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Sequential state discrimination of 
coherent states
Min Namkung & Younghun Kwon

Sequential state discrimination is a strategy for quantum state discrimination of a sender’s quantum 
states when N receivers are separately located. In this report, we propose optical designs that can 
perform sequential state discrimination of two coherent states. For this purpose, we consider not 
only binary phase-shifting-key (BPSK) signals but also general coherent states, with arbitrary prior 
probabilities. Since our optical designs do not include electric feedback, they can be implemented 
without difficulty. Furthermore, we analyze our proposal for the case of photon loss. We also 
demonstrate that sequential state discrimination of two coherent states performs better than the 
probabilistic quantum cloning strategy. This proposal can facilitate multiparty QKD based on coherent 
states.

In quantum physics, if quantum states of a physical system are not orthogonal to each other, it is not always pos-
sible to determine the quantum state of the system. Therefore, to discriminate the quantum state, it is necessary 
to establish an appropriate strategy. Quantum state discrimination is an important research topics in quantum 
information processing. This concept can be understood as a game between a sender Alice and a receiver Bob. 
Alice prepares a quantum state out of N quantum states, with a prior probability. The prior probability is known 
to the sender and the receiver. Bob sets up his measurement system to optimaly discriminate the quantum states 
of Alice. The measurement result of Bob is divided into an inconclusive result and N conclusive results. When 
Bob obtains an inconclusive result, he cannot guess the quantum state sent by Alice. If Bob has a conclusive result, 
he can guess the quantum state prepared by Alice. However, every conclusive result does not produce a correct 
result.

Therefore, quantum state discrimination requires a suitable strategy. When only conclusive results are allowed, 
one possible strategy is to maximize Bob’s guessing probability. This strategy is called minimum error discrimi-
nation1–5. Meanwhile, when the quantum states of Alice are linearly independent, it is possible for Bob to develop 
a strategy whereby he can trust his conclusive result6,7. This strategy is called unambiguous discrimination8–12, 
which can be applied to not only quantum key distribution (QKD)13 but also quantum state tomography14. The 
maximal confidence strategy15 is one where Bob sets up a measurement and maximizes the confidence of the 
conclusive result. In the case of error margin strategy, there is a finite margin of error probability, and Bob mini-
mizes the possibility of inconclusive result16–19. The strategy of fixed rate of inconclusive result20–25 was proposed 
whereby the probability an inconclusive result is fixed.

In 2013, J. A. Bergou et al.26 proposed sequential state discrimination, which can be applied to multiple receiv-
ers. Let us assume that a sender Alice, and two receivers Bob and Charlie are separated in space. In sequential 
state discrimination, Bob performs non-optimal unambiguous discrimination on the quantum states of Alice. 
If he obtains a conclusive result, he sends his post-measurement state to Charlie. Charlie then performs optimal 
unambiguous discrimination on the post-measurement state of Bob. It should be noted that classical communi-
cation is not allowed between Bob and Charlie. The purpose of sequential state discrimination is to maximize the 
probability that Bob and Charlie correctly discriminate the quantum states of Alice. J. A. Bergou et al.26 and C.-Q. 
Pang et al.27 provided the optimal success probability of sequential state discrimination for two pure states with 
identical prior probability. In 2017, sequential state discrimination of two mixed states was investigated28. Also, 
M. Hillery and J. Mimih29 produced the success probability of sequential state discrimination for N symmetric 
pure states. In 2018, the structure of sequential state discrimination for arbitrary N pure states with general prior 
probability was investigated30. In fact, sequential state discrimination provides the answer to the question “Can we 
obtain information about a before-measurement quantum state, from a post-measurement state?”31. In addition, 
sequential state discrimination can be used for sharing a secret key in mult-parties.
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Recently, M. A. Solis-Prosser et al.32 developed an optical design for sequential state discrimination of 
non-orthogonal two polarized photon states. In this report, we propose optical designs for sequential state dis-
crimination of two arbitrary coherent states, which can produce an optimal success probability. Our models are 
based on the result of K. Banaszek33 and B. Huttner et al.34, which will be called Banaszek model and Huttner-like 
model. Even though our models can optimally perform sequential state discrimination of arbitrary two coherent 
states, they do not require electric feedback35–39 or interactions with other systems40,41. Our models consist only 
of a beam combiner, beam splitter, and photon detector. We can show that by using the Banaszek model or the 
Huttner-like model, Bob and Charlie can achieve the optimal success probability. It should be noted that since 
the Huttner-like model uses a mixture of auxiliary coherent light, it may be more applicable to secure QKD. 
Furthermore, we demonstrate an analysis of sequential state discrimination of two coherent states, in a realistic 
situation involving photon loss. In addition, we show that sequential state discrimination of two coherent states 
can perform better than probabilistic quantum cloning42.

