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A proxy-year analysis shows 
reduced soil temperatures with 
climate warming in boreal forest
Md Abdul Halim1,2 & Sean C. Thomas1

Scientists unequivocally agree that winter air temperature (TA) in northern high latitudes will increase 
sharply with anthropogenic climate change, and that such increases are already pervasive. However, 
contrasting hypotheses and results exist regarding the magnitude and even direction of changes in 
winter soil temperature (TS). Here we use field and satellite data to examine the ‘cold soil in a warm 
world’ hypothesis for the first time in the boreal forest using a proxy year approach. In a proxy warm 
year with a mean annual temperature similar to that predicted for ~2080, average winter TS was reduced 
relative to the baseline year by 0.43 to 1.22 °C in open to forested sites. Similarly, average minimum 
and maximum winter TS declined, and the number of freeze-thaw events increased in the proxy warm 
year, corresponding to a reduction in the number of snow-covered days relative to the baseline year. 
Our findings indicate that early soil freezing as a result of delayed snowfall and reduced snow insulation 
from cold winter air are the main drivers of reduced winter active-layer TS (at ~2-cm depth) under 
warming conditions in boreal forest, and we also show that these drivers interact strongly with forest 
stand structure.

Anthropogenic climate change is predicted to increase global average air temperature (TA) 1.4–5.8 °C by 2100, 
with substantially higher increases in winter TA in northern high latitudes1 and concomitant effects on the tim-
ing, form, and amount of precipitation1,2. In northern high latitude ecosystems (boreal forests and tundra) that 
occupy ~22% land area and store ~40% soil carbon globally3, soil temperature (TS) may respond differently than 
TA due to the decoupling effects of snow cover4,5. Snow manipulation experiments have indicated large impacts of 
snow cover on TS regimes and responses of soils and vegetation2,6,7. Changes in freeze-thaw events (FTEs) are of 
particular concern2, posing an “agent of surprise”8 in the functioning of northern ecosystems, with large potential 
effects on root mortality9, post-winter sapling survival7, soil nutrient losses10, soil microbial activities11,12, and the 
stability of stored carbon13,14.

TS data, particularly under field conditions, are scarce compared to TA
4, and climate-model-prediction sce-

narios have typically only been developed for TA
5. Several snow manipulation studies2,15,16 have suggested that in 

a warmer world soils during winter months may be colder as a result of decreased and delayed snow insulation. 
In contrast, most simulation models4,5,17 have predicted a rise in TS in warm climates, as a synergistic effect of 
increased TA and reduced snowfall, though a few models18,19 do suggest that climate warming could reduce TS 
under some conditions. TS measurements in high latitude ecosystems have commonly been made at a depth of 
≥10 cm, but the soil is most responsive and biologically active above 10 cm soil depth10,20. Contradictory model 
predictions indicate that TS sensitivity to climate change is not well understood18, and a lack of data to test alter-
native models has been noted10.

Here we provide a first test of the ‘cold soil in a warm world’15 hypothesis in the boreal forest using a proxy 
year approach, making use of recent climate variability to compare TS patterns between a proxy baseline year 
(YB) and a warm future year (YW) (Fig. 1). We used soil and micrometeorological tower sensor data from study 
plots distributed in open, partially forested, and forested sites in a mixedwood boreal forest in northwestern 
Ontario, Canada. Snow cover durations were inferred from diurnal TS patterns and confirmed using synthetic 
high-resolution imagery (fusing MODIS and Landsat 8 data).
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Results
Field measurements (Fig. 2) and secondary data (Fig. 1) indicate that YW successfully represented a warm future 
year in the northern high latitude ecosystems. Consistent with climate model predictions, differences in winter TA 
between YW and YB were particularly large: average winter TA in open, partially forested, and forested sites were 
6.58 °C, 9.17 °C, and 9.46 °C higher (p < 0.05), respectively, in YW than those in YB (Fig. 2).

