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Expression profiling of lncRNAs 
and mRNAs reveals regulation 
of muscle growth in the Pacific 
abalone, Haliotis discus hannai
Jianfang Huang1,2,3, Xuan Luo1,2,3, Liting Zeng1,2,3, Zekun Huang1,2,3, Miaoqin Huang1,2,3, 
Weiwei You1,2,3 & Caihuan Ke1,2,3

Long non-coding RNAs (lncRNAs) are known to play a major role in the epigenetic regulation of 
muscle development. Unfortunately there is little understanding of the mechanisms with which they 
regulate muscle growth in abalone. Therefore, we used RNA-seq to study the muscle transcriptomes 
of six Haliotis discus hannai specimens: three large (L_HD group) and three small (S_HD group). We 
identified 2463 lncRNAs in abalone muscle belonging to two subtypes: 160 anti-sense lncRNAs and 
2303 intergenic lncRNAs (lincRNAs). In the L_HD group, we identified 204 significantly differentially 
expressed lncRNAs (55 upregulated and 149 downregulated), and 2268 significantly differentially 
expressed mRNAs (994 upregulated and 1274 downregulated), as compared to the S_HD group. The 
bioinformatics analysis indicated that lncRNAs were relate to cell growth, regulation of growth, MAPK 
signaling pathway, TGF-β signaling pathway, PI3K-Akt and insulin signaling pathway, which involved 
in regulating muscle growth. These findings contribute to understanding the possible regulatory 
mechanisms of muscle growth in Pacific abalone.

Muscle growth in livestock is very important, as it directly affects meat production. The regulatory mechanisms 
of muscle growth are complex, and are affected by genetics, nutrition, and the environment1. Of these, genetic 
factors, including those growth hormone (GH), insulin-like growth factors (IGFs), myogenic regulatory factors 
(MRFs), myostatin (Mstn), and paired box proteins (Paxs), are the most important1,2. However, studies of the 
role of non-coding RNA, particularly long noncoding RNA (lncRNA), in the regulation of muscle growth remain 
scarce.

LncRNAs are RNA molecules longer than 200 nucleotides (nt) that have little or no open reading frame 
(ORF)3. Compared with mRNAs, lncRNAs are marked by lower expression levels, less conservation, and more 
variable expression among tissues4,5. Many researches have shown that lncRNAs are relate to various biological 
processes including cancer, apoptosis, immunity, and development6–8. Several studies have also indicated that 
lncRNAs play a vital role in muscle growth9,10. For example, Lnc133 was highly expressed in the adductor muscle 
of Pinctada martensii and it could be involved in regulating the cell proliferation of adductor muscles by targeting 
pm-RhoA11. Most currently identified lncRNAs have been derived from mice and humans12–14. Several studies in 
chickens9, cattle15, pigs16, zebrafish17, and rainbow trout18 have enriched the datasets of animal lncRNA, but little 
is known about lncRNA in the abalone.

The Pacific abalone, is the most commonly cultivated abalone in China19. Here, we used Illumina HiSeqX 
sequencing to determine the lncRNA and mRNA expression profiles of two H. discus hannai phenotypes that 
differ with respect to muscle growth rate. We then used quantitative real-time polymerase chain reactions 
(qRT-PCR) to compare the expression levels of muscle growth-related genes between these phenotypes. These 
results increase our knowledge of the molecular mechanisms regulating muscle growth in the abalone.
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Results
Identification of candidate lncRNAs. We generated 709,386,602 raw RNA-seq reads (NCBI accession no. 
SRP126378) from the adductor muscle samples of the three large (L_HD) and three small (S_HD) H. discus han-
nai specimens. The result of RNA quality was shown in Table 1. After discarding low-quality, adaptor, and poly-N 
sequences, 688,261,544 clean reads remained. We were able to map between 64.09% and 68.95% of the clean reads 
in each library to the H. discus hannai reference genome (Supplementary Table S1). Our coding potential analysis 
identified 2463 lncRNAs (Fig. 1): 2303 lincRNAs (93.5%) and 160 anti-sense lncRNAs (6.5%). We did not identify 
any intronic lncRNAs.

