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Soy-Induced Fecal Metabolome 
Changes in Ovariectomized and 
Intact Female Rats: Relationship 
with Cardiometabolic Health
Victoria J. Vieira-Potter1, Tzu-Wen L. Cross  2, Kelly S. Swanson3,4, Saurav J. Sarma5,6, 
Zhentian Lei5,6,7, Lloyd W. Sumner5,6,7 & Cheryl S. Rosenfeld  7,8,9,10

Phytoestrogens are plant-derived compounds found in a variety of foods, most notably, soy. These 
compounds have been shown to improve immuno-metabolic health, yet mechanisms remain uncertain. 
We demonstrated previously that dietary phytoestrogen-rich soy (SOY) rescued metabolic dysfunction/
inflammation following ovariectomy (OVX) in female rats; we also noted remarkable shifts in gut 
microbiota in SOY vs control diet-fed rats. Importantly, specific bacteria that significantly increased 
in those fed the SOY correlated positively with several favorable host metabolic parameters. One 
mechanism by which gut microbes might lead to such host effects is through production of bacterial 
metabolites. To test this possibility, we utilized non-targeted gas chromatography–mass spectrometry 
(GCMS) to assess the fecal metabolome in those previously studied animals. Partial least square 
discriminant analysis (PLSDA) revealed clear separation of fecal metabolomes based on diet and 
ovarian state. In particular, SOY-fed animals had greater fecal concentrations of the beneficial bacterial 
metabolite, S-equol, which was positively associated with several of the bacteria upregulated in the 
SOY group. S-equol was inversely correlated with important indicators of metabolic dysfunction 
and inflammation, suggesting that this metabolite might be a key mediator between SOY and gut 
microbiome-positive host health outcomes.

Phytoestrogens from dietary soy protein have estrogen-like selective estrogen receptor modulator (SERM) effects. 
This dietary approach holds promise as an alternative therapeutic approach to estrogen for reducing adiposity 
and improving insulin resistance1,2. Although substantial evidence supports the cardio-metabolic benefits of phy-
toestrogens3–11, the underlying mechanisms remain poorly understood. Our data in ovariectomized (OVX) and 
non-ovariectomized (SHM) rats reveal that a soy-based diet with known phytoestrogen concentrations (i.e. SOY) 
improves metabolism via a mechanism independent of either energy consumption or physical activity12. The most 
notable changes induced by SOY were those associated with gut microbial population shifts12. Further, significant 
relationships between important immuno-metabolic outcomes (e.g., adipose tissue inflammation) and specific 
microbes induced by SOY were identified.

Other animal model and human studies have shown that soy-based diets and phytoestrogen supplementation 
alone can result in positive gut microbiome changes13–22. One possible mechanism by which the gut microbiome 
might affect host function is through production of unique bacterial metabolites23–28. One category of bacterial 
metabolites that are increased in animals and humans consuming a soy-rich diet and that might have impor-
tant health benefits are the equols, in particular S-equol29–31. Metabolism of phytoestrogens by gut microbes 
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may produce metabolites with more potent biological activity within the host than their parental compounds32. 
Equols are metabolites formed by reduction of soy isoflavones by gut microorganisms33,34. S-equol is an important 
metabolite, particularly among postmenopausal women, because it has estrogenic effects with greater binding 
affinity for estrogen receptors than isoflavones in their premetabolized form35. Interestingly, there is considerable 
inter-individual variation in the metabolism of isoflavones to equol, and dietary factors (e.g., high fat diet may 
reduce equol production)36 also have been shown to affect its production. While S-equol represents one key bac-
terial metabolite induced by consumption of a soy diet, there are presumably others yet to be identified that may 
also affect host metabolic responses. However, S-equol has been the most well-studied metabolite in this regard, 
and many lines of evidence support that it has beneficial metabolic and behavioral effects. Moreover, other con-
stituents present in whole soy protein (e.g., oligosaccharides) may affect gut microbial metabolism37 in such a way 
as to increase bacterial phytoestrogen metabolism. Thus, it is important to investigate the effects of whole soy on 
gut microbial metabolism.

