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Achieving acoustic topological 
valley-Hall states by modulating 
the subwavelength honeycomb 
lattice
Zhiwang Zhang1, Ying Cheng1,2 & Xiaojun Liu  1,2

Topological valley-contrasting physics is attracting increasing attention because of its potentials as 
a promising information carrier in electrics and classical systems. In this work, we reveal the valley-
Hall effect and the valley projected edge states in two-dimensional sonic crystals with modulated 
acoustic honeycomb lattice. The sonic crystals are arranged by soft-material rods and thereby in a 
sub-wavelength scale, of which the lattice constant is only 0.267 times the wavelength and can be 
modulated to almost 0.1 times the wavelength. The degenerated valley states are lifted by breaking the 
inversion symmetry through introducing the refractive-index difference to the rods. The unidirectional 
excitation of valley chiral bulk state and the non-diffracting Bessel beams are realized by sources 
carrying orbital angular momentum with proper chirality. Furthermore, we demonstrate that the sub-
wavelength valley creation can also be achieved by embedding modulated rubber rods with the mingled 
steel in a water background, which has significant potential in hydroacoustics, such as underwater 
communications, sound trapping and directional radiation.

The valley degree of freedom1–9, labelling quantum states of energy extrema in momentum space, is attract-
ing growing attention because of its potential as a new type of information carrier. As a result, the concept 
of valleytronics is proposed1,2,9 and many interesting phenomena have been achieved, such as valley selec-
tive excitation10–12, valley-Hall effects2,7 and topologically protected edge states4,6. Inspired by this concept, 
valley-contrasting physics has been theoretically proposed and experimentally observed in photonics13–19 and 
classic airborne acoustic systems20–31. The vortex nature of valley states and the topological valley transport in 
sonic crystals (SCs) were firstly revealed by Lu et al.20–22, in which the C3v symmetry was broken through tun-
ing the orientation of the triangular rod. The topological acoustic delay line based on the reconfigurable topo-
logical valley projected edge states (TVPES) has been experimentally observed23. The topological valley-Hall 
phases in a two-dimensional periodic acoustic resonator system was proposed by Yang et al.24. Recently, the 
valley-contrasting physics in non-Hermitian systems has been discussed in the artificial acoustic boron nitride25. 
Besides the above valley states in a monolayer SC, the layer-mixed and layer-polarized topological valley-Hall 
phases in a bilayer SC have also been demonstrated26. Here, we propose an approach to achieve valley topological 
phases in the SC with deep-wavelength scale, in which the lattice constant can be modulated to almost 0.1 times 
the wavelength. And we also propose the corresponding realization possibility in 2D underwater acoustics, which 
is essential for various applications.

In this work, we demonstrate that valley-like frequency dispersion can be achieved in a honeycomb SC32,33 
composed of cylindrical soft-materials rods embedded in air with a sub-wavelength lattice constant, which is only 
0.267 times the wavelength. The degenerated valley pseudospin states are lifted by breaking the inversion symme-
try through modulating the refractive indices of the unit cells of honeycomb lattice. We also demonstrate that the 
selected excitation of the valley bulk sates can be obtained by using the circular chiral sources with different polar-
izations, based on which the triple Bessel beams can be achieved. Topological valley-Hall phase transition and 
corresponding TVPES are clearly observed. Furthermore, we reveal that identical phenomena can be observed 
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using the rubbers embedded in water, of which the inversion symmetry is broken through modulating rubber 
rods with the mingled steel. Our work paves the way towards the application possibility of topological acoustic 
functional devices in topological acoustics, such as acoustic communications and detection.