Sensor data indicate that average winter TS were significantly lower in YW compared to YB (Fig. 3a). In open, 
partially forested, forested sites, respectively, average TS in YW was 0.43 °C, 1.22 °C, and 1.13 °C lower (p < 0.01) 
in YW than those in YB. Average minimum and maximum winter TS also showed similar patterns under all site 
conditions (Supplementary Results and Fig. S5a). The differences in average spring TS between YB and YW were 
not as consistent (Fig. 3b). In YW they were 1.54 °C lower (p < 0.01) in partially forested sites, but marginally 
higher (0.12 °C, p = 0.38) in open sites, and lower (0.34 °C, p = 0.2) in forested sites than those in YB. In YW average 
spring minimum TS were consistently lower and maximum TS showed similar patterns as mean TS compared to 
YB (Supplementary Results and Fig. S5b). Overall seasonal patterns in mean and average minimum/maximum 
TS in different site conditions throughout YB and YW are presented in Supplementary Figs S4 and S6, respectively.

Snow cover started earlier and lasted longer in YB than in YW. TS-based snow cover estimates show that in 
YB snow started on average 18, 22, and 23 days earlier (p < 0.01) in open, partially forested, and forested sites, 
respectively, than in YW. Likewise, in YB snow ended generally on average 3, 16, and 9 days later in open, partially 
forested, and forested sites, respectively, than in YW. TS and satellite-based estimates of snow start/end dates 
agreed well with each other with some year- and site-specific variations (Supplementary Table S3). Satellite-based 
snow start dates for YB were 2–14 days later than TS-based estimates, which were 3, 10, and 9 days earlier in open, 
partially forested, and forested sites, respectively, for YW. Snow end dates had the least disagreement of only 
±1 day for both years across all site conditions (Fig. 2). TS-based snow cover duration (SCDST) estimates suggest 
that SCDST in YB were 48, 49, and 51 days longer (p < 0.01) in open, partially forested, and forested sites, respec-
tively, than those in YW (Fig. 3c). The number of FTEs was substantially higher in YW compared to YB (Fig. 3d), 
increasing by 53% (p = 0.86), 657% (p < 0.01), and 69% (p = 0.07) in open, partially forested, and forested sites, 
respectively.

Discussion
YW average winter TS at 1–2 cm depths were, depending on site conditions, 0.43–1.22 °C lower than those in YB 
(Fig. 3a). This result clearly supports the ‘cold soil in a warm world’ hypothesis in the boreal forest context. Snow 
manipulation studies2,15,16 and model results18,19 in other ecosystems have also found evidence in support of this 
hypothesis. Although studies have predicted a rise in spring TS

5,17, our data suggest that YW average minimum 
TS was 0.45–1 °C lower compared to YB with a considerable reduction in magnitude with increasing Leaf Area 
Index (LAI) (open to forested sites). In contrast, spring mean and maximum TS did not exhibit any consistent 
pattern (Fig. 3b and Supplementary Fig. S5b). The opposite pattern in spring minimum and maximum TS and the 
number of days with daily average TS ≤ −5 °C (Fig. 3d), corresponds to a higher frequency of FTEs in YW than in 
YB. This effect was more pronounced in forested sites than in open sites. Climate-warming-induced spring FTEs 
have been suggested by other studies5,10. Cold winter soil and frequent FTEs in warm future years are likely to 

Figure 1. Local TA anomalies compared against the HadCRUT4 northern hemisphere (NH) anomalies to 
establish proxy years. A polynomial regression curve (solid black line) (with standard errors in grey shading) 
is fitted to the annual HadCRUT4 data (baseline 1961–1990) (blue circles) to show a general anomaly trend for 
NH over the 21st century. YW (December 2015–November 2016) local annual and seasonal anomalies (orange 
circles) (with standard deviations) are significantly higher (p < 0.01) than those for NH and YB (December 
2013–November 2014). YB local anomalies are not significantly different than NH anomalies, thus are not 
presented here.
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substantially impact terrestrial plants and microorganisms8. Winter soil freezing can adversely affect tree growth 
and functioning21 and alter soil carbon dynamics11,12. FTEs have also been reported to increase nitrogen miner-
alization in high-latitude ecosystems11,12.

