigner function in Eq. (5) immediately character-
izes the nonclassicality of CV states25. Consequently, the negativity volume of the Wigner function for bosonic 
states can serve as a measure of that nonclassicality, or even as an entanglement measure for such states26.

Negativity Volume of Hybrid Bipartite Qubit–Bosonic States
Despite the fact that the negativity of the generalized Wigner function fails to explicitly certify nonclassicality of 
qubit states, here we show that one can still rely on its negativity volume defined in Eq. (6), in order to identifiy 
entanglement (as one of the forms of nonclassicality) of hybrid systems such as qubit–bosonic states. It becomes 
possible due to the knowledge that the negativity volume of the single qubit cannot be larger than that of the pure 
qubit state given in Eq. (10). Moreover, it has been already shown that the negativity volume of the Wigner func-
tion compared to just its negative values can be a good entanglement identifier for hybrid states26.

Utilizing the definition of the negativity volume of the Wigner function in Eq. (6) one arrives to a formula of 
the NV   for the pure product hybrid qubit–bosonic state of the form ρ = |Ψ 〉〈Ψ |p̂p p p , (subindex in ρ̂pp stands for 

Figure 1. Negativity volume   of the Wigner function of the diagonal mixed qubit state ρ̂d
q (blue solid curve), 

given in Eq. (13), as a function of the parameter a. The negativity volume   of the Wigner function of the pure 
qubit state | 〉q , given in Eq. (10), is shown by red dotted line.
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pure product), where |Ψ 〉 = | 〉| 〉q bp  is the wave function of the product of the qubit | 〉q  and bosonic | 〉b  states, as 
following (see Methods)

ρ ρ ρ ρ ρ ρ= + + = + −ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 ( ) ( ) ( ) ( ) 2
3

( ) 1
3

1
2

,
(19)pp p

q
p
b

p
q

p
b

p
b     

where ρ̂( )p
q  ( ρ̂( )p

b ) is the NV of the reduced pure qubit (bosonic) state, and we used the Eq. (10) for the NV for 
the pure qubit state ρ̂p

q.
It is clear from Eq. (19), that for any given pure hybrid qubit–bosonic state |Ψ〉, if its negativity volume |Ψ〉( )  

is larger than the NV ρ̂( )pp , corresponding to the pure product states in Eq. (19), then, the pure hybrid state 
possesses nonclassical correlations, since, in that case, the only source of the extra values of the NV of the Wigner 
function, apart from the nonclassicality generated by the reduced bosonic state, can be quantum correlations, in 
particular entanglement between qubit and bosonic subsystems.

One also can see from Eq. (19), that the upper bound for the negativity volume for pure separable bipartite 
hybrid states is determined by the negativity volume of the bosonic state. And the lower bound is defined by the 
negativity volume of the qubit. Therefore, for reduced bosonic states, whose Wigner function is positive, the 
entanglement in hybrid states is observed whenever the negativity volume of the whole state exceeds that of the 
pure qubit. The Eq. (19) also implies that, if the negativity volume of the pure hybrid state ρ ρ< |Ψ〉 <ˆ ˆ( ) ( ) ( )p

q
pp   , 

the given state possesses the local nonclassicality in the reduced bosonic state but the whole hybrid state is not 
entangled.

In general, any mixed hybrid bipartite qubit-bosonic state which is separable can be represented as a convex 
sum of product states, i.e., the density operator of such states can be written as27

∑ρ ρ ρ= ⊗ .ˆ ˆ ˆp
(20)sep

i
i i

q
i
b

Combing now Eqs (6) and (20) one can easily show (see Methods) that the negativity volume of the Wigner 
function, defined for the state ρ̂sep, satisfies the following inequality

  ∑ρ ρ≤ = + −ˆ ˆp( ) 2
3

( ) 1
3

1
2

,
(21)sep cr

i
i i

b

where cr  stands for the critical value of the negativity volume for separable hybrid states, i.e., it is an upper bound 
of the negativity volume for which the hybrid state can be separable.

Thus, the entanglement condition for the given hybrid bipartite qubit–bosonic state ρ̂ reads as following

 ρ > .ˆ( ) (22)cr

The form of cr in Eq. (21) suggests that one, first, has to find an optimal decomposition for the reduced bos-
onic state ρ̂b in order to find the exact value of cr . It might be a very complicated problem, if there is no 

Figure 2. Dependence of the NV of the Wigner function   (Eq. (13)) (solid curve) on the purity   (Eq. (15)) of 
the qubit diagonal mixed state ρ̂d

q (Eq. (11)). The maximum value for the NV   of the qubit is shown by red 
dashed line.
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preliminary knowledge about the given hybrid state, in particular, about its reduced bosonic state. Nevertheless, 
the latter task is much easier than to find a decomposition for the joint hybrid qubit–bosonic state, as it is given in 
Eq. (20).