Results
Optimal sequential state discrimination of binary pure states. Let us briefly explain the case of two 
pure states in sequential state discrimination, as shown in Fig. 1. A sender Alice prepares a quantum state ψi  out 
of non-orthogonal two pure states ψ ψ{ , }1 2 , with a prior probability qi. Two receivers Bob and Charlie should 
be able to discriminate the quantum states of Alice, without error. Therefore, they must perform unambiguous 
discrimination.

If Bob and Charlie can use a classical communication, the best strategy of Bob and Charlie is that without error, 
Bob optimaly discriminates Alice’s pure states and sends his measurement result to Charlie, through classical 
communication. Even though this strategy offers high success probability, the usage of classical communication is 
vulnerable to eavesdropping. Therefore, for security reasons, classical communication should not be allowed 
between Bob and Charlie. This condition is an important constraint on sequential state discrimination. In this 
process, a receiver-Bob, should use non-optimal unambiguous discrimination on Alice’s quantum state ψi

28,30. 
When Bob obtains a conclusive result, he sends his post-measurement state ψ′i  to another receiver Charlie. 
Charlie should then perform optimal unambiguous discrimination on the post-measurement state of Bob. When 
Bob and Charlie obtain a conclusive result, they can share the information encoded in Alice’s quantum state. The 
probability that Bob and Charlie obtain the conclusive result is given by

ψ ψ ψ ψ ψ ψ ψ ψ= 〈 | | 〉 〈 ′ | ′ | ′ 〉 + 〈 | | 〉 〈 ′ | ′ | ′ 〉.ˆ ˆ ˆ ˆP q M M q M M (1)s
B C( , )

1 1 1 1 1 1 1 2 2 2 2 2 2 2

where ˆ ˆ ˆM M M{ , , }0 1 2  ( ′ ′ ′ˆ ˆ ˆM M M{ , , }0 1 2 ) denotes the POVM of Bob (Charlie) and M̂0 ( ′M̂ 0) describes the POVM 
element corresponding to the inconclusive result of Bob (Charlie). When ≠i 0, M̂i ( ′M̂ i) is the POVM element 
corresponding to a conclusive result i of Bob (Charlie).

As previously indicated, the purpose of sequential state discrimination is to maximize the success probability 
of Eq. (1). If the prior probabilities are identical and ψ ψ= |〈 | 〉| ≤ −s 3 2 21 2 , the optimal success probability 
when Bob and Charlie discriminate every pure state of Alice is expressed by26

= − .⁎P s(1 ) (2)s
B C( , ) 2

Meanwhile, if > −s 3 2 2, the optimal success probability when Bob and Charlie discriminate only one of 
two pure states of Alice is given by27

= − .⁎P s1
2

(1 ) (3)s
B C( , ) 2

Figure 1. The scenario of sequential state discrimination, comprising a sender Alice and two receivers Bob and 
Charlie. Alice prepares a pure quantum state ψi  with prior probabilities qi and sends it to Bob. Bob performs 
non-optimal unambiguous discrimination on Alice’s pure state. Charlie does optimal unambiguous 
discrimination on Bob’s post-measurement state. Classical communication is not allowed between Bob and 
Charlie.
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If the two prior probabilities q1 and q2 are not equal, it is difficult to analytically determine the optimally suc-
cess probabilty. However, When Bob and Charlie discriminate only one of the two pure states of Alice, the success 
probability is expressed by30

= − .⁎P q q smax { , }(1 ) (4)s
B C( , )

1 2
2

when the prior prabability is identical, Eq. (4) becomes Eq. (3). The detailed explanation can be found in the 
Method and the result of M. Namkung et al.30.

Optical design of sequential state discrimination. In this section, we propose optical designs for 
sequential state discrimination of binary coherent states. Firstly, using the models of Banaszek33 and Huttner et al.34,  
we show how to implement a generalized measurement to perform unambiguous discrimination. We call the 
models the Banaszek model and the Huttner-like model. Based on the models, we demonstrate sequential state dis-
crimination of two coherent states, which can be performed as a proof-of-principle experiment. In addition, since 
coherent states are robust to a noisy environment36, the optical designs for sequential state discrimination of two 
coherent states can be applied in the construction of a robust multiparty QKD. Specially, when the Huttner-like 
model is used, the security of the multiparty QKD can be improved.