The goal of the current study was to examine the fecal metabolome in the groups of SHM and OVX rats pre-
viously demonstrated to exhibit SOY-mediated improvements in a variety of immuno-metabolic improvements, 
along with gut microbiota changes that associated with those imporved metabolic outcomes12. We also examined 
whether ovarian state interacted with diet to affect the fecal metabolome. The metabolites identified to be altered 
by SOY were then correlated with the previously identified gut microbes upregulated in the SOY-fed rats. Finally, 
we performed correlation analyses to determine how the bacterial metabolites increased in the SOY group asso-
ciated with previously measured physiological parameters and gene expression patterns in white adipose tissue 
(WAT) and brown adipose tissue (BAT).

Results
Soy-Induced Fecal Metabolome Differences. The metabolomics data preprocessing was performed 
using the R programming language (https://www.r-project.org/). The samples were then analyzed with PLS-DA 
(Partial Least Squares Discriminant Analysis), which revealed clear separation based on diet (SOY vs. CON) and 
ovarian state (OVX vs. SHM) and was significantly different based on confidence testing (p = 0.048) (Fig. 1A). 
Differential clustering was confirmed by analyzing outliers in t-test/volcano plots or ANOVA (in case of four 
groups). One-way ANOVA was then used to determine the overall number of metabolites that differed based 
on diet and ovarian state (Fig. 1B). Additionally, two-way ANOVA was used to confirm main effects of diet and 
ovarian state and the interaction of diet by ovarian state (Supplementary Table 1).

Examples of elevated metabolites in SOY vs. CON regardless of ovarian state are shown in Fig. 2. Notably, 
S-equol was one of the top metabolites that was significantly increased in both groups of SOY-fed rats (Fig. 2A). 
Other metabolites that were increased in the SOY groups include fucose, laminaribose, and several currently 
uncharacterized metabolites. We also examined the metabolites that were decreased, suggestive of bacterial 
consumption or metabolism, in SOY vs. CON groups, and these include daidzein; 5-nonadecylresorcinol; 
β-sitosterol; 3β-stigmastan-3-ol; 3β, 5α-cholestan-3-ol; 6-hydroxypurine; 5-hydroxy-indole-3-acetic acid; hydro-
cinnamic acid; and α-tocopherol (Fig. 3). The full list of fecal metabolites that increased or decreased in SOY-fed 
individuals is provided in Supplementary File 1, those highlighted in orange are significantly different.

Metabolic Pathways Predicted to be Affected in SOY groups. Based on the overall metabolite dif-
ferences in the SOY vs. CON groups, two pathways are predicted to be affected in the SOY groups: (1) glycine, 
serine, and threonine metabolism and (2) aminoacyl-tRNA biosynthesis (q values, false discovery rate-FDR, 
=0.0004 and 0.1, respectively, Supplementary File 2). Metabolome view of pathway analysis was done using 
Metaboanalyst software, and the four most significant pathways are labeled (Supplementary Fig. 1). As shown in 
the KEGG pathway map for glycine, serine, and threonine metabolism38–40, some of the individual metabolites in 
this pathway were increased; whereas others were decreased (Supplementary Fig. 2).

Figure 1. General characterization of fecal metabolome data from SOY and CON fed OVX and SHM female 
rats. (A) 3D score plot of Partial Least Square-Discriminant Analysis considering ovarian state and diet both 
as variants. (B) One-way ANOVA with Fisher’s LSD post-hoc analysis revealing the statistical differences in 
metabolite changes considering ovarian state and diet both as variants. Y-axis represents the log10 value of p 
value with a horizontal line at p = 0.05. Those that did not differ significantly are shown in green, and those that 
were significantly different in at least one of the groups are indicated in red. p < 0.05.

https://www.r-project.org/
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Interactive Effects of Diet and Ovarian State on Fecal Metabolome. To examine whether ovarian 
state (OVX or SHM) within each diet might affect the fecal metabolome, we examined the metabolite differences in 
OVX vs. SHM for those fed the SOY diet (Supplementary Figs 3 and 4) and those fed the CON diet (Supplementary 
Figs 5 and 6). Supplementary Fig. 3 shows example metabolites that were increased in OVX compared to SHM 
individuals within the SOY diet, such as phenylpyruvic acid; 3β, 5β-cholestan-3-ol, 3β, 5α-cholestan-3-ol;  
1-octadecane; 24-ethyl-δ(22)-coprostenol; and L-Alanine. In Supplementary Fig. 4, example metabolites 
decreased in OVX compared to SHM individuals within the SOY diet are shown. These include fucose; rhamnose; 
D-(+)Talose; and galacturonic acid.