Genomic characterization of the candidate lncRNAs. We identified 23,847 mRNAs and 2463 lncR-
NAs in the adductor muscle samples from the six H. discus hannai specimens. We found that the lncRNAs were 
less expressed than the mRNAs (Fig. 2a), and the lncRNAs had fewer exons than the mRNAs (Fig. 2b). In addi-
tion, in comparison to the mRNAs, most lncRNAs were shorter ORF length (Fig. 2c).

Differential expression (DE) cluster analysis. We obtained 204 lncRNAs (DE-lncRNAs) and 2268 
mRNAs (DE-mRNAs) that were significantly differentially expressed between the L_HD and S_HD specimens 
(P < 0.05; Supplementary Tables S2 and 3). In the L_HD specimens, 55 DE-lncRNAs and 994 DE-mRNAs were 
upregulated compared to the S_HD specimens, while 149 DE-lncRNAs and 1274 DE-mRNAs were downreg-
ulated (Fig. 3a,b). Our heat maps also suggested that lncRNAs (Fig. 3c) and mRNAs (Fig. 3d) were significant 
expression difference (P < 0.05) between the two groups.

Prediction of the lncRNA target genes. LncRNAs can act in cis to regulate the neighboring genes; or 
they may function in trans to regulate the expression of genes located in distant domains20. To better understand 
the functional roles of our identified lncRNAs, we forecasted the targets of lncRNAs. We identified 1727 lncRNAs 
acting in cis with 5512 mRNAs. Interestingly, several muscle development-related genes including ras homolog 
family member A (RhoA) and cell division cycle 42 (Cdc42), were targeted by the lncRNAs XLOC_042193 
and XLOC_020807, indicating that these muscle growth genes may be cis-regulated by lncRNAs. We identified 
327,782 interactions in trans between 2464 lncRNAs and 16,676 mRNAs. Similarly, we observed that several 
DE-lncRNAs (such as XLOC_031278, XLOC_019246, XLOC_046403, XLOC_021050) acted in trans on muscle 
growth-related genes (Table 2).

Bioinformatics analysis. Our GO analysis of the DE-target mRNAs regulated in cis by DE-lncRNAs 
identified 120 significantly terms (P < 0.05). These terms were primarily involved in growth regulation and in 
biosynthetic-related functions such as glycogen biosynthetic process, regulation of cell growth, insulin-like 
growth factor binding, and regulation of growth (Fig. 4a). We identified 322 GO terms significantly enriched 
across the DE-target mRNAs regulated in trans by DE-lncRNAs (P < 0.05). These GO terms encompassed various 

Sample 
name Raw reads Clean reads

clean 
bases

Error 
rate(%) Q20(%) Q30(%)

GC 
content(%)

L_1 121394632 117028432 17.55G 0.02 95.31 88.73 47.42

L_2 109139940 105852548 15.88G 0.03 95.14 88.46 47.74

L_3 120542518 115621922 17.34G 0.02 95.29 88.75 48.83

S_1 129079606 126056030 18.91G 0.03 95.03 88.25 45.43

S_2 119736948 116934824 17.54G 0.02 95.17 88.49 45.93

S_3 109492958 106767788 16.02G 0.03 94.93 88.05 45.21

Table 1. The result of RNA quality.

Figure 1. Screening and classification of predicted lncRNAs in the adductor muscle transcriptome. (a) The 
protein-coding potentials of lncRNAs were analyzed with CPC and PFAM. (b) The proportion of lncRNAs that 
were intergenic lncRNAs (lincRNAs), intronic lncRNAs, and anti-sense lncRNAs.
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Figure 2. A comparison of candidate lncRNA and mRNA features. (a) Expression of lncRNAs and mRNAs. 
(b) Density distribution of the number of exons in lncRNAs and mRNAs. (c) Density distribution of the ORF 
length in lncRNAs and mRNAs.

Figure 3. Volcano plots and heat maps of differentially expressed transcripts (P < 0.05). Expression of (a) 
lncRNAs and (b) mRNAs in large (L_HD) versus small (S_HD) specimens of abalone. Red and green dots 
indicate up- and down-regulated transcripts, respectively. Hierarchical clustering of differentially expressed (c) 
lncRNAs and (d) mRNAs. Red rectangles represent upregulated lncRNAs/mRNAs; blue rectangles represent 
downregulated lncRNAs/mRNAs.
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biological processes, including actin cytoskeleton organization, hexose metabolic process, and regulation of bio-
logical process (Fig. 4b).