The entanglement condition for the hybrid state ρ̂ given by the inequality in Eq. (22) substantially simplifies, 
if the bosonic state ρ̂b is classical. In that case, the value of ρ= ˆ( )cr p

q  , i.e., the upper bound of the negativity 
volume for separable mixed states becomes equal to the negativity volume corresponding to the pure qubit given 
in Eq. (10).

Note that the condition ρ >ˆ( ) cr   is a sufficient condition, but not a necessary, for the entanglement detec-
tion of the given hybrid qubit–bosonic state ρ̂, as the Wigner function can, in general, fail to identify the entan-
glement in the system. We remark that the formulas given in Eqs (19) and (21) can be generalized to any kind of 
bipartite states which include qubits, as no restriction were imposed by bosonic states in the derivation of those 
formulas.

To conclude this section, we would like to mention the notion of the separable ball, which is used to identify 
separability of bipartite finite-dimensional systems28,29. In such systems, a similar idea of a critical value emerges 
through the fact that the purity can be used as a sufficient condition for separability (i.e., all states for which the 
purity is below a certain value must be separable). Since, as we have already shown, the negativity volume of the 
qubit is a monotone of the purity, there may be some connection between the separable ball condition and nega-
tivity volume, which might be an interesting topic for future research.

Example. Entangled hybrid qubit–Schrödinger cat state
In this section, we utilize the negativity volume of the generalized Wigner function of an entangled hybrid qubit–
Schrödinger cat state to identify its entanglement. We consider two scenarios, namely when the given state is pure, 
and when it is subjected to decoherence induced by the interaction with the environment, i.e., when it is mixed.

Pure hybrid qubit–Schrödinger cat state. We start our analysis from the following pure entangled 
hybrid qubit–Schrödinger cat state

α α|Ψ〉 = | 〉| 〉 + | 〉| − 〉 .
1
2

( 0 1 )
(23)

The state in Eq. (23) denotes an entangled state between the qubit with two states | 〉0 , | 〉1 , and the coherent state 
α| 〉 of the optical field with opposite complex amplitudes ±α. The coherent part in the state |Ψ〉 is realized as a 
nonorthogonal set, since the scalar product α α〈± | 〉 ≠ 0.

To quantify the entanglement of the state in Eq. (23), we resort to the entanglement negativity  , which is an 
entanglement monotone of bipartite 2 × 2 and 2 × 3 states20,21, and which is defined as

ρ
=

−Γˆ 1
2

, (24)

where ρΓˆ  is a partially transposed density matrix ρ̂, and = 

ˆ ˆ ˆ†
O O OTr[ ] is the trace norm of any operator Ô.

To calculate the entanglement by means of the negativity   given in Eq. (24), we rewrite the state |Ψ〉 in the 
new orthonormal basis for coherent fields, namely as even and odd cat states α α|±〉 = | 〉 ± |− 〉±N1/ ( ), where 

= ± α
±

− | |N e2 2 2 2
. One then easily finds the expression for the entanglement negativity

= − .α− | |e1
2

1 (25)
4 2



Thus, for any nonzero α the hybrid system described by the state |Ψ〉 is entangled, and the entanglement neg-
ativity   rapidly reaches the maximum value 1/2 with increasing α (see Fig. 3).

Applying Eq. (1) to the state |Ψ〉〈Ψ| one obtains the Wigner function in the form

φ θ β
π

θ

π
θ

π
θ φ βα

= −

+ +

+ + .

β α

β α

β

− | − |

− | + |

− | | ⁎

W e

e

e

( , , ) 1
2

[1 3 cos2 ]

1
2

[1 3 cos2 ]

3 sin2 cos2( 2Im[ ])
(26)

2

2

2

2

2

2

Now, we use the formula in Eq. (6) to obtain the negativity volume   of the Wigner function W in Eq. (26). As 
one can see from Fig. 3, the negativity volume   is a monotone of the entanglement negativity   for any α| | > 0, 
and it rapidly reaches the maximum value 1/2.