Comparison of bacterial metabolites that differed in OVX vs. SHM individuals fed the CON diet, reveals that 
L-serine; L-valine; 2-oxobutanoic acid; hexanoic acid; α-ketovaleric acid; and 2-oxo-isocaproic acid are example 
metabolites that were increased in OVX compared to SHM females (Supplementary Fig. 5). In contrast, pipecolic 
acid and 5-aminovaleric acid were select metabolites that decreased in OVX compared to SHM individuals when 
fed the CON diet (Supplementary Fig. 6).

Correlation of SOY Effects on the Fecal Metabolome and Gut Microbiota. To determine whether 
selected bacteria affected by the SOY diet might be linked, and possibly account for, the increased or decreased 
fecal metabolites detailed above, we performed correlation analyses with cecal bacteria increased in SOY groups 
(Fig. 4) and those that were decreased in the SOY groups12 (Fig. 5) and correlated them with the top 25 fecal 
metabolites identified to be different based on p value association. As shown in Fig. 4, a relative increase in 
Prevotella spp., Dorea spp., Sutterella spp., and Phascolarctobacterium was positively associated with an increase 
in S-equol, rhamnose, benzeneethanamine, galacturonic acid, fucose, and several currently unknown metabo-
lites. Conversely, increases in these cecal bacteria were associated with decreases in fecal stigmastan-3-ol and 
6-hydroxypurine. Correlation of the bacteria that were decreased in the SOY groups and the top 25 metabo-
lite changes revealed that an undefined genus within the family Clostridiaceae, Bifidobacterium spp., CF231, 
Rosebura spp., and an undefined genus within the family Bacteroidales were associated with similar metabolite 
changes (Fig. 5). Relative decreases in bacteria were associated with reductions in α-tocopherol, pentadecan-1-ol, 
stigmastan-3-ol, cholestan-3-ol, and daidzein. In contrast, relative declines in those bacteria were associated with 
increases in rhamnose, benzeneethanamine, fucose, galacturonic acid, propanoic acid, and several currently 
uncharacterized metabolites.

Correlations Between Fecal Metabolites, Physiological Parameters, and Gene Expression 
Results. Correlation analyses were performed to determine if fecal metabolite changes in the SOY groups 
correlated with previously measured physiological parameters and gene expression data in WAT and BAT12. 
S-equol was significantly increased in the SOY groups (Fig. 6 and Supplementary File 1), and greater level of 
this metabolite was strongly correlated with overall reduced adiposity, including decreases in omental adipose 
tissue (AT) and perigonadal AT (PGAT) (i.e. visceral fat depots), subcutaneous AT (SQAT), and overall adiposity. 
Importantly, this metabolite was also linked with reductions in inflammatory marker gene expression within AT, 
leptin expression in PGAT, and circulating insulin. Daidzein, a precursor of S-equol, was positively associated 
with omental AT, SQAT, and overall WAT weight, along with uncoupling protein 1 (Ucp1) and PR domain con-
taining 16 (Prdm16) expression in brown adipose tissue (BAT). The collective findings suggest that the beneficial 
metabolic effects of daidzein may be contingent on it being metabolized to S-equol.

Fucose was also increased in the SOY groups, and this metabolite was associated with select positive metabolic 
outcomes, such as reduced adiposity and inflammatory marker expression in AT. An increase in cellobiose was 

Figure 2. Traditional box plots for metabolites elevated in SOY vs. CON females for both OVX and SHM 
groups, p < 0.05. The Y axes are log 10 values of the normalized instrument response for the labeled metabolites 
(x-axes). The program arbitrarily assigns color codes for the various groups. The box plot upper and lower 
brackets represents +/− (1.58*interquartile range-IQR/Squared root of sample size). To reduce ambiguity, the 
one-way ANOVA comparisons as determined by the MetaboAnalyst software program included OVX-CON vs. 
OVX-SOY and SHM-CON vs. SHM-SOY. A complete list of metabolites that differed between these two groups 
and directionality is included in Supplementary File 1.
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strongly and positively associated with expression of several genes in BAT, including Esr1and Esr2 (i.e., estrogen 
receptors), interferon-γ (Ifng) and tumor necrosis factor-α (Tnfa) (i.e., inflammatory cytokines), cytochrome 
B-245 Alpha Chain (P22phox) (i.e., oxidative stress inducer) and interleukin 13 (Il13) (i.e., Th2 cytokine) suggest-
ing that this metabolite might specifically affect BAT, but interestingly, not classical WAT.