Snow cover and its interaction with forest stand structure were the major drivers of TS differences between 
YW and YB in the present study. Early soil freezing events were associated with delayed snowfall in YW (Fig. 2). 
Likewise, reduced SCDST (by 48–51 days) (Fig. 3c), higher relative humidity (RH) (5.55–9.15%; indicative of high 
latent heat from melting snow) (Fig. 2), and data from nearby weather stations22 (maximum snow thickness and 
total precipitation in winter and spring were ~40 cm and 190.5 mm, respectively, in YW and were ~100 cm and 
165.3 mm, respectively, in YB) imply that reduced insulation from thinner or less spatially continuous snow cover 
decreased TS

2,6,15 in YW compared to YB. It is also evident from Fig. 2 that TS in YW was tracking TA more closely 
than in YB

2. Higher forest cover was associated with an increased magnitude of differences in TS and number of 
FTEs between YW and YB (Figs 2 and 3a,b,d). It is likely that in YW with a shallower snowpack tree stems and other 
vegetation cover reduce TS by creating small pockets in the snowpack that allow penetration of cold air into the 
subnivean space, increasing FTE frequency by a ‘tree well effect’23,24.

Figure 2. Daily mean TS, TA, and RH under different site conditions in YB and YW. Daily mean TS and TA/RH 
values are calculated from hourly data of 5 plots each with 8–9 sensors and one sensor, respectively. (a–f) show 
how TA/RH is related to TS with respect to snow start/end dates estimated from both satellite (synthetic Landsat 
images by fusing MODIS and Landsat 8 data) and TS data. For simplicity error estimates of the daily mean 
values are not shown (see Supplementary Fig. S7 for daily mean TS error estimates).
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‘Proxy year’ or ‘analog year’ approaches have been widely used to examine potential effects of climate change 
on hydrology and agriculture, but only recently applied to ecological processes25. This approach allowed us to test 
the ‘cold soil in a warm world’ hypothesis for the first time in the boreal forest by realistically simulating compos-
ite effects of future climate warming8. Although we found reduced TS at shallower depth under warming condi-
tions, the findings are still consistent with projected long-term warming in the deep soil. TS at shallower depths 
are prone to rapid changes modulated by soil moisture and insulating effects of snow, litter, and vegetation26, 
while deep soils respond to the integrated transfer of thermal energy. Because of soil’s high thermal capacity and 
low heat conductivity, diurnal/seasonal TS changes attenuate with increasing depth and lag considerably behind 
those of shallower soils. Studies have found the usual soil frost depth is ~15 cm in high-latitude ecosystems27. We 
thus can assume the ‘cold soil in a warm world’ effect is limited to a similar depth. Since carbon in boreal forest 
soils is primarily stored in the uppermost soil horizons and organic layer28, wintertime reductions in surface TS 
might create a negative climate feedback by reducing soil heterotrophic respiration6,12. By assuming simple linear 
relationships between TA and TS, most existing models will miss this feedback and likely over-estimate warming 
effects on soil C loss. Conversely, increases in FTE are predicted to negatively affect boreal forest regeneration 
and productivity, which could constitute a positive climate feedback. The insights from our study are thus an 
important input to development of credible predictions of climate-induced TS change at shallow soil depths that 
are most important to carbon processes in high-latitude ecosystems14.

Figure 3. TS, snow cover duration, and number of freeze-thaw events in different site conditions in YB (open 
circles) and YW (closed circles). (a,b), average winter (December–February) and spring (March–May) TS, 
respectively, in YB and YW. Average summer and fall TS along overall seasonal TS trends for each year are 
presented in the Supplementary Fig. S4. (c), mean snow cover duration for each year estimated from daily TS 
ranges and maximum values. (d), average number of freeze-thaw events for each year. Each data point (with 
standard error) in (a,b) is calculated from monthly means over the season, and in (c,d) is calculated from daily 
TS data of 5 plots each with 8–9 sensors.
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Methods
Study area. Chronosequence plots were established in the boreal forest of northwestern Ontario, Canada 
~200 km north of Thunder Bay and 100 km south of Armstrong. Three 10-m radius circular plots (314.15 m2) 
were established in each of two post-fire (fires occurred in 1998 and 2006) and three post-harvest (harvested in 
1998, 2006, and 2013) stands (Supplementary Fig. S1); microenvironmental measurements were made from July 
2013 until June 2017.

The study area is generally flat with an average elevation of 416 m a.s.l. The soil in this area is a moderately deep 
Brunisol (coarse loamy texture) with organic layer thickness (LFH) 1–25 cm29 and average pH ~5.3. The growing 
season for this area varies from 110–120 days29. Climate normals for annual temperature and precipitation (meas-
ured at Armstrong), and snow depth (measured at Thunder Bay) are –1.1 °C, 738.4 mm, and 9 cm, respectively. 
Mean annual daytime and nighttime windspeeds, measured at Armstrong at 10 m aboveground over the study 
period, were 0.7 ms−1 (maximum 1.2 ms−1) and 0.4 ms−1 (maximum 1 ms−1), respectively22.