Results
Valley states in the modulated acoustic honeycomb lattice with sub-wavelength lattice con-
stant. Firstly, we start from the regular acoustic honeycomb lattice [left panel of Fig. 1(a)] composed of iso-
tropic rods embedded in an air background. The lattice constant a = √3 cm and the radius of the rod r = 0.36 cm. 
The velocity and density of air are cair = 344 m/s and ρair = 1.21 kg/m3, respectively. The effective refractive index of 
the rod made of soft materials is defined as = = .n 3 42n

n
R

air
, in which nR and nair represent the refractive indices of 

the rods and the background air, respectively. Note that we can also employ various different indices by configur-
ing the geometric parameters of the units as shown below. In reality, to achieve this kind of soft acoustic metama-
terial, the use of rubber or silica aerogel has been examined theoretically and experimentally34. On the other hand, 
the acoustic pentamode metamaterials can also be a promising candidate, whose effective shear modulus is 
extremely small compared to its effective bulk modulus35,36. It has been proved32 that the valley states appear as 
long as the refractive index satisfies the condition of n ≥ 2. Due to the preservation of the inversion symmetry, the 
single Dirac cone37 appears at the corners of the 1st Brillouin zone (BZ) with the frequency of 0.267 c/a, which is 
labeled by red dashed curves as shown in Fig. 1(b). Here c is the sound velocity in the background. Then, we 
demonstrate that the perturbation of the system can be achieved through breaking the inversion symmetry by 
modulating the refractive indices of the rods. As shown in the right panel of Fig. 1(a), the refractive-index differ-
ence of two rods in the unit cell, which can be defined as Δ = −n n n( )/2A B  with = + Δn n nA  and = − Δn n nB , 
is introduced. Owing to the inexistence of the inversion symmetry when introducing Δ = .n 0 2, the degenerated 
valley states are lifted to open a bulk band gap ranging from 0.254 to 0.279 c/a, as shown in Fig. 1(b). Two pairs of 
valley sates exist at the K and K′ points, which possess the intrinsic circular polarized orbital angular momentum. 
To get an understanding of the physical picture, the distributions of phase and the sound intensity of four valley 
states are illustrated in Fig. 1(c). The circular propagations of the sound intensity can be viewed as the pseudos-
pins, which are left-handed circular polarized (LCP) and right-handed circular polarized (RCP), respectively. At 
the K point, the acoustic vortex chirality is RCP (LCP) at the higher (lower) state [left panel of Fig. 1(c)]. The 
counterparts at the K′ valley possess invariant vortex but opposite chirality because of the time-reversal symmetry 
[right panel of Fig. 1(c)].

Bessel beams achieved by the selective excitation of the inequivalent valley states. In order to 
carry information through the valley degree of freedom, the key step is to identify and separate the inequivalent 
valley states. We demonstrate that the selected excitation of the valley bulk sates can be achieved by external 

Figure 1. Valley states in the modulated acoustic honeycomb lattice. (a) Schematic of the SC (lower panel) and 
the unit cell composed of two rods embedded in air (upper panel). (b) Dispersion relations of the acoustic 
modes with Δn = 0 and Δn = 0.2. The symbols K1, K2, ′K1 and ′K2 denote the valley states. (c) The phase patterns 
of four valley states. The black arrows show the direction and amplitude of the intensity.
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point-like chiral source with proper chirality. For example, the lower valley state at the K point with LCP vortex 
chirality [labeled as K1 in Fig. 1(c)] can be excited by the point-like chiral source with LCP vortex chirality, as 
shown in Fig. 2(a). This point-like source consists of a deep sub-wavelength circular array of eight identical point 
sources with the phase lag π/4, of which the phases decrease clockwise. As shown in Fig. 2(b), the LCP chiral 
source is placed at the center of a hexagon SC with Δn = 0.2, by which the K1 valley state is excited at the fre-
quency 0.254 c/a and is out-coupled to the background with nback = 1.76. We demonstrate that the direction of the 
outgoing beam into background depends on the type of excited valley (K or K′). By matching the parallel compo-
nent of the incident wavevector on to the equifrequency curve of the background, the propagation direction of 
the radiated beam can be determined. For simplification, we take the left two sides of the hexagon SC for example, 
as shown in Fig. 2(c). The theoretical radiation angle can be quantitatively determined by the phase-matching 
condition ⋅ = ⋅k e eKside side, in which k and K represent the wave vectors in the free space and K valley state, 
respectively; eside is for the base vector along the side. Thus, the radiated directions out-coupled from these two 
sides can be decided by the two purple arrows as shown in Fig. 2(c), of which the theoretical angle is θ1,2 = ±18.23° 
with the frequency 0.254 c/a. Two radiative plane beams interference with each other and generate a 