The DE-target mRNAs of the DE-lncRNAs regulated in cis were significantly enriched in 82 KEGG pathways. 
Some of these signaling pathways were concerned with muscle growth, including the MAPK, the FoxO, and the 
PI3K-Akt signaling pathway (Fig. 4c). Our results therefore indicated that lncRNAs may function in cis on neigh-
boring genes to influence muscle development. Our functional analysis also indicated that DE-target mRNAs in 
trans were significantly enriched in 103 KEGG pathways. Several of these signaling pathways were associated with 
muscle growth, including the MAPK, the TGF-β, and the insulin signaling pathway (Fig. 4d).

LncRNA-mRNA interaction network. Our lncRNA-mRNA interaction network results indicated that 
possible regulatory network interactions were linked to several signaling pathways, including the MAPK, the 
FoxO, the PI3K-Akt, and the TGF-β signaling pathway. Here, several DE-mRNAs and their corresponding 
DE-lncRNA regulators were constructed to assess their function with respect to abalone muscle growth (Fig. 5). 
We found that 59 lncRNAs interacted with five mRNAs in the MAPK signaling pathway (Fig. 5a), while 37 lncR-
NAs interacted with five mRNAs in the TGF-β signaling pathway (Fig. 5b).

Specific expression of lncRNAs. We found 14 specific lncRNA expressions in the L_HD, particularly 
XLOC_007603, which has the lowest P value. Genes multiple EGF like domains 10 (Megf10) and bone morpho-
genetic protein 7 (Bmp7) were targeted by XLOC_007603. We also discovered nine specific lncRNA expressions 
in the S_HD samples, such as XLOC_004306. Growth hormone secretagogue receptor type 1 (Ghsr) and Actin, 
both related to growth, were targeted by XLOC_004306. These specific expressed lncRNAs perhaps play crucial 
roles in abalone muscle growth, although the underlying regulatory mechanisms require further study.

Validation of the transcripts expression by qRT-PCR. To validate our sequencing results, we selected 
three upregulated DE-mRNAs, three upregulated DE-lncRNAs, and four downregulated DE-lncRNAs to analyse 
the expression levels using qRT-PCR. (Fig. 6a). The expression patterns of these DE-lncRNAs and DE-mRNAs 
were accordance with the sequencing data, suggesting that our RNA-seq data were accurate. Our analysis of the 
tissue expression patterns of XLOC_033661 and growth differentiation factor 8 (Gdf8) suggested that these were 
ubiquitously expressed in all examined tissues (Fig. 6b,c).

Target genes Cis-lncRNA Trans-lncRNA

ras homolog family member A (RhoA) XLOC_042193 XLOC_047918, XLOC_020199, XLOC_012389, XLOC_045008,
XLOC_046195

multiple EGF like domains 10 (Megf10) XLOC_001947
XLOC_007603, XLOC_009224, XLOC_009858, XLOC_008709,
XLOC_036992, XLOC_050377, XLOC_012901, XLOC_041226,
XLOC_022894, XLOC_002316

cell division cycle 42 (Cdc42) XLOC_020807
XLOC_031278, XLOC_005639, XLOC_044588, XLOC_034979,
XLOC_043665, XLOC_042193, XLOC_042273, XLOC_032617,
XLOC_004306, XLOC_001947, XLOC_001947, XLOC_036419,
XLOC_015393, XLOC_001333, XLOC_031494, XLOC_000853

growth differentiation factor 8 (Gdf8) XLOC_019246, XLOC_047280

kruppel-like factor 5 (Klf5)
XLOC_016243, XLOC_019672, XLOC_046721, XLOC_044403,
XLOC_020895, XLOC_030357, XLOC_041651, XLOC_032933,
XLOC_045896

mothers against decapentaplegic homolog 3 (Smad3) XLOC_008991, XLOC_007226, XLOC_002646, XLOC_046403,
XLOC_014032, XLOC_019974, XLOC_045193, XLOC_036406

myocyte enhancer factor 2 A (Mef2A) XLOC_046403, XLOC_032049, XLOC_002646, XLOC_021050,
XLOC_014032

insulin like growth factor 2 receptor (Igf2R)