In the case when α| | = 0, the state |Ψ〉 becomes separable. Applying the formula in Eq. (19) to the separable 
pure state |Ψ〉, one finds that the negativity volume = = −V V 1/ 3 1/2cr  acquires its minimal value, and which 
is generated solely by the purity of the qubit state, since the negativity volume of the vacuum of the coherent state 
is zero. Therefore, the condition > cr   guarantees the presence of the quantum correlations, which, in that case, 
are expressed in the form of the entanglement.
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On Fig. 3 we also present the negativity volume   for the Wigner function of the reduced qubit state ρ̂q, which 
is obtained by combining Eqs (4) and (7). The values of the NV  ρ̂( )q  of the reduced qubit state decrease with 
increasing |α| and drop to zero at α| | = ≈ .ln3 /2 0 52. The latter stems from the fact that even the mixed qubit 
state can generate a nonzero negativity volume, as was mentioned in Section Negativity volume of the qubit and 
bosonic states. The Wigner function of the reduced coherent field is everywhere positive, as expected.

Hybrid qubit–Schrödinger cat state under decoherence. To describe the decoherence effect imposed 
on the states |Ψ〉 we solve the master equation in the Lindblad form30:

∑ρ ρ ρ γ ρ γ ρ∂
∂

=




−


 + −

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
† † † †{ }t

L L L L a a a a1
2

,
2

{ , },
(27)i

i i i i

where the Lindblad operator κ σ≡ˆ ˆLi i i, =i 1, 2, 3, acts on the qubit, and the boson operator â on the coherent 
state, respectively. The coefficient κ3 is responsible for the dephasing of the qubit, whereas κ1 along with κ2 are 
responsible for both the dephasing and relaxation rate for the population difference between two states of the 
qubit. The coefficient γ accounts for the decoherence rate of the optical field. In writing Eq. (27), we neglected the 
presence of the optical phonons of the lossy environment for the coherent field. To simplify our analysis, hence-
forth, we also assume that κ κ κ κ= = =1 2 3 .

Thus, solving Eq. (27), with the initial state given in Eq. (23), one can easily obtain the density matrix ρ̂ written 
in the qubit basis | 〉0 , | 〉1  and coherent basis α± γ−e t1

2  as

ρ =







+
−

−
+







ˆ

A B
A

A
B A

1
4

1 0 0 2
0 1 0 0
0 0 1 0

2 0 0 1

,

(28)

where = κ−A e t4 , and = κ α− − | | − γ−
B e et e4 2 (1 )t2

.
The Wigner function W in the Eq. (26) is transformed, accordingly, as

φ θ β
π

θ

π
θ

π
θ φ βα

= −

+ +

+




+ 








.

β α κ

β α κ

β γ

− − −

− + −

− | | −

γ

γ

−

−

⁎

W e e

e e

Be e

( , , ) 1
2

[1 3 cos2 ]
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Again, by rewriting the density matrix ρ̂ in the decoherent even-odd cat states basis α α|±〉 = ± −γ γ− −e et t1
2

1
2 , 

the entanglement negativity   can be obtained as follows

= + − − + + + −+ − + −B N t N t B A A B N t N t B1
16

[(16 ( ( ) ( )) (1 2 ) 4 ( 2 ) ( ) ( )) 4( 1)], (30)
2 2 1

2

Figure 3. Negativity volume   of the Wigner function W given in Eq. (26) (blue solid curve) for the state |Ψ〉 in 
Eq. (23), negativity volume   of the Wigner function ρ̂W [ ]q

q  of the reduced qubit state ρ̂q (red dashed curve), 
entanglement negativity   of the state |Ψ〉 (green dash-dotted curve) as a function of |α|. At α| | = 0 the 
negativity volume of the Wigner function = = −V V 1/ 3 1/2cr .
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where = ± α
±

− | | γ−
N t e( ) 2 2 e2 t2

.

Qubit decoherence. In the case when only a qubit is damped, i.e., κ γ≠ = 0, and one would like to detect the 
entanglement of the state ρ, the damping rates κ must obey the relation (see Fig. 4):

κ α< | | > .t 1
4

ln3 for 0 (31)

Consequently, the zeros of the entanglement negativity   exhibit independence of α, meaning that entangle-
ment of the considered state is fragile to the decoherence of the qubit only, regardless of the intensity of the coher-
ent field.

Meanwhile, the NV   of the Wigner function observes the nonzero values for the following damping rates

κ
α

<
| |

+ .t
2

1
8

ln3 (32)

2

The Eq. (31) implies that for α| | > ln32 1
4

 the NV   can be nonzero, whereas  = 0 (see Fig. 4, for α = 1). 
Nevertheless, the absolute values of the NV   are no larger than cr  in that case, and, therefore, the NV   loses its 
ability to certify the entanglement. Opposite, whenever > cr  , one always finds the entanglement negativity 

> 0  (Fig. 4). It is important to note that whereas the entanglement negativity can be nonzero, the negativity 
volume can still be less than the critical value cr, therefore, we stress that the NV   in general can serve only as 
the entanglement witness, not as an entanglement monotone.