The study area is a mixedwood boreal forest characterized by trembling aspen (Populus tremouloides Michx.), 
black spruce (Picea mariana (Mill.) BSP), white spruce (P. glauca (Moench) Voss), jack pine (Pinus banksiana 
Lamb.), eastern white cedar (Thuja occidentalis L.), balsam fir (Abies balsaema (L.) Mill.), and paper birch (Betula 
papyrifera Marsh.). Stand structural attributes are presented in Supplementary Table S1.

Instrumentation and measurements. Plots were established in locations with at least 1 ha of identical 
disturbance (either harvest or fire) of similar age-class and were at least 1 km away from each other and from any 
water body. We used fire maps (obtained from the Ontario Ministry of Natural Resources) and forest manage-
ment plans (obtained from Resolute Forest Products) to collect information about the forest management history, 
disturbance type, and stand age in aiding the selection of plot locations.

At the center of each plot a micrometeorological tower was set up to measure air temperature (TA) and rela-
tive humidity (RH) every hour at 1.5 m height from the ground (data collected using a LogTag HAXO-8; range 
(TA/RH): –40 to +85 °C/0 to 100%; minimum accuracy (TA/RH): ±0.5 °C/0.1%). Additionally, we installed nine 
soil temperature (TS) sensors (LogTag TRIX-8) in each plot at ~1–2 cm soil depth (following the guidelines of 
Lundquist and Lott24), which recorded measurements at hourly intervals (Supplementary Fig. S2). The sensors 
used are rated by the manufacturer from –40 to +85 °C with a minimum accuracy: ±0.5 °C; in lab calibration 
trials we found the RMSE to be ±0.11 °C in the range –10 to 35 °C (see Supplementary Texts for accuracy reports 
on this sensor). Each TS sensor was sealed in thin (0.09 mm) waterproof plastic film and was placed at least 
50 cm away from tree trunks. Sensor locations were recorded as bearings from the center of the plot and marked 
with flagging stakes. Microclimatic data were collected annually in summer, and any compromised sensors were 
replaced.

Leaf Area Index (LAI) was determined using hemispherical photographs (HPs) taken with a Nikon CoolPix 
4500 (4 Megapixels) camera with a Nikon FC-E8 fisheye converter (angle of view 183°) mounted on a tripod. 
Except in 2013, summer and winter HPs were taken each year in early July and late September/October, respec-
tively, in three equally spaced locations within each plot at 1 m above ground as shown in Fig. S2. Exposure 
settings and analysis of HPs, using Gap Light Analyser30, were done as per the guidelines of Zhang et al.31. The 
average of the three LAI-4 (LAI estimated over zenith angle 0–60°) values was used as the LAI for a plot in a given 
season/year.

Stand density was measured every year as the number of trees (diameter at breast height ≥5 cm and height 
>1 m) within each plot and converted to stems/ha. Heights (m) of these trees were measured every year using a 
Suunto PM-5 Clinometer. Similarly, litter depths (mm) were measured using a ruler in locations adjacent to each 
soil temperature sensor within each plot. We set up four 1-m2 subplots within each plot and visually determined 
the percent cover of ground-layer vegetation every year (Supplementary Fig. S2).

Proxy year establishment. Proxy baseline (YB) and future warm (YW) years were determined by compar-
ing local (study area) TA anomalies with the northern hemisphere (NH) anomalies. The HadCRUT4 NH monthly 
TA anomaly data32 over 1840–2017 were used for this purpose. A simple polynomial regression curve was fitted to 
the annual NH TA anomaly data to show a general trend over the 21st century (Fig. 1). The GHCN-D (v2) (Global 
Historical Climatology Network - Daily data) daily average TA data33 for weather stations around the study area 
(48°–50° N and 88°–90o W) were analysed via the KNMI Climate Explorer (https://climexp.knmi.nl) platform 
to calculate local monthly TA anomalies with respect to the 1961–1990 baseline year (since HadCRUT4 anomaly 
data are also based on 1961–1990).