Discussion
The overarching goal of the current study was to determine if consumption of a diet rich in soy phytoestrogens 
(i.e., “SOY”) by ovariectomized (OVX) and sham-operated, ovary-intact (SHM) female rats could result in fecal 
metabolome changes and whether such collective changes might allow for predictions to be made on which 
metabolic pathways might be affected in the SOY groups. We also sought to determine if ovarian state, along with 
diet, might affect the fecal metabolome profile. Correlation analyses were performed to determine if previously 
identified gut microbiota changes12 might account for alterations in metabolites observed in the SOY compared 
to CON-fed groups. Our last objective was to examine associations between SOY-induced fecal metabolites and 
previously identified metabolic parameters, such as insulin sensitivity and gene expression patterns in WAT and 

Figure 3. Traditional box plots for metabolites decreased in SOY vs. CON females for both OVX and SHM 
groups, p < 0.05. The Y axes are log 10 values of the normalized instrument response for the labeled metabolites 
(x-axes). The program arbitrarily assigns color codes for the various groups. The box plot upper and lower 
brackets represents +/− (1.58*IQR/Squared root of sample size). To reduce ambiguity, the one-way ANOVA 
comparisons as determined by the MetaboAnalyst software program included OVX-CON vs. OVX-SOY 
and SHM-CON vs. SHM-SOY. A complete list of metabolites that differed between these two groups and 
directionality is included in Supplementary File 1.
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BAT, which we previously found to be improved in SOY-fed rats. In relation to the first goal, the initial analyses 
revealed clear fecal metabolome profile separation based on diet consumed and ovarian state. Consumption of 
the SOY diet by female rats, regardless of ovarian state, resulted in several metabolite changes. Notable ones that 
were upregulated in these groups include: S-equol; fucose; laminaribose; and several currently uncharacterized 
metabolites. On the other hand, daidzein; nonadrecylresorcinol; stigmastan-3-ol; hydroxypurine; indole-3-acetic 
acid; hydrocinnamic acid; and α-tocopherol were reduced in the fecal metabolome profile for these groups. The 
two pathways likely to be affected in the SOY groups are amino acid (i.e., glycine, serine, and threonine) metabo-
lism and aminoacyl-tRNA biosynthesis. A previous in vitro study demonstrated that both genistein and daidzein 
can activate aminoacyl-tRNA synthetase in osteoblastic cells, resulting in an overall increase in protein synthe-
sis41. Interestingly, we found that the weight loss due to SOY associated with preservation of lean mass12, which is 
unlike most weight loss interventions that induce both fat and lean loss.

In both SOY and CON groups, OVX resulted in distinct metabolome changes relative to SHM counterparts, 
possibly suggesting that endogenous ovarian-derived hormones (e.g., estrogen) might interact with components 
in both diets to affect the fecal metabolome profiles, although additional evidence in support of this idea is largely 
lacking. In male cats, sexual maturity and age at time of neutering, i.e. removal of ovarian steroid hormones, can 
affect circulating metabolites42.

Correlation analyses revealed strong associations between previously identified SOY-induced gut microbiota 
changes12 and fecal metabolites. Similarly, others have identified, in soy-fed neonatal White Dutch Landrace pigs, 
linkages between diet-responsive intestinal metabolites and gut microbes43. Importantly, in a human study, the 
plasma metabolome of vegans living in a Western society and consuming a soy-rich diet differed from that of 
omnivores, whereas the gut microbial profile between the two groups of individuals was relatively similar44. It is 
not clear the factors that led to differences in circulating metabolites between these two groups of individuals, but 
suggests that diet may affect microbial metabolism even when microbial shifts are not necessarily present. That 
study also found that, even though dietary consumption of soy was high, the proportion of vegans able to produce 
equol was less than those reported in studies examining Asian cohorts44. In fact, it is known that there is human 
genetic heterogenity in equol production following soy isoflavone consumption; this is true, for example, among 
menopausal women32. Only 30–50% of Western individuals produce equol, suggesting that only these individuals 
experience full metabolic benefits of dietary soy.