Design idea. The discrimination of non-orthogonal coherent states is a subject of study which has generated 
significant research interest43. In the case of minimum error discrimination of coherent states, the way to obtain 
the Helstrom bound is known1. However, the an appropriate practical receiver for achieving the Helstrom bound 
has not been identified. In 1973, Dolinar suggested a receiver which can perform minimum error discrimination 
of two coherent states-using a beam combiner, photon detector, and feedback control35. Subsequently, many 
researchers attempted to implement receivers using a similar idea which can facilitate minimum error discrim-
ination of N(>2) coherent states36–38. However, it has been shown that any receivers similar to Dolinar’s cannot 
achieve the Helstrom bound39. M. Sasaki and O. Hirota44 attempted to achieve minimum error discrimination of 
two coherent states by implementing rank-1 projective measurement. Meanwhile, since the unitary operator used 
in the result of M. Sasaki and O. Hirota44 was non-Gaussian, it could not be implemented using linear optics45. In 
order to achieve the Helstrom bound, M. P. da Silva et al.40 exploited an interaction between the quantum com-
puter and the coherent states. However, it is difficult to implement the quantum computer in practice. Meanwhile, 
R. Han et al.41 used Jaynes-Cummings interaction46 between light and a two-level atom in order to demonstrate 
nearly minimum error discrimination of two coherent states with different phases.

K. Banaszek33 and B. Huttner et al.34 showed that a beam splitter, photon detector, and beam combiner can be 
used to perform optimal unambiguous discrimination of two coherent states with identical prior probability. In 
fact, even though unambiguous discrimination of coherent states has been studied less extensively than minimum 
error discrimination of coherent states33,34,47, it may be implemented easier than minimum error discrimination 
of coherent states. For example, Doliner’s receiver is very difficult to implement45 due to electric feedback, but 
optimal unambiguous discrimination can be implemented by a linear optics - even when the priror probability is 
not identical, without considering electric feedback, a quantum computer40 or Jaynes-Cummings interaction41.

Therefore, using the fact that optimal unambiguous discrimination of two coherent states with an arbitrary 
prior probability can be accomplished using a beam splitter, beam combiner, and photon detector, we will show 
that the post-measurement state of the non-orthogonal two coherent states can be obtained by utilizing the 
method of K. Banaszek33 and B. Huttner et al.34. The post-measurement state is needed for sequential state dis-
crimination of Bob and Charlie.

Implementing optimal unambiguous discrimination. First, let us propose the optical model of Fig. 2(a) by mod-
ifying the result of K. Banaszek33. The model will be called Banaszek model. It is composed of a beam splitter with 
a reflection ratio ∈R [0, 1], a beam combiner, and a photon detector. The beam combiner can be described by a 
displacement operator γ = α α−ˆ ˆ ˆ† ⁎

D e( ) a a which satisfies γ β γ β= +γβ γ β−ˆ ⁎ ⁎
D e( ) ( )/2  (Here, we omits the phase 

term, for convenience). And ˆ ˆ†a a( ) is an annihilation operator (creation operator). The displacement operator γD̂( ) 
can be implemented by 50/50 beam splitter and laser source45: In order to explain how to work in a detailed way, 
let us denote two input ports of 50/50 beam splitter as a and b. First, coherent state α  is sent to input port a. Next, 
coherent state γ′ , having amplitude of γ α γ′ = − +( 2 1) 2 , is sent to input port b. Then, 50/50 beam split-
ter transforms input coherent state α γ⊗ ′a b into output coherent state α γ α γ+ ⊗ − −( 2 1)a b

. Finally, 
coherent state α γ+  of output port a is chosen. Alice prepares a coherent state β β β∈ { , }i 1 2  with a prior 
probability qi, where β ∈i . After Alice’s coherent state βi  goes through beam splitter, the coherent state 
becomes β β⊗ −R R1i i . The partial coherent state reflected by the beam splitter goes through the dis-
placement operator β= −ˆ ˆD D R( )B1 1 . Meanwhile, the partial coherent state is transmitted through the beam 
splitter and goes through the displacement operator β= − −ˆ ˆD D R( 1 )B2 2 . When =i 1, two photon detectors 
measure β β⊗ − −R0 1 ( )1 2 . The photon detector used in the Banaszek model determines whether the 
number of photons is zero or not. That is, the i (∈ {1, 2})-th photon detector is described by projective measure-
ment Π Πˆ ˆ{ , }i iB