Coherent field damping. In the case of the damped coherent field (γ κ≠ = 0), the entanglement negativity   
and the negativity volume   of the Wigner function W show greater strength to the noise compared to the case of 
the damped qubit. Moreover, the entanglement in the system can be observed for any γ < ∞t . The typical behav-
iour of the negativity volume and the entanglement negativity on the damping coefficient γt is presented in Fig. 5. 
It is worth noting, that when performing some experiment, if one has an a priori knowledge that the studied state 
is the state ρ given in Eq. (27), and which is subjected only to the coherent field damping, then the NV   can be 
used as a monotone of the entanglement negativity   in that case, even when < cr   as Fig. 5 suggests.

Nevertheless, to make sure that the negativity volume identifies the entanglement, in general, one still needs 
to rely on the values of the NV   which should be larger than cr .

Conslusions
We have studied the negativity volume of the generalized Wigner function of both the qubit and bosonic states, as 
well as the hybrid bipartite qubit–bosonic states. We have demonstrated that the negativity volume of the Wigner 
function of the diagonal mixed qubit states is a sole function of the purity. Moreover, the numerical results also 
suggest that the same holds true for any mixed qubit states, and as such, the negativity volume appears to serve 
as an identifier of the purity, rather than nonclassicality. Nevertheless, we have shown that the negativity volume 
of the Wigner function for hybrid qubit – bosonic states can be utilized as an entanglement identifier, provided 

Figure 4. Dependence on the damping coefficient κt of negativity volume   of the Wigner function W (blue 
solid curve), and entanglement negativity   of the state ρ̂ (green dash-dotted curve), assuming α = 1, and 
γ = 0. The critical NV cr is shown by red dotted line.
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that it exceeds a certain value originated from the purity of the qubit. As an example, we have considered a hybrid 
entangled qubit–Schrödinger cat state subject to decoherence, where we have demonstarted the applicability of 
the negativity volume of its Wigner function in the identification of the entanglement. As such, our results can 
be used in the experimental characterization of the entanglement of the hybrid qubit–bosonic field states, since 
the detection of the Wigner function of the hybrid states is simpler than the tomographic reconstruction of the 
corresponding density matrix.

Methods
Derivation of Eq. (19). The Wigner function for the pure product hybrid state ρ = | 〉| 〉〈 |〈 |ˆ q b q bpp , with the 
help of Eq. (1) can also be written as a product of the Wigner functions for qubit and bosonic states, i.e., 

ρ ρ ρ=ˆ ˆ ˆW W W[ ] [ ] [ ]pp q p
q

b p
b . Now, putting the latter into Eq. (6), and exploiting the fact that the Wigner function is a 

real-valued function, one obtains
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Derivation of Eq. (21). First of all, one finds the Wigner function for the separable hybrid state ρ̂sep given in 
Eq. (20), by making use of Eq. (1), as following
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∑

∑

ρ ρ

ρ ρ

ρ ρ

ρ ρ
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p W W

[ ] Tr[ ]
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Tr[ ]Tr[ ]

[ ] [ ]
(34)

sep sep q b

i
i i

q
q i

b
b

i
i i

q
q i

b
b

i
i q i

q
b i

b

The negativity volume   for the Wigner function ρ̂W[ ]sep , by applying the formula in Eq. (6), can be written as

Figure 5. Dependence on the damping coefficient γt of the negativity volume   of the Wigner function W 
(blue solid curve), and entanglement negativity   of the state ρ̂ (green dash-dotted curve), assuming α = 1, and 
κ = 0. The critical NV cr is shown by red dotted line.
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where we used the relation ∑ =p 1i i . The last term in the square brackets in Eq. (35) is simply the negativity vol-
ume for the product state ρ ρ⊗ˆ ˆi

q
i
b, the expression for which, but pure states, has been already derived in Eq. (33). 

Thus, by combining Eqs (33) and (35) we arrive at

    ∑ρ ρ ρ ρ ρ≤ + + .ˆ ˆ ˆ ˆ ˆp( ) (2 ( ) ( ) ( ) ( ))
(36)sep

i
i i

q
i
b

i
q

i
b

By maximizing the r.h.s. by the NV of the pure qubit state, i.e., ρ ρ≤ = −ˆ ˆV V( ) ( ) (2/ 3 1)i
q

p
q 1

2
, one finally 

obtains
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