Figure 4. Correlations among taxa increased in cecal microbial community of SOY-fed rats and fecal 
metabolomic changes due to SOY diet consumption. One metabolite that strongly correlated with relative 
elevations in select bacteria was S-equol (boxed in region). The shading intensity of the bubble, along with 
size, is indicative of the Spearman rank correlation coefficient between variables. Red dots represent positive 
correlations whereas blue dots represent negative correlations; brown square box denotes statistical significance 
(p < 0.05) observed using Spearman correlation; N = 35 total animals.
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In the human gut, daidzein can be metabolized (by gut bacteria) to equol, dihydrodaidzein, and/or 
O-desmethylangolessin (ODMA). While it appears that several species are involved in daidzein metabolism, the 
specific species responsible for its metabolism to these various metabolites remain ill-defined45. Importantly, the 
ODMA-producer phenotype (but not the equol-producer phenotype) is associated with obesity46. Soy-nut sup-
plementation of adult humans followed by metabolomic analyses reveals three distinct groups: 1) ODMA only 
producers, 2) equol and ODMA producers, and 3) non-producers of both47. Those that produce both ODMA and 
equol show lower risk for obesity and metabolic disorders but increased pro-inflammatory cytokines. In general, 
ability to metabolize isoflavones was associated with unique serum and urine metabolome signature profiles47. 
Similarly, soy supplementation to female Bama mini pigs (Sus scrofa domestica) resulted in increased expression 
of lipolytic but decreased expression of lipogenic genes in white adipose tissue48.

Given these findings, it is interesting to note that the animals fed SOY experienced significant adiposity reduc-
tion compared to CON-fed animals, despite no changes in energy intake or energy expenditure. An intriguing 
hypothesis is that S-equol, produced by gut microbes, may facilitate weight loss of the host organism via its 
effect on BAT, a tissue that increases energy expendiure via heat production due to uncoupling of mitochondrial 
oxidative phosphorylation (i.e., via UCP1 activity). Notably, in the current study, metabolism of daidzein (the 
precursor of S-equol) is associated with greater Ucp1 expression in BAT.

Herein, SOY-induced increases in cecal Prevotella spp., Dorea spp., Sutterella spp., and Phascolarctobacterium 
spp. were all positively associated with an increase in fecal S-equol. While most equol-producing bacteria belong 
to the Coriobacteriaceae or Bifidobacteriaceae family, other bacteria can convert daidzein (and to a lesser extent, 
genistein) to S-equol29,34,49–53. No previous studies have directly shown that Prevotella spp. can convert daidzein to 
S-equol. It is difficult to say definitively whether microbial taxa present in the cecum contribute to the production 
and excretion of corresponding metabolites. The current studies also only establish correlation not causation. 
One study in mice showed that dietary supplementation with daidzein and arabinose resulted in lower relative 
amounts of Prevotella but increased the ratio of equol/daidzein compared to supplementation of daidzein alone, 

Figure 5. Correlations among taxa decreased in cecal microbial community of SOY-fed rats and fecal 
metabolomic changes due to SOY diet consumption. The shading intensity of the bubble, along with size, 
is indicative of the Spearman rank correlation coefficient between variables. Red dots represent positive 
correlations whereas blue dots represent negative correlations; brown square box denotes statistical significance 
(p < 0.05) observed using Spearman correlation; N = 35 total animals.
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suggesting that providing both daidzein and arabinose increases gut bacteria capable of metabolizing daidzein to 
equol54. Comparably, no other studies have shown that the other bacteria listed above can serve as equol produc-
ers. Clearly, further work is needed to verify equol-producing capabilities of these bacteria, which can be done by 
culturing these bacteria in the presence of daidzein or genistein and then measuring potential S-equol produc-
tion. Such studies could test the in vitro ability of these bacteria to metabolize daidzein to S-equol. In vivo studies 
that could be conceived to test this possibility might include feeding specific pathogen-free (SPF) or germ-free 
mice a SOY-based diet and providing probiotic formulations of each bacteria to determine if such supplementa-
tion elevates the amount of intestinal S-equol, especially in germ-free mice that lack a resident gut microbiome. 
Bifidobacterium spp., which can convert daidzein to equol50, was surprisingly reduced in the SOY-fed groups. 
Relative decrease in the amounts of this bacterium was associated with less daidzein in the fecal samples, which 
might suggest that even the small amounts of Bifidobacterium spp. in the SOY group might partially contribute 
to the conversion of daidzein to S-equol. Repeated sampling of the fecal microbiome and metabolome might also 
help establish causation in terms of which bacteria are responsible for elevated S-equol present in the SOY-fed 
groups. To pinpoint how individual components in the SOY diet affect the fecal microbiome and metabolome, 
individual supplementation of each compound followed by aerobic and anaerobic bacterial cultures and metab-
olomic analyses of intestinal samples is required.