Figure 2. Bessel beams achieved by the selective excitation of the inequivalent valley states. (a) Zoomed-in 
schematic (left panel) and radiated pressure fields in free space (right panel) of the LCP chiral source. (b) 
Distributions of the absolute pressure fields of the triple non-diffracting Bessel beams excited by the central 
LCP source. White rhombuses represent the BFZ. (c) k-space analysis on the formation of the left BFZ labeled 
as the solid white rhombus in (b). Black solid hexagon represents the 1st BZ and the black dashed circle shows 
the dispersion in background. Shadow region represents the SC, of which the cyan lines are for the interfaces. 
Purple arrows represent the radiation angles out of the SC. (d) Phase patterns of the K1 valley state in the SC 
when applying the LCP chiral source. (e)–(h) Corresponding analysis on the formation of BFZ by using the 
RCP chiral source.
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non-diffracting Bessel beam radiating towards leftmost corner (θ = 0°), of which the explanation is discussed in 
Supplementary Material Note 1. Similarly, other two Bessel beams can be obtained at the upper-right and 
lower-right corners. The superposition zone is the Bessel formation zone (BFZ) as labeled by the white rhombus 
in Fig. 2(b). The phase pattern in the SC shown in Fig. 2(d) further verifies that the K1 valley state is excited by 
point-like chiral source with LCP vortex chirality as same as that in Fig. 1(c). The comparison with the BFZ 
formed by two plane waves is discussed in Supplementary Material Note 2. Note that when the vortex chirality of 
the source is changed to RCP at the same frequency as shown in Fig. 2(e), the ′K1 valley state is excited and three 
BFZs are formed at the rightmost, upper-left and lower-left corners (Fig. 2(f,g)). Figure 2(h) illustrates the phase 
pattern in the SC excited by the source with RCP chirality.

Topological bands inversion. The intersection of two different pseudospin valley states takes place in the 
existence of the inversion symmetry with Δn = 0. We demonstrate that the vortex chirality of each valley state is 
inverted when the refractive index changes from Δn < 0 to Δn > 0, as shown in Figs 1(c) and 3(a). Figure 3(b) 
shows that the eigenfrequency of pseudospin valley states separates the band gap at the K point as a function of 
Δn. The green circles and the purple triangles correspond to the RCP and LCP modes, respectively. The band gap 
is marked with different colors to indicate their different topological characteristics, which are labeled as regions 
I and II, respectively. The topological invariant is described by the non-vanishing valley Chern indices6,22,23,38 

= ± × Δ′2C 1 sgn( )P
(K,K ) . Here ΔP characterizes the geometrical perturbation induced by Δn and its sign 

depends on the sign of Δn. As a result, The valley indices of structures I and II are = −CI
K 1

2
, =′CI

K 1
2

, =CII
K 1

2
 

and = −′CII
K 1

2
. In the setup where the C3 symmetry is preserved while the inversion symmetry is broken, there 

is a mass term in the effective Hamiltonian, which can be also considered as the perturbation strength ΔP. The 
topological valley projected edge modes propagate in the presence of domain walls where the mass (ΔP) changes 
sign. Therefore, the interface with different sign of Δn will support the backscattering-immune transmission. As 
shown in Fig. 3(c), for interface of type I−II labeled by red circles, of which the structure I is on the top and the 
structure II is on the bottom, there should be a forward-moving edge state at K′ point due to 
Δ = − =−

′ ′ ′C C C 1I II
K

I
K

II
K , and a backward-moving edge state at K point with Δ = −−C 1I II

K . The modes of edge 
states along the interface of type II−I can be achieved accordingly. Figure 3(d) shows the real-space pressure 
distributions of the edge states at the typical momenta around the K point [labeled as the gray dashed frame in 
Fig. 3(c)] with kx = 0.4 × 2π/a.