Results from a one-way ANOVA with robust estimation indicated that December 2013–November 2014 had 
the lowest annual TA anomaly among the years over the study period (2013–2017) and did not differ significantly 
(p = 0.11) from NH average annual anomaly. December 2015–November 2016, however, had the highest TA 
anomaly for all seasons over the study period and the annual TA anomaly was significantly higher (p < 0.01) than 
the NH average annual anomaly (Fig. 1). These years are representative of the historical baseline years and pro-
jected warm future years. So, for this study, we chose December 2013–November 2014 as the YB and December 
2015–November 2016 as the YW.

LAI-based site categorization. To assess the generality of the ‘cold soil in a warm world’ hypothesis in 
different site conditions, we classified plots based on their LAI values as: ‘open’, ‘partially forested’, and ‘forested’. 
K-means clustering algorithm was used to determine the LAI cluster centers; lowest center value was assigned to 
‘open’, medium value to ‘partially forested’, and highest value to ‘forested’. The LAI cluster center for the summer 
was 0.05 in open, 0.72 in partially forested, and 1.36 in forested sites. The winter LAI cluster center was 0.05 for 
open, 0.42 for partially forested, and 0.79 for forested sites.

https://climexp.knmi.nl
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TS-based snow cover duration (SCDST). To determine snow cover duration (SCDST) from TS for each 
sensor in each plot, hourly sensor data were converted to daily TS ranges (ΔTS = daily maximum TS – daily min-
imum TS). If ΔTS remained ≤1 °C over 48 hours and the daily maximum TS was <2 °C, we considered ‘snow 
present’ for that day. The resulting daily snow present/absent time series were checked against TS sensor data and 
snowfall event data from nearby Armstrong airport weather station to ensure prediction quality. A number of 
studies24,34,35 have successfully used similar algorithms to determine SCDST.

TS, TA, RH, SCDST, and freeze-thaw events (FTEs) data analysis. Hourly sensor data were first con-
verted to daily mean, minimum, and maximum values that were then used to calculated plot-wise monthly mean, 
minimum, and maximum TS/TA/RH for each sensor. Plot-wise seasonal mean TS, average minimum and maxi-
mum TS, and mean TA/RH for each sensor were calculated from monthly data. Seasons in this study were defined 
as: winter (December–February), spring (March–May), summer (June–August), and fall (September–November).

The frequency of freeze-thaw events (FTEs) for each year in all site conditions were calculated as the number 
of days with daily average TS ≤ −5 °C (there was no more than 1 FTE per day). Instead of using TS < 0 °C, we 
choose −5 °C because studies have found that at TS ≤ −5 °C soil microbial activities are inhibited substantially in 
high-latitude ecosystems11.

Site-specific differences in TS, TA, RH, SCDST, and FTE between YB and YW were tested using linear mixed 
effect (LME) models. For comparison of TS we focused both on mean and minimum/maximum values, because in 
projected future warm years maxima/minima of the extreme climate events can have more serious consequences 
for plants and microorganisms than changes in projected mean values1. In LME models, sensor replications 
nested within each plot were considered random effects, and proxy year and site conditions (and their inter-
actions) were considered as main effects. Dependent variables (TS, TA, RH, SCDST, FTE) were log-transformed 
where necessary to meet the residual normality assumption of LME models. All analyses were preformed using 
the R language platform36.

Snow cover duration from satellite data (SCDS). Remote sensing assessments of snow cover duration 
in spatially heterogeneous sites require high-resolution spatiotemporal satellite data. None of the freely availa-
ble satellite images meet this resolution requirement; for example, the MODIS (Moderate Resolution Imaging 
Spectroradiometer) satellite provides daily global data at a low spatial resolution (maximum 250 m) and the 
Landsat satellites provide high spatial resolution (30 m) global data at a 16-day interval (pixels are often cloud 
contaminated). Thus, integrating high-temporal-resolution MODIS data with high-spatial-resolution Landsat 
data to produce synthetic data with high spatiotemporal resolution is necessary to study highly dynamic land 
surface processes that operate at a small scale.