Importantly, S-equol has been associated, not only with postive metabolic effects, but also with other health 
benefits, including neuroprotection31,55–60. In fact, some human studies have shown that post-menopausal equol 
producers provided SOY have overall better cognitive performance and improved emotional responses61,62. In a 
cohort of overweight and obese individuals, S-equol production improved cardio-metabolic parameters63, similar 
to those we showed to be improved in the rats fed SOY. S-equol supplementation might also improve menopausal 
vasomotor symptoms, hot flashes, and osteoporosis62,64–66. Anti-cancer properties have also been attributed to 
this bacterial metabolite67–73. Although many positive estrogen-mediated effects are thought to be via estrogen 
receptor-α (ESR1), the beneficial metabolic effects of S-equol are seemingly independent of ESR131, and are likely 
due to binding and activating estrogen receptor-β (ESR2)74–77. Whether there are sex-differences in the positive 
metabolic and other effects of S-equol is uncertain, but respresents an important area of future research.

The current studies support a role for S-equol in improving overall metabolic status with greater concentra-
tions of S-equol in SOY-fed rats correlating with reduced adiposity, AT inflammation, and circulating insulin 
concentrations. Future studies should test the long-term and dose-dependent effects of S-equol in males and 
females in both intact and gonadectomized states. The results herein provide important physiological parameters 
and gene expression patterns for such follow-up studies in order to determine the molecular mechanisms driving 
those protective effects.

Elevated fucose in the SOY groups was also associated with similar positive metabolic AT phenotypes: reduc-
tions in weight and inflammatory markers. Elevations in this metabolite might be due to the fact that the SOY diet 
also had higher oligosaccharide content (Supplementary Table 2). Little is known about the general health effects 
induced by increased fucose or how fucose affects adipose tissue, but an L-fucose transporter has been identified 

Figure 6. Correlations between the fecal metabolites and physiological parameters and gene expression data. 
As this figure shows, S-equol, which was elevated only in the SOY groups, strongly correlated with several 
improved metabolic outcomes (boxed in regions). Red dots represent positive correlations whereas blue dots 
represent negative correlations; brown square box denotes statistical significance (p < 0.05) observed using 
Spearman correlation; figure cropped to highlight specific correlations; N = 35 total animals.
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in relatively high concentrations in adipose tissue78. Notably, fucose-binding lectins show anti-lipolytic activity 
in isolated rat and hamster adipocytes79. Further work is needed to determine whether elevated intestinal fucose 
might mediate some of the beneficial AT effects of a SOY-diet.

It is important to consider potential limitations of the current work. The experimental dietary approach used 
was one of whole food comparison. That is, our intent was not to determine the effects of isolated phytoestro-
gens on gut microbial and metabolomic changes, but rather, to determine differences between “soy-based” and 
“non-soy-based” diets. Indeed, most studies investigating effects of soy have used isolated phytoestrogen supple-
mentation. However, humans consume soy-based diets (e.g., typical Asian diet, vegetarian/vegan diet) whereas 
others consume more traditional “Western” diets, which tend to be corn-based and provide significantly less 
whole soy protein. Meanwhile, as is true with many foods in their whole form, the effects of whole food may differ 
from the effects of the individual dietary constituents. Thus, we sought to first examine the differences between 
soy-based and non-soy based diets in the most controlled way possible. As such, providing a different protein 
source in the experimental groups was necessary for this design. However, this approach carries limitations and 
cannot show direct causative relationships between phytoestrogens and the gut or systemic variables. Future stud-
ies should use a more targeted dietary approach in order to identify the active constituents in the experimental 
soy diet used herein (e.g., individual phytoestrogens, fiber, combinations of specific dietary constituents, etc.).