Figure 3. Topological bands inversion. (a) Corresponding valley states at the K point with refractive-index 
difference Δn = −0.2. (b) Eigenfrequency evolution of the two valley states depending on Δn at the K point. 
The yellow and cyan regions show two different valley-Hall phase, labelled as I and II. (c) Dispersion relation 
of the ribbon-shaped SC with different interfaces (I−II and II−I) comprised of 10 cells on each side. (d) 
Distributions of the total pressure fields at the interfaces shown as the dashed gray frame in (c).
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Topological valley projected edge states. We further construct a SC in a finite 20a × 20a lattice to 
verify TVPES and its robustness against the curved defects. For the SC composed of the structures with single 
valley-Hall phase, such as Δn > 0, sound waves excited by the source at the frequency 0.262 c/a, which is in 
the band gap, cannot propagate into the SC at all as shown in Fig. 4(a). However, when the straight interface of 
type I−II is introduced as shown in Fig. 4(b), sound waves projected by K′ valley are localized in the vicinity of 
the interface and decay exponentially away from it, proving that the bulk region is insulating due to the pres-
ence of band gaps therein. Figure 4(c) shows a negligible reflection of TVPES with two sharp 60°-bends, which 
verifies that sharp turns induce very little backscattering. The simulated sound transmission spectra of these 
three situations within the topological band gap are illustrated in Fig. 4(d), which shows the ~40 dB transmission 
enhancement of the edge states (black dashed curves) as compared with that of the bulk sate (blue dotted curves), 
and the robustness of TVPES is verified in the whole band gap. Note that the lattice constant can be tuned into 
much smaller scale, such as 0.094 times the wavelength, through modulating the refractive indices of the rods 
(Supplementary Material Note 3).

Topological creation in a rubber-in-water acoustic system. The above discussions aim to propose 
a universal theoretical method to achieve TVPES by modulating the refractive indices of the materials, which 
has been demonstrated in airborne sound. Finally, we also illustrated the corresponding realization possibility 
of valley-Hall states in underwater acoustics in the same way. Figure 5(a) shows the schematic of the SC com-
posed of rubber rods embedded in water. To break the inversion symmetry, the steel rods is mingled with the 
rubber to modulate the refractive indices as shown in Fig. 5(b). The mass densities for water, rubber and steel are 
ρwater = 1000 kg/m3, ρrubber = 1300 kg/m3 and ρsteel = 7670 kg/m3, respectively. The longitudinal wave velocities in 
water, rubber and steel are cwater = 1490 m/s, crubber = 489.9 m/s and csteel = 6010 m/s, respectively. The radius of the 
mingled steel rod is labeled as r′. Other parameters are identical with those in Fig. 1(a). Considering the strong 
mismatch between the longitudinal velocities in these media, the shear wave modes are ignored39, which does not 
affect the topological properties of the system as discussed below. As illustrated in Fig. 5(c), the steel is mingled 
into atom B but not into atom A with r′B = r/4, through which the Dirac cone is broken and valley pseudospin 
states are obtained. Although the dispersion relations are identical when the steel is mingled into atom A but not 
into atom B with r′A = r/4 as shown in Fig. 5(d), the inversion of the pseudospin valley states can be observed 
from the reverted phase patterns of identical valley states. To verify the backscattering-free transmission and 
the robustness of TVPES against defects in this underwater structure, a point source with at the frequency of 
0.322 c/a, which is within the band gap, is placed at the left termination of the straight interface shown in Fig. 5(e) 
and the curved interface shown in Fig. 5(f). The results demonstrate the existence of the robust topological edge 
states, which reconfirm the above modulation theory. The valley-Hall phases achieved by introducing radius dif-
ference to a rubber-in-water acoustic system are discussed in Supplementary Material Note 4.