XLOC_044392, XLOC_018947, XLOC_026363, XLOC_019672,
XLOC_028896, XLOC_047606, XLOC_046195, XLOC_017657,
XLOC_042141, XLOC_020895, XLOC_030357, XLOC_009037,
XLOC_043937, XLOC_047918, XLOC_041651, XLOC_032933,
XLOC_045008

myosin heavy chain (Myh)

XLOC_021050, XLOC_039472, XLOC_020134, XLOC_013832,
XLOC_042141, XLOC_002952, XLOC_027398, XLOC_047606,
XLOC_002695, XLOC_036494, XLOC_043937, XLOC_011639,
XLOC_015925, XLOC_036406, XLOC_025234, XLOC_026363,
XLOC_033661, XLOC_032049, XLOC_028897, XLOC_046403,
XLOC_044392

fibroblast growth factor receptor (Fgfr) XLOC_050379, XLOC_050377, XLOC_003281, XLOC_001947,
XLOC_047172, XLOC_000329

sirtuin 3 (Sirt3)

XLOC_014032, XLOC_019974, XLOC_021050, XLOC_039472,
XLOC_029968, XLOC_020134, XLOC_013832, XLOC_034979,
XLOC_045094, XLOC_045193, XLOC_043252, XLOC_002695,
XLOC_001626, XLOC_043937, XLOC_011639, XLOC_015925,
XLOC_016026, XLOC_000853, XLOC_036406, XLOC_011751,
XLOC_017610, XLOC_033661, XLOC_002857, XLOC_007226,
XLOC_002646, XLOC_046403, XLOC_005168, XLOC_044392

Table 2. Long non-coding RNAs (lncRNAs) and lncRNA target genes that are associated with muscle growth.
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Discussion
Muscle growth is a complex life activity regulated by the coordinated action of many biological processes. Abalone 
with different body weights have different growth rates: larger abalones grow faster and smaller abalones grow 
slower21,22. To clarify the mechanisms underlying muscle growth in Pacific abalone, we used RNA-seq to investi-
gate the discrepancy in mRNA and lncRNA expression patterns between larger and smaller abalone specimens 
from the same family.

As far as we know, this is the first study of lncRNA expression data in H. discus hannai. Here, we identi-
fied 2463 lncRNAs and 23,847 mRNAs. We found that the lncRNAs had fewer exons and were shorter than the 
mRNAs, consistent with previous studies18,23,24. The average number of exons (mean: 2.6) found in the lncRNAs 
of H. discus hannai was less than that of zebrafish (mean: 2.8 exons), humans (mean: 2.9 exons), and mice (mean: 
3.7 exons)17,24. LncRNAs were also less expressed than the mRNAs, again consistent with previous studies.

LncRNAs act as either cis- or trans-regulatory elements, with either co-localized or co-expressed 
protein-coding genes as targets10. For example, Linc-MD1, influences muscle development by targeting 
MAML125. Here, we identified 204 DE-lncRNAs and 2268 DE-mRNAs between the L_HD group and the S_HD 
group. We also constructed interaction networks between the cis- and trans-acting DE-lncRNAs and their mRNA 
targets to estimate the function of DE-lncRNAs in the regulation of muscle growth. Some genes have been shown 
to be connection with muscle growth, including Gdf826,27, kruppel-like factor 5 (Klf5)28, tuberous sclerosis-1 
(Tsc1)29, sirtuin 3 (Sirt3)30, myocyte enhancer factor 2 A (Mef2A)31, insulin like growth factor 2 receptor (Igf2R)32, 
RhoA33, Cdc4234, Megf1035, and myosin heavy chain (Myh)36. Gdf8 (also known as Mtsn) is an important mem-
ber of the TGF-β superfamily, and functions as a negative regulator of skeletal muscle development and growth37. 
Our expression analyses suggested that Gdf8 was ubiquitously expressed in all tested tissues, consistent with pre-
vious studies27. We found that Gdf8 mRNA was most highly expressed in the muscle and visceral mass, indicating 
that Gdf8 may play important roles in these tissues. We noticed the highest levels of XLOC_033661 expression 
in the muscle, indicating that this lncRNA perhaps play a vital role in muscle growth. Mef2A is known to be 
highly expressed in skeletal muscle, suggesting that it is valuable for skeletal muscle myoblast differentiation38. 
LncRNA-uc.167 is antisense to the Mef2C gene, and influences P19 cell proliferation and differentiation by reg-
ulating Mef2C39. Therefore, we speculate that the lncRNAs XLOC_046403, XLOC_032049, XLOC_002646, 
XLOC_021050, and XLOC_014032 regulate the muscle growth in H. discus hannai by targeting Mef2A. Similarly, 
other lncRNAs might affect muscle growth by targeting specific genes.