(off)
B
(on)

. Here, measurement element becomes Π = Π = −ˆ ˆ0 0 , 0 0i iB
(off)

B
(on)

. If the measure-
ment result of the two photon detectors is (off, on), Bob can detect that the coherent state prepared by Alice is β1 . 
When =i 2, two photon detectors measure β β− − ⊗R ( ) 01 2 . If the measurement result is (on, off), Bob 
can determine that the coherent state prepared by Alice is β2 . When for arbitrary i, the measurement result of the 
two photon detectors is (off, off), Bob cannot obtain information on Alice’s coherent state. In other word, the 
measurement result of (off, off) corresponds to the inconclusive result. In the case of the ideal Banaszek model, if 
Alice’s coherent state is β1  ( β2 ), the measurement result of Bob cannot be (on, off)((off, on)). Therefore, the 
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Banaszek model can discriminate the two coherent states without error and the measurement result of the two 
photon detectors cannot be (on, on) regardless of the coherent state. The measurement result of the photon detec-
tor is summarized in the table of Fig. 2(c). The average failure probability of Bob is given as follows:

β β β β

β β β β

= | 〉〈 | ⊗ | − − 〉〈 − − |Π ⊗ Π

+ |− − 〉〈− − | ⊗ | 〉〈 |Π ⊗ Π

= + .β β β β− − | − | − | − |

ˆ ˆ

ˆ ˆ

P q R R

q R R

q e q e

Tr[ 0 0 1 ( ) 1 ( ) ]

Tr[ ( ) ( ) 0 0 ]

(5)

f
B

R R

( )
1 1 2 1 2 B1

(off)
B2
(off)

2 1 2 1 2 B1
(off)

B2
(off)

1
(1 )

2
1 2

2
1 2

2

The condition that allows the maximum of Eq. (5) to be determined can be found using ∂ ∂ =P R/ 0f
B C( , ) :

β β
= +

| − |
.⁎R

q
q

1
2

1 ln
(6)1 2

2
2

1

when < <⁎R0 1, Bob can discriminate two coherent states of Alice. In this case, the minimum failure prob-
ability of Bob is given by

= < < .β β−| − |⁎ ⁎P q q e R2 , 0 1 (7)f
B( )

1 2
/21 2

2

If =⁎R 0, Bob discriminates only β1 . In this case, the minimum failure probability of Bob is given by

= + = .β β−| − |⁎ ⁎P q e q R, 0 (8)f
B( )

1 2
1 2

2

Meanwhile, when =⁎R 1, Bob discriminates only β2 . In this case, the minimum failure probability of Bob is

= + = .β β−| − |⁎ ⁎P q q e R, 1 (9)f
B( )

1 2
1 2

2

here, β β= |〈 | 〉|β β−| − |e /2
1 2

1 2
2

. Equations (7–9) is the analytic minimum failure probability obtained by G. 
Jaeger and A. Shimony11.

We will now examine the details of the receiver proposed by Huttner et al.34. In this receiver, Alice encodes her 
message into orthogonally polarized cohrent signals α α| 〉 |− 〉{ , }. The coherent state is combined with horizon-
tally polarized auxilliary coherent light α|− 〉 and is sent to Bob. The coherent signal is reflected off in Bob’s polar-

Figure 2. The structure of the Banaszek model and the Huttner-like model. (a) The Banaszek model. (b) The 
Huttner-like model. Both models use beam splitters, beam combiners (displacement operator), and photon 
detectors. (c) The measurement result in both models, in terms of on/off of photon detector.
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ized beam splitter. Meanwhile, the auxilliary coherent light is transmitted through the polarized beam splitter. The 
polarization of the auxilliary coherent state which passes through the polarized beam splitter is changed to a 
vertical polarization when it traverses through the rotator.