It is important to note that the oligosaccharide content in the SOY diet was higher compared to the CON diet, 
as detailed previously (Supplementary Table 2)12. Phytoestrogen might interact with other dietary components 
to affect the fecal metabolome, as shown previously with daidzein and arabinose54. To exclude this possibility, 
future studies will determine whether OVX and SHM rats fed a soy protein isolate diet or supplemented with 
daidzein (or other single phytoestrogen) show similar gut microbiome and metabolome changes, as identified 
previously12 and in the current studies. As discussed in the original study12, cecal weight was significantly greater 
in the soy group. Since we were not able to normalize this based on dry weight, findings related to the cecal sam-
ples should be evaluated in light of this potential limitation. However, importantly, the total fiber content did 
not differ between the two diets. What varied (in addition to phytoestrogen content), was the oligosaccharide 
content of the two diets. The soy diet contained ~2% oligosaccharides, whereas the control diet did not; this was 
done to reflect the known difference in oligosaccharide content between soy and non-soy based diets. Indeed, 
oligosaccharides are are highly fermentable and considered prebiotic80. It is also possible that the soy diet had 
lower digestibility, providing greater substrate for the gut microbiota to ferment. Future studies should investigate 
the potential specific role that oligosaccharides may play in mediating gut and systemic metabolic improvements 
imparted by high soy diets.

In conclusion, the current studies show that OVX and SHM rats fed a SOY-enriched diet possess greater 
fecal concentrations of S-equol. Ovarian state interacted with both diets to affect other fecal metabolites. S-equol 
was positively associated with several bacteria previously shown to be upregulated in the SOY group, including 
Prevotella spp., Dorea spp., Sutterella spp., and Phascolarctobacterium. Elevated S-equol in the SOY group was 
significantly associated with reduced adipose tissue weight, visceral WAT inflammation, and hyperinsulinemia, 
key biomarkers of metabolic dysfunction. Thus, the current findings support the contention that S-equol is a key 
mediator between SOY and gut microbiome-positive host health outcomes.

Methods
Animals, Physiological, and Gene Expression Assessments. These studies included the same 
animals and diets as detailed previously12. Briefly, the Institutional Animal Care and Use Committee at the 
University of Missouri, Columbia approved all animal methods that were also performed in accordance with 
NIH Guidelines for the Care and Use of Laboratory Animals. These studies employed the HCR/LCR rat model81. 
Thirty-five 27-wk-old LCR female rats (generation 32) were either OVX or SHM and ad libitum fed either SOY or 
CON diets for 28 weeks in a 2 × 2 factorial arrangement (n = 7 for OVX CON, 9 for OVX SOY, 10 for SHM CON, 
and 9 for SHM SOY): (1) OVX/SOY; (2) SHM/SOY; (3) OVX/CON; (4) SHM/CON. SOY diet was formulated to 
provide ~590 mg/kg diet of soy isoflavones [genistein and daidzein (aglycone equivalents)], whereas CON diet 
was formulated to exclude any soy isoflavones (Envigo Laboratories Inc., Madison, WI)12. Further details on the 
two diets are listed in Supplementary Table 2. Rats were maintained under controlled humidity and temperature 
with a 12-h light:12-h dark cycle. Body weight (BW) and food intake were measured weekly. Intraperitoneal 
glucose tolerance test (IPGTT) was performed 19 weeks post-surgery. At 56 weeks of age, rats were euthanized 
via CO2 inhalation and exsanguination. Individual fat depots, including PGAT, retroperitoneal (RPAT), omental, 
inguinal SQAT, and interscapular BAT were then dissected and immediately weighed to determine regional fat 
distribution, histomorphology, and gene expression. Cecal digesta and fresh fecal samples from each animal, who 
had been previously fasted, were collected at the time of euthanasia, snap frozen in liquid nitrogen, and stored at 
−80 °C until analysis. The microbiota profiles were determined previously in the cecal digesta12. For the current 
study, 10 ± 0.06 mg fresh fecal sample/animal was extracted at time of sacrifice and all metabolite measurements 
were normalized physically to this mass. An internal standard was also used to normalize for variation in metab-
olite recovery and sample preparation. Thus, these results can be considered quantitative. The current studies 
examined the metabolomics profiles in the fecal samples. Information on these other analyses are detailed in12.