Figure 4. Topological valley projected edge state and its robustness. Distributions of the absolute pressure fields 
(a) through the single-type SC without interface, (b) of edge states along the straight interface and (c) along the 
curved path. (d) Simulated transmission spectra of topological edge states and bulk state.
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Discussion
In this work, we have demonstrated a universal theoretical method to achieve subwavelength topological 
valley-contrasting physics. When the inversion symmetry is broken through introducing the refractive-index dif-
ference to a regular acoustic honeycomb lattice, the chiral valley states are achieved. We demonstrate the selected 
excitation of the valley bulk sates and the triple Bessel beams achieved by external point-like chiral source with 
proper chirality. The Bessel beams have significant potential in developing highly directed and concentrated 
energy transmission, near-field imaging systems, medical targeting devices and trapping micro-particles40. The 
topological valley phase transition is caused by the non-vanishing valley Chern indices, which ensures the exist-
ence of the topological valley-projected edge states. Finally, to verify the generality of the topological creation, we 
demonstrate that the subwavelength valley-contrasting physics can be also obtained in rubber-in-water system, 
which have good potential to be used to design underwater delay lines23,41 and to radiate directional beam19,30. 
Our results provide the great possibility to the applications of the topological acoustics in communications, med-
ical science and military.

Methods
Effective Hamiltonian and the valley-Chern indices. The effective Hamiltonian ⊥kH( ), which is a func-
tion of the in-plane wavenumber, can be expressed in the basis of the RCP/LCP states in close proximity of the K 
and K′ points of the BZ. Derived from the k·P theory, the unperturbed Hamiltonian δ≡⊥ kkH( ) H ( )0  near the 
Dirac points can be described as δ δ σ δ σ= +( )k v k kH ( ) x x y y0 D , where vD is the group velocity, δk = (δkx, 
δky) ≡ k⊥ − kD is the distance from the Dirac points, and σi(i = x, y) are Pauli matrices of the vortex pseudospins. 
Furthermore, we introduce the perturbation by modulating the refractive indices or the size of rods. The pertur-
bation matrix is diagonalized: ω σ= ΔHP D P z. We can obtain the band structure of the perturbed system by calcu-
lating the eigenfrequency Ω(δk) ≡ ω(δk) − ωD of the matrix equation δ Ψ δ Ψ≡ Ωk kH( ) ( ) , in which = +H H HP0 . 

Figure 5. Topological creation in a rubber-in-water acoustic system. (a) Schematic of the SC composed of 
rubber rods embedded in water, which are mingled with steel to tune the refractive indices. (b) Enlarged view 
of the unit cell. Corresponding dispersion relations of the SC with (c) r′A = 0, r′B = r/4 and (d) r′A = r/4, r′B = 0. 
Insets: valley-Hall phase inversion underlying the transition between pseudospin states. Distributions of the 
absolute pressure fields of edge states along the (e) straight path and (f) curved path.
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The sign of perturbation strength ΔP depends on the sign of Δn and Δr. The nontrivial topological properties of 
the modes can be characterized by the non-vanishing valley-Chern indices. By definition, 

∫ δ δ= ∇ × πδC d k A k[ ( )]/2v
v k

( )
BZ( )

2  with the local Berry connection δ δ δ= − ψ ⋅ ∇ ψ†A k kk i( ) ( ) ( )v k v , where v = K, 
K′ is the BZ corner. The integral of Berry curvature over the full BZ is zero with Chern number C = 0, which is 
required by time reversal symmetry. However, for small perturbation ΔP the Berry curvature is strongly peaked 
at the gap minima near K and K′. As a result, BZ(v) is one half of the Brillouin zone. The integral of Berry curva-
ture over an individual valley is accurately defined and the non-vanishing valley-Chern indices can be deter-
mined by = ± × Δ′2C 1 sgn( )P

(K,K ) .

Simulations. Numerical simulations were implemented using COMSOL Multiphysics, a finite-element anal-
ysis and solver software. The simulations were performed in the Pressure Acoustic module including the detailed 
microstructures with actual geometric dimensions. The largest mesh element size was lower than 1/10 of the 
shortest incident wavelength. Perfectly matched layers were imposed on the exterior of the air domain to elimi-
nate interference from the reflected waves. Cylindrical wave radiation was imposed to achieve the Bessel beams 
in Fig. 2.

Data Availability
The data that support the findings of this study are available from the corresponding author on request.
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