The results of GO and KEGG pathway analyses could help us understand the mechanisms underlying abalone 
muscle growth. Moreover, our lncRNA-mRNA interaction network indicated that 59 lncRNAs interacted with 
5 mRNAs in the MAPK signaling pathway, and 37 lncRNAs interacted with 5 mRNAs in the TGF-β signaling 
pathway (Fig. 5a,b). Association of DE-mRNAs and DE-lncRNAs with pathways relevant to growth may partly 
explain the regulation of muscle development. The MAPK signaling pathway, which includes the p38 MAPK, the 
extracellular regulated kinase 1 and 2 (ERK1/2), and the Jun NH2-terminal kinase (JNK) pathways, plays a vital 
role in muscle development40,41. The p38 MAPK though regulating the sequential activation of MRFs and their 

Figure 4. Analysis of significant GO terms and KEGG pathways for the predicted differentially expressed 
target mRNAs of our DE-lncRNAs. Significant GO terms for genes (a) cis-regulated and (b) trans-regulated 
by lncRNAs in L_HD specimens, as compared to S_HD specimens. BP: biological process; MF: molecular 
function; CC: cellular_component. Significant KEGG pathways for genes (c) cis-regulated and (d) trans-
regulated by lncRNAs in L_HD specimens, as compared to S_HD specimens (P < 0.05 is recommended).
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Figure 5. LncRNA-mRNA interaction networks. (a) The MAPK signaling pathway, showing 59 lncRNAs 
interacting with 5 mRNAs. (b) The TGF-β signaling pathway, showing 37 lncRNAs interacting with 5 mRNAs. 
All interactions show gene expression in large specimens, as compared to small specimens. Green ovals: 
downregulated lncRNAs; red ovals: upregulated lncRNAs; green triangles: downregulated genes; red triangles: 
upregulated genes.

Figure 6. Relative expression of lncRNAs and mRNAs, quantified with qRT-PCR. (a) Some lncRNAs and 
mRNAs were tested in the muscle of Haliotis discus hannai. (b) Expression of XLOC_033661 in the mantle, 
muscle, visceral mass, and gill. (c) Expression of Gdf8 in the mantle, muscle, visceral mass, and gill. Asterisks 
indicate statistically significant differences between large (L_HD) and small (S_HD) specimens: *P < 0.05; 
**P < 0.01. Different capital letters indicate significant differences among tissues (P < 0.01).
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transcriptional coactivators to control skeletal muscle differentiation42. Mothers against decapentaplegic homolog 
3 (Smad3) acts downstream of TGF-β to repress the bHLH domain of MyoD, and thus control myoblast differen-
tiation43. TGF-β/Smad3 stimulated smooth muscle cell (SMC) proliferation is controlled by the PI3K/Akt signal-
ing pathway44. PI3K/Akt is one of the major pathways contributing to skeletal muscle differentiation45. Our results 
can elucidate key lncRNAs and provide leads to further understand the mechanisms of molluscan muscle growth.

In conclusion, we reported the first lncRNA expression profiles of H. discus hannai using Illumina HiSeqX 
sequencing technology and identified 2463 lncRNAs. We also found out DE-mRNAs and DE-lncRNAs in slow- 
and fast- growing specimens of H. discus hannai. We identified lncRNAs acting in cis and trans to target genes 
(mRNAs). Our bioinformatics analyses suggested that many DE-lncRNAs might influence the regulation of mus-
cle growth in H. discus hannai by affecting target genes. All these findings may help to understand the biological 
mechanisms controlling muscle growth in the abalone. Nevertheless, the roles of lncRNAs and their target genes 
analyses need further experiental verification.