When the coherent signal prepared by Alice is α| 〉, a photon is not detected in the first photon detector. 
Meanwhile, if Alice prepares α|− 〉, a photon is not detected in the second photon detector. Therefore, similar to 
the Banaszek model, this model can discriminate coherent signals of Alice without eror, according to the result of 
the measurement in two photon detectors of Bob, which is (off, on) or (on, off) (See Fig. 2(c)). If Eve wants to 
eavesdrop on Alice’s message, the scenario can be described as follows: Firstly, Eve decouples the coherent signal 
and auxilliary coherent light using a polarized beam splitter. Then, setting up the beam splitter in the part of 
coherent signal, Eve may obtain a part of Alice’s coherent signal. If Eve can obtain information about Alice’s 
coherent signal, the amplitude of the coherent signal and the auxilliary coherent light cannot be the same. 
Therefore, Alice and Bob can detect the existence of eavesdropper Eve.

However, when a prior probability of two coherent signals is arbitrary, Bob should use an appropriate beam 
combiner in front of the two photon detectors, in order to perform unambiguous discrimination. The modified 
model is shown in Fig. 2(b), and is called the Huttner-like model. In Fig. 2(b), Alice combines one of the 
non-orthogonal two polarized coherent states β β{ , }1 2  with the horizontally polarized coherent state βaux  and 
sends it to Bob. Here, qi is the prior probability of the coherernt state βi . In fact, coherent signal is reflected at 
polarized beam splitter. Meanwhile, auxiliary coherent light penetrates polarized beam splitter. The polarization of 
the auxillary coherent light passing through the polarized beam splitter is changed into a vertical polarization by 
the rotator. Therefore, coherent signal and auxiliary coherent light can interact with each other at the beam splitter. 
Bob’s beam splitter produces the coherent state β β β β+ − ⊗ − −R R R R1 1i iaux aux  at two output 
ports. The coherent state is transmitted through Bob’s displacement operator β β= − − −ˆ ˆD D R R( 1 )B1 1 aux  
and β β= − − −ˆ ˆD D R R( 1 )B2 2 aux . Eventually, Bob’s on/off detectors locally measure coherent state 

β β β β− ⊗ − −R R( ) 1 ( )i i1 2 . When Alice’s coherent signal is β1 , a photon is not detected in the first 
photon detector. If Alice’s coherent signal is β2 , a photon is not detected in the second photon detector. Therefore, 
without error, Bob can discriminate Alice’s coherent signals by the result of measurements based on the (off, on) or 
(on, off) of the detector. In the Huttner-like model, the average failure probability is the same as Eq. (5). Smilar to 
the Banaszek model, the minimum failure probability coincides with the analytic limit11.

Constructing post-measurement states. In this section, the method to produce a post-measurement state in the 
Banaszek model and Huttner-like model will be explained. In the Banaszek model which is shown in Fig. 3(a), 
two kinds of post-measurement state can be obtained by adding three beam splitters (BS1, BS2, BS3). In Fig. 3(a), 
a part of the partial coherent state is reflected on BS1 and BS2. These reflected components which meet at BS3, 
represent a post-measurement state. In order for light to be confined to only one port out of the two output ports 
of BS3, the reflection ratio R3 is determined as follows:

=
−

+ −
.R R R

R R R R
(1 )

(1 ) (10)3
2 0

1 0 2 0

The light which comes from BS3 goes through a π phase shifter. When Alice prepares a coherent state βi , 
Bob’s Banaszek model produces a post-measurement state βf i , which is sent to Charlie. Here 

= + −f R R R R(1 )1 0 2 0 . When >R R1 2, f satisfies the inequality ≤ ≤R f R2 1. Meanwhile, when <R R1 2, we 
have ≤ ≤R f R1 2 (See Fig. 4). By combining the two inequalities, we can obtain the following inequality:

≤ ≤ ∀ ∈ .R R f R R R Rmin { , } max { , }, , [0, 1] (11)1 2 1 2 1 2

Figure 3. (a) Banaszek model and (b) Huttner-like model, which can build post-measurement state.
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If =R R1 2, by Eq. (11) we can have an equality of f. Since when = =R R 01 2 , we have =f 0, the overlap of two 
post-measurement states βf 1  and βf 2  becomes one. This implies that the post-measurement states of Bob 
cannot be discriminated, because Bob optimally discriminates Alice’s two coherent states. Meanwhile, when 

= =R R 11 2 , we have =f 1, which means that the overlap of the post-measurement states is identical to that of 
the two coherent states of Alice, since Bob did not obtain any information about Alice’s coherent states. In fact, by 
Eq. (11), BS1, BS2, and BS3 of the Banaszek model can control the overlap of the post-measurement states, which 
lies in β β β β|〈 | 〉| ≤ |〈 | 〉| ≤f f 11 2 1 2 . This argument is consistent with the result of J. A. Bergou et al.26.