Metabolomics Analyses. To perform an assessment of how SOY and ovarian state affects gut bacterial metabolite 
profiles, metabolomics analyses were performed with the fecal samples from all individuals, as detailed previously82.  
To 10 ± 0.06 mg of each fecal sample, 10uL of H2O containing 1μg/μL ribitol (internal standard) and 500 μl  
of 80% methanol were added. This amount of fecal material was extracted for each sample and all metabolite 
measurements were normalized physically to this mass. An internal standard was also used to normalize for 
variation in metabolite recovery and sample preparation. Thus, the results can be considered quantitative. The 
samples were vortexed for 5 seconds, sonicated for 15 min, shaken for 2 hr on an orbital shaker at 140 rpms, and 
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then centrifuged at 13000 g for 15 min. 400 μl of sample volume was collected into a glass vial, dried under a gase-
ous nitrogen stream, methoximated in pyridine with 40 µL of 15 mg/mL methoxyamine hydrochloride, and then 
trimethylsilylated with 40 µL MSTFA (N-methyl-N-(trimethyl-silyl)trifluoroacetamide) +1%TMCS (chlorotri-
methylsilane) reagent. The derivatized extracts were analyzed as described previously82. Metabolic profiling was 
performed using an Agilent 6890 GC coupled to a 5973 N MSD mass spectrometer with a scan range from m/z 
50 to 650 (Agilent Technologies, Inc., Santa Clara, CA). Separation was achieved with a temperature program of 
80 °C for 2 min, then ramped at 5 °C/min to 315 °C and held at 315 °C for 12 min, a 60 m DB-5MS column (J&W 
Scientific, 0.25 mm ID, 0.25 um film thickness) and a constant flow of 1.0 ml/min of helium gas. A standard alkane 
mix was used for GCMS quality control and retention index calculations. The data were deconvoluted using 
AMDIS and annotated through mass spectral and retention index matching to an in-house constructed spectra 
library. The unidentified components were then searched and identified using spectral matching to a commercial 
NIST17 mass spectral library. The combined identifications were saved as an.ELU file, and the abundance of the 
ions were extracted using custom MET-IDEA software83. The abundances were then normalized to the internal 
standard, ribitol, and the normalized values were used for statistical comparisons.

Statistical Analyses of Metabolomic Data. Multivariate statistical analyses such as PLS-DA, ANOVA, box plots, 
and volcano plots were performed with the MetaboAnalyst 3.0 program after data pre-treatments, ie, normal-
ization to the sum, log transformation and Pareto scaling (http://www.metaboanalyst.ca/). Changes in metab-
olite abundances were considered statistically significant when their p values were less than or equal < to 0.05. 
Statistical significance of the obtained PLS-DA model was evaluated with a permutation test (permutation num-
ber: 1000). The PLS-DA model was considered statistically significant if the permutation test p value less than or 
equal to 0.05. This program was also used to determine based on the overall metabolite changes in the SOY vs. 
CON groups those pathways that would be predicted to be affected in the SOY groups. The metabolomic data 
was analyzed by both a one-way ANOVA with Fisher’s least significant difference (using the MetaboAnalyst 3.0 
program) and two-way ANOVA using IBM SPSS Statistics Software program (IBM, Armonk, NY).

Integrative Correlation Analyses. The cecal microbial community was analyzed as previously described12. 
Multivariate Association with Linear Models (MaAsLin) analysis was performed using default parameters with 
animal ID being the random effect to assess specific taxa changes (https://huttenhower.sph.harvard.edu/maaslin). 
These data are included in12. The relative abundance of cecal microbial taxa that were significantly upregulated 
vs. downregulated due to soy consumption were distinguished for correlation analyses. Correlations among the 
detected fecal metabolites and relative abundances of the cecal microbial taxa were performed using Spearman 
correlation coefficient using R84. Zero filling is common in some metabolomics data processing tools and can 
skew correlation analyses data. This is often remedied by zero filling with a fixed value or a proportionate noise 
value; i.e. half the noise. However, our workflow integrates an ion intensity over a defined time window and 
we seldom get zero values. Thus, zero filling is not a significant issue for our workflow. In reviewing our data, 
we found 1 unknown metabolite m/z 289.1 (RT 16.0175,Unknown) that had a zero value in three samples. No 
zero filling, however, was used for this sample. Similarly, correlations among detected fecal metabolites and 
immune-metabolic/physiological parameters and gene expression data were also examined. Top 25 correla-
tions were identified based on strongest P value association. The usage of ranked-based correlation analyses (i.e. 
Spearman) addresses potential concern for outliers. Moreover, microbiome/metabolome data can be variable, and 
thus it is difficult to determine true outliers vs. biologically relevant variations, which can be equally as important. 
It is for this reason that we used sufficient number of individuals to capture the full range of effects.

Data Availability
All data generated from this current study are contained within the manuscript or as supplementary material. 
Raw and processed metabolomic data are also available at https://sumnerlab.missouri.edu/download/ and within 
the NIH Metabolomics Workbench database: http://www.metabolomicsworkbench.org/.
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