MODIS-Landsat fusion has been achieved by a number of models and algorithms, including the Spatial 
and Temporal Adaptive Reflectance Fusion Model (STARFM)37, the Enhanced Spatial and Temporal Adaptive 
Reflectance Fusion Model (ESTARFM)38 and spatiotemporal image-fusion models39. We have chosen the 
STARFM, originally proposed by Gao et al.37 and tested in a Canadian boreal forest, to generate daily snow cover 
maps to supplement TS-based findings. In this algorithm, a first order approximation of the relationship between 
coarse MODIS (M) data and Landsat (L) reflectance data for a pixel located at (xi, yi) and acquired on date tk was 
assumed as:

= +L x y t M x y t( , , ) ( , , )i i k i i k k

Where ∈k represents error in observed MODIS and Landsat reflectance resulting from differing bandwidth 
and solar geometry37. STARFM is one of the most extensively tested fusion techniques that requires only one 
MODIS-Landsat pair input (but performs better with two pair input) and requires less computational power than 
alternative approaches.

Data preparation for fusing. We used the Normalized Difference Snow Index (NDSI) approach to deter-
mine SCDS. It is a widely used satellite-image-based spectral index usually calculated from reflectance in green 
and shortwave infrared bands40. To properly set the NDSI threshold in forested areas, Normalized Difference 
Vegetation Index (NDVI), calculated from the reflectance in red and near infrared (NIR) bands, was used as an 
auxiliary input in the snow-mapping algorithm41. So, for this study, we used green, red, near infrared (NIR), and 
shortwave bands to map snow cover duration.

Radiometrically, atmospherically, and geometrically corrected MODIS (horizontal tile: 12, vertical tile: 4) 
(MOD09GA V006)42 and Landsat 8 (Level 2)43 (WRS2 path/row: 25/26, 26/25) surface reflectance products for 
the study area over October 2013–May 2014 and October 2015–May 2016 were used in this study. MOD09GA 
daily surface reflectance data in green (band 4: 545–565 nm), red (band 1: 620–670 nm), NIR (band 2: 841–
876 nm), and shortwave infrared 2 (SWIR2) (band 6: 1628–1652 nm) bands were in 500-m resolution (total 
images = number of bands × day = 4 × 440 = 1760). The equivalent Landsat 8 surface reflectance data in green 
(band 3: 525–600 nm), red (band 4: 630–680 nm), NIR (band 5: 845–885 nm), and SWIR2 (band 6: 1560–1660 
nm) bands were in 30-m resolution, and land cloud cover per scene was less than 20% (total images = 4 × 19 = 76).

The Landsat 8 shares similar sensor geometry with MODIS and both visit the same place at almost the same 
time. It can thus be assumed that they have an almost identical viewing and illumination geometry, and can be 
used in the fusion process without further angular adjustments44. MODIS images, however, were re-projected to 
UTM (Universal Transverse Mercator, Zone 16 N) and pixels were resampled (using the nearest neighborhood 
method) to 30-m resolution to match with Landsat 8 images. MODIS and Landsat 8 images were also precisely 
co-registered using the common point comparison method and brought into the same spatial extent.

Only cloud and water-body free high-quality pixels were used as input to STARFM. The MOD09GA surface 
reflectance 500 m quality assurance band was used to mask pixels with a status bit flag other than ‘0000’ for each 
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of the four bands. Similarly, for Landsat 8 images, the level-2 pixel-quality band and radiometric saturation QA 
bands were used to mask radiometrically saturated, cloud-contaminated, and low-quality pixels. Finally, the pix-
els with missing values were set to –9999 and images were converted to signed 16-bit binary format. A series of R 
scripts36 was used to prepare satellite images for input in STARFM. C codes to implement STARFM were adapted 
from Gao et al.37. Algorithm details and information on data preparation can also be found in Gao et al.37 and 
Zhu et al.38.

Inputs to STARFM for producing synthetic Landsat 8 images. Two pairs of same-day MODIS-Landsat 
8 images within two months either side of the prediction date45, along with MODIS image of the prediction date, 
were used as inputs to STARFM to predict synthetic Landsat 8 images for the dates for which Landsat 8 images 
were either not available or cloud contaminated (>20%) (Supplementary Fig. S3). Landsat 8 and MODIS equiva-
lent bands were used to produce synthetic Landsat 8 images of the equivalent band. For example, Landsat 8 green 
(band 3) and MODIS green (band 4) bands were used to produce the synthetic Landsat 8 green-band image.