The Huttner-like model, which can build a post-measurement state is more complex than the Banaszek model. 
This is because, unlike the Banaszek model, the Huttner-like model uses two different polarized coherent light. 
In the latter, which is shown in Fig. 3(b), the beam splitters BS1 and BS2 are installed for a coherent signal and 
auxilliary coherent light. The coherent light passing through BS2 goes to the rotator (Rot). Therefore, the lights 
that traverses through BS1 and BS2 meet at BS3. Meanwhile, the reflected light at BS1 and BS2 meet at PBS2. In 
the process, the reflected light at BS2 traverses the phase shifter (PS). The two optical cmponents which meet at 
PBS2, construct a post-measurement state of Bob.

When = =R R 01 2 , Bob’s post-measurement state becomes a vacuum state. However, if = =R R 11 2 , Bob 
does not perform unambiguous discrimination. Therefore, the reflection ratios of BS1 and BS2 determine the 
trade-off between the ability of Bob to perform unambiguous discrimination and the overlap of post-measurement 
states.

Implementing optimal sequential state discrimination. In the previous section, we described the method to dis-
criminate two coherent states without error, by using the Banaszek model or the Huttner-like model. In addition, 
the post-measurement state of non-orthogonal coherent state can be produced using those two models. We can 
then construct an optimal sequential state discrimination of two coherent states with arbitrary prior probability, 
by applying those models.

Herein, we propose the optical design for sequential state discrimination of two coherent states, based on the 
Banaszek model or the Huttner-like model, which can be seen in Fig. 5. The optical design is one of the main 
results. In Fig. 5(a), Bob constructs the Banaszek model to perform non-optimal unambiguous discrimination 
then sends a post-measurement state β βf f{ , }1 2  to Charlie. Charlie builds the Banaszek model to perform 
optimal unambiguous discrimination on Bob’s post-measurement state. The success probability Ps

B C( , ) that Bob 
and Charlie successfully perform sequential state discrimination depends on the reflection ratio R R R, ,0 1 2, and 
R4 of the beam splitter BS0, BS1, BS2, and BS4 respectively in the Banaszek model of Bob and Charlie. The success 
probability Ps

B C( , ) can be expressed by =⁎P Pmaxs
B C

R R R R s
B C( , )

{ , , , }
( , )

0 1 2 4
. However, since Ps

B C( , ) is a function of four 
variables R R R, ,0 1 2, and R4, and is difficult to obtain analytically. In this article, we use constrained optimiza-
tion48. Here, the constraints are inequalities where every reflection ratio exists in the region of [0, 1].

Figure 5(b) shows the Huttner-like model constructed by Bob and Charlie. The Huttner-like model of Bob 
discriminates non-optimally the two coherent states of Alice without error. However, the Huttner-like model of 
Charlie discriminates optimally the post-measurement states of Bob without error. The optimal success probabil-
ity of the Huttner-like model depends on the reflection ratios of R R,1 3, and R4 in beam splitters BS1, BS3, and BS4 
of Bob and Charlie, which is given by =⁎P Pmaxs

B C
R R R s

B C( , )
{ , , }

( , )
1 3 4

.

Example 1. (Binary phase-key-shifting (BPSK) coherent states) In this example, we consider sequential state 
discrimination of BPSK signals. The M–ary PSK coherent state is defined as:

α α π
| 〉 = | 〉 =







.u u i

M
, exp 2

(12)m
m

Figure 4. The value of f(R0), in terms of R1 and R2.
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here, α ∈ . The M–ary PSK coherent state is linearly independent and has a symmetry1,45, expressed as:

α α π
| 〉 = | 〉 =







.ˆ ˆ ˆV V i

M
n, exp 2

(13)m 0

here, n̂ is the photon number operator. In the sequential discrimination of the BPSK signal ( =M 2), Alice 
prepares one of the BPSK coherent states α α|+ 〉 |− 〉{ , }, with an arbitrary prior probability q+ (q−). That is, 

≠+ −q q . When Bob and Charlie construct the Banaszek model, the success probability of sequential state dis-
crimination is given as:

= − − + − − .α α α α
+

− − − − −
−

− − −P q e e q e e{1 }{1 } {1 }{1 } (14)s
B C R R R f R R R f( , ) 4(1 )(1 ) 4(1 ) 4(1 ) 42 0

2
4

2
1 0

2
4

2

Meanwhile, when Bob and Charlie construct the Huttner-like model, the success probability for sequential 
state discrimination is given by