Materials and Methods
Experimental sample. A breeding population of H. discus hannai has produced pedigreed offspring; The 
six H. discus hannai abalones used in this research were obtained from Fuda Aquiculture in Jinjiang, Fujian prov-
ince, China; all specimens were about 2 years old. Three of the samples were larger (“L_HD” group; mean weight, 
95.1 ± 7.7 g; mean muscle weight, 45.5 ± 5.0 g), and three were smaller (“S_HD” group; mean weight, 16.5 ± 1.0 g; 
mean muscle weight, 7.3 ± 0.8 g). All six specimens of the adductor muscle, mantle, visceral mass, and gill were 
collected from each abalone, immediately snap-frozen in liquid nitrogen46.

The corresponding author declares that all the methods were approved and perform in agreement with 
the instructions of the Laboratory Animal Management and Ethics Committee of Xiamen University and 
that all experimental protocols about abalones were carried out in accordance with the Regulations for the 
Administration of Affairs Concerning Experimental Animals of Xiamen University. Moreover, all the researcher 
who perform the animal experiments are trained by attending specifc courses.

RNA isolation and Illumina deep sequencing. The total RNA was isolated from adductor muscle sam-
ples taken from each H. discus hannai specimen using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Then, 
we checked the purity of the total RNA and assessed its integrity. Approximately 3 µg RNA per sample was used 
to construct a complementary (cDNA) library. We used a TruSeq PE Cluster Kit v3-cBot-HS with the cBot 
Cluster Generation System (Illumina, San Diego, CA, USA) to cluster the index-coded sample. The libraries were 
sequenced on an Illumina HiseqX platform and 150 bp paired-end reads were generated. Raw data were cleaned 
with in-house Perl scripts. Specifically, our script removed low quality reads, those containing adapter sequences, 
and those containing poly-N sequences to generate clean reads. At the same time, our script also calculated the 
Q20, Q30, and GC content of the clean data.

Transcriptome assembly. We used previously generated reference genome and gene model annotation files 
for H. discus hannai (the files provided by Dr. Weiwei You, Xiamen University, Xiamen). The clean reads were 
mapped to the H. discus hannai reference genome using TopHat v2.0.947 with default parameters. The mapped 
reads were assembled with both Scripture (beta2)22 and Cufflinks v2.1.148,49.

Quantification of gene expression level. We calculated the fragments per kilobase (kb) per million 
reads (FPKMs) for both the lncRNAs and the coding genes using Cuffdiff v2.1.150. We considered transcripts or 
genes differentially expressed when expression levels were significantly different (adjusted P of <0.05) between 
the large and small specimens (L_HD and S_HD).

Identification of lncRNAs. We used CPC (0.9-r2)51 and Pfam-scan (v1.3)52 to screen for candidate lncR-
NAs. Only those transcripts without predicted coding potential were retained. Finally, we selected the candidate 
lncRNAs predicted by both CPC and Pfam-scan as final lncRNAs for further analyses.

To investigate transcript conservation, we computed phylogenetic models in the Phast (v1.3) package53. Then, 
we computed the conservation scores of lncRNAs and coding genes using phastCons.

Target gene prediction. LncRNAs acting in cis act on neighboring target genes54,55. To identify these, we 
searched mRNAs 10 k/100 k up- and down-stream of each lncRNA. LncRNAs acting in trans influence target 
genes at the expression level. We computed the Pearson’s correlation coefficients both the expression levels of 
mRNAs and lncRNAs with custom scripts (r > 0.95 or r < −0.95). The lncRNA-mRNA interaction networks of 
DE-lncRNAs and their corresponding DE-mRNAs were constructed using Cytoscape.

Functional enrichment analysis. To evaluated the functions of the DE-lncRNA, we analyzed GO (Gene 
Ontology) with the GOseq R package56. We also performed KEGG (http://www.genome.jp/kegg/) analysis on 
DE-target mRNAs of the DE-lncRNAs using the hypergeometric test in KOBAS57. We considered functions with 
P < 0.05 significantly enriched.

QRT-PCR. Several genes were chosen for qRT-PCR using gene-specific primers (Supplementary Table S4). 
Relative gene expression levels were quantified based on β-actin gene expression using the 2−∆∆CT method58.

Statistical analysis. All qRT-PCR data were presented as mean ± standard deviation (SD). The statistical 
significance was evaluated using SPSS 19.0.

http://www.genome.jp/kegg/
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