Accuracy assessment of predicted Landsat 8 images. To assess the accuracy of STARFM predicted 
images, synthetic Landsat 8 images were produced in green, red, NIR, and SWIR2 bands for three dates (2013-
12-07, 2014-02-16, and 2016-03-18) spanning the study period. Predicted synthetic images were compared 
pixel-to-pixel with actual Landsat 8 images of the corresponding dates, and Spearman Rho (using the complete 
observation method), root-mean-square-error (RMSE) and mean absolute error (MAE) estimates were calcu-
lated to assess the accuracy. STARFM prediction maintained a reasonable accuracy over the study period com-
pared to other studies37,45 (see Supplementary Table S2).

NDSI-based snow-mapping algorithm. Using the daily high-resolution synthetic data, NDSI was cal-
culated as:

=
−
+

NDSI reflectance in green band reflectance in SWIR band
reflectance in green band reflectance in SWIR band

2
2

Similarly, NDVI was calculated as:

=
−
+

NDVI reflectance in NIR band reflectance in red band
reflectance in NIR band reflectance in red band

Using reflectance property of clouds in SWIR2 band, NDSI can successfully separate clouds from snow. For 
mapping snow cover with NDSI, a physically based threshold value > 0.4 is usually used to indicate snow cover40. 
There is, however, evidence46 that in conifer-dominated forests NDSI < 0.4 can also be snow. Moreover, Hall et al.41  
found that NDSI values < 0.4 can also indicate snow if NDVI value is ~0.1. It is, therefore, important to identify 
area-specific NDSI threshold values to delineate snow cover.

After extensive visual inspections, using Google Maps, Sentinel-2 images (red, green, and blue bands), and 
predicted NDVI maps, for this study 1 ≥ NDSI > 0.35 was used for October 2013–May 2014 and 1 ≥ NDSI > 0.3 
was used for October 2015–May 2016 to define snow cover. This year-specific NDSI threshold mainly stemmed 
from snow patchiness as a result of high difference in winter TA and TS between study years47,48. To prevent 
NDSI overestimation, green band reflectance values ≤ 0.1 were masked before NDSI calculation49. To prevent 
snow-cover underestimation, at 0.1 < NDSI < 0.3 it was also considered as snow, only if 0.08 ≤ NDVI ≤ 0.1241.

To determine snow-start and snow-end dates, and to compare the plot-wise results with SCDST, decisions 
on presence/absence of snow were made based on the information (NDSI and NDVI) extracted from each plot 
centers with a 15-m buffer around it. The NDSI-based snow cover mapping algorithm works only for pixels with 
at least 50% snow cover41. To ensure consistent comparisons between SCDST and SCDS, for SCDST we consider 
snow present only if ≥50% of the TS sensors in a plot agreed that there was snow on the particular day.

Accuracy assessment of NDSI-based snow cover maps. A confusion matrix was generated to 
show the overall agreement in snow cover duration estimated from TS (SCDST) and satellite (SCDS) data 
(Supplementary Table S3). Considering SCDST as the reference and SCDS as the predicted, results from the con-
fusion matrix show that 72.8% of the time SCDST agreed with SCDS. The all-weather overall accuracy of our fused 
daily snow-cover map is higher than the MODIS daily snow products (MYD10A1 and MOD10A1) (31–45%)50. It 
is interesting to note that the overall accuracy of NDSI-based snow cover maps varied between years with a higher 
overall accuracy in YB (80%) than in YW (67%). This suggests that, in a warmer world, spatial variability in TS and 
snowpack will likely be higher than what it is now17, and we may need high-spatiotemporal-resolution satellite 
images complemented by field measurements35 to accurately capture this variability.

Code availability. Data preparation and all statistical analyses were implemented in the R programming 
language (version 3.4.3) (ref.36). R codes can be requested to M.A.H. (abdul.halim@mail.utoronto.ca).

Data Availability
The northern hemisphere HadCRUT4 data used in this study are available from https://crudata.uea.ac.uk/cru/
data/temperature/. Landsat 8 (Level 2) and MOD09GA (V006) data can be downloaded from https://earthex-
plorer.usgs.gov and https://search.earthdata.nasa.gov, respectively. Other data and materials can be requested to 
the corresponding author.

https://crudata.uea.ac.uk/cru/data/temperature/
https://crudata.uea.ac.uk/cru/data/temperature/
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://search.earthdata.nasa.gov
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