= − − + − − .α α α α
+

− − − − −
−

− − −P q e e q e e{1 }{1 } {1 }{1 } (15)s
B C R R R R R R R R( , ) 4(1 )(1 ) 4(1 ) 4 (1 ) 43 1

2
4 1

2
3 1

2
4 1

2

Here, the auxiliary coherent light is assumed to be α− 34. If two prior probabilities q+ and q− are identical, 
one can find an analytic condition reaching to the result of J. A. Bergou et al.26 in both the Banaszek model and the 
Huttner-like model. (The detailed analysis is given in the Method section). When the prior probabilities are dif-
ferent, the optimal success probability is shown in Fig. 6. In this figure, the solid line shows the optimal success 
probability when Bob and Charlie discriminate the every coherent state of Alice. The solid line in the case of 

=+ −q q  coincides with the result of J. A. Bergou et al.26:

α α= − 〈− | 〉 = − .α−⁎P e{1 } (1 ) (16)s
B C( , ) 2 22

The dashed line shows the optimal success probability when Bob and Charlie discriminate only one of two 
coherent states of Alice. In that case, the optimal success probability for different prior probabilities is expressed 
by27,28,30

Figure 5. Sequential state discrimination using (a) Banaszek model and (b) Huttner-like model.
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α α= − 〈− | 〉 = − .α−⁎P e1
2

{1 } 1
2

(1 ) (17)s
B C( , ) 2 2 22

In Fig. 6, the red circle shows the optimal success probability when Bob and Charlie construct the Banaszek 
model (Eq. (14)) and the Huttner-like model (Eq. (15)). From Fig. 6(a–d), we can see that optimal sequential 
state discrimination can be achieved using the Banaszek model or the Huttner-like model. This result implies that 
the proof-of-principle experiment of sequential state discrimination can be performed using not only polarized 
photon states32 but also coherent states. Therefore, we can obtain multiparty QKD of coherent states by sequential 
state discrimination of these states. Since every receiver should discriminate every quantum state of the sender26 
in the case of QKD, the region of large α is more useful for multiparty QKD. This is because when α is large, the 
solid line is greater than the dashed line. However, as the difference between prior probabilities becomes large, the 
minimum of α increases when the solid line is greater than or equal to the dashed line. However, in the case of 
equal prior probability, coherent states of a small amplitude can be used for multiparty QKD.

Example 2. (Arbitrary two coherent states) Let us consider the sequential state discrimination of two arbitrary 
coherent states β β| 〉 | 〉{ , }1 2  when β ∈1  and β ∈2  are different. Since β β θ β θ= | | + | |icos sini i i i i, β β| − |1 2

2 can 
be expressed as:

β β β β β β θ θ θ θ| − | = | | + | | − | | | | ∆ ∆ = − .2 cos , (18)1 2
2

1
2

2
2

1 2 1 2

Firstly, we consider the two cases of β θ π| | = ∆ = −3 , /22  (Fig. 6(e)) and β θ π| | = ∆ =6 , /42  (Fig. 6(f)). 
In Fig. 6, we assume = .q 0 651  and = .q 0 352 . When Bob and Charlie construct the Banaszek model, the success 
probability is given by:

= − −

+ − − .

β β β β

β β β β

− − | − | − − | − |

− − | − | − | − |

P q e e

q e e

{1 }{1 }

{1 }{1 } (19)

s
B C R R R f

R R R f

( , )
1

(1 )(1 ) (1 )

2
(1 )

2 0 1 2
2

4 1 2
2

1 0 1 2
2

4 1 2
2

If Bob and Charlie use the Huttner-like model, the success probability is obtained by:

= − −

+ − − .

β β β β

β β β β

− − − | − | − − | − |

− − | − | − | − |

P q e e

q e e

{1 }{1 }

{1 }{1 } (20)

s
B C R R R R

R R R R

( , )
1

(1 )(1 ) (1 )

2
(1 )

3 1 1 2
2

4 1 1 2
2

3 1 1 2
2

4 1 1 2
2

Figure 6. The optimal success probability of two pure states and the optimal success probability from the 
Banaszek model and the Huttner-like model. The black solid line (black dashed line) denotes the optimal 
success probability when Bob and Charlie discriminate every pure states of Alice (only one of two pure states of 
Alice). The red circle denotes the optimal success probability of optical models. (a–d) Denotes the case of BPSK 
signal when (a) = .+q 0 5, (b) = .+q 0 55, (c) = .+q 0 6, (d) = .+q 0 65. (e,f) Denote the case of coherent states 
when (e) β| | = 32 , π∆ = − /2 and (f) β| | = 62 , π∆ = /4, with = .+q 0 65.
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In Fig. 6, we can see that both the Banaszek model and the Huttner-like model can achieve optimal success 
probability. The solid line (dashed line) shows the optimal success probability when Bob and Charlie discriminate 
every (only single) coherent state of Alice. The red circle displays the optimal success probability when Bob and 
Charlie construct the Banaszek model and the Huttner-like model. Also, Fig. 6 shows that in the case of asym-
metric two coherent states, an extremely large amplitude is needed for multiparty QKD. This implies that two 
arbitrary coherent states is less useful for sequential state discrimination than BPSK signals.

Figure 7. The scenario of sequential state discrimination in a realistic situation. (a) The case of the Banaszek 
model, where photon loss is represented by a beam splitter. (b) The case of the Huttner-like model. The model 
i of equivalent quantum channels is described in Fig. 8. (c) Denotes the success probability when the BPSK 
signal is considered. The black solid line is the optimal success probability in the ideal case. The black dotted line 
(red dotted line) denotes the success probability of the Banaszek model with uncorrected (corrected) 
displacement operator, when = .+q 0 65, = .=q 0 35.

Figure 8. (a) The equivalent model of an incomplete quantum channel, which appears in the Huttner-like 
model. When the model exists between Alice and Bob (Bob and Charlie), we have η η= AB (η η= BC). (b–d) 
Denote the success probability when the model 1, 2, and 3 are used. The solid line is the optimal success 
probability of the ideal case. The black(red) dotted line denotes the success probability when the uncorrected 
(corrected) displacement is considered. In (b–d), the BPSK signal is considered, with = .+q 0 65.
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Considering imperfect condition. Up to now, we have explained that sequential state discrimination can be opti-
mally accomplished using the Banaszek model or the Huttner-like model. However, the quantum system may 
interact with the environment. For example, there can be a photon loss in coherent states49. The time evolution of 
the quantum state, which experiences a photon loss, is described by the following master equation49:

 ρ ρ ρ∂
∂

= + .
ˆ ˆ ˆ ˆ ˆ
t

( ) ( ) (21)1 2

here, ˆ
i  is the superoperator given by  ρ γ ρ= ∑ˆ ˆ ˆ ˆ ˆ †a a( ) i i i1  and  ρ γ ρ ρ= − ∑ +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †a a a a( ) ( /2) ( )i i i i i2 . The real 

number γ denotes a decay rate. The time-evolution of the coherent state, described by Eq. (21), is the same as the 
case where a light goes through beam splitter with a transmition rate η = γ−e t50.

Imperfect Banaszek model. Suppose that Alice prepares one of two BPSK coherent states α α|+ 〉 |− 〉{ , } and 
sends it to Bob. If there is a photon loss in the quantum channel between Alice and Bob, the coherent state of Alice 
is given by

α η α|± 〉 → |± 〉. (22)AB

here, η ∈ [0, 1]AB  is the efficiency of the quantum channel between Alice and Bob. If the displacement oper-
ator is not modified to deal with a noise, there is an error in Bob’s on/off detector. Under the incomplete quantum 
channel (See Fig. 7), the coherent state preserves purity. When the displacement operator is corrected, quantum 
state discrimination can be performed without error. In the Banaszek model, the error can be eliminated when 
the displacement operator of Bob is modified as follows:

α η

α η

→ ′ = − −

→ ′ = − − .

ˆ ˆ ˆ

ˆ ˆ ˆ
D D D R R

D D D R R

( (1 ) ),

( (1 )(1 ) ) (23)

B B AB

B B AB

1 1 1 0

2 2 2 0

Bob sends the post-measurement state α η|± 〉f AB  to Charlie. When there is a photon loss in the quantum 
channel between Bob and Charlie, the coherent state of Bob is obtained by:

α η α η η|± 〉 → |± 〉.f f (24)AB AB BC

here, η ∈ [0, 1]BC  denotes the efficiency of quantum channel between Bob and Charlie. In the case, without 
error, Charlie can perform quantum state discrimination, by correcting displacement operator as follows:

α η η

α η η

→ ′ = −

→ ′ = − .

ˆ ˆ ˆ

ˆ ˆ ˆ
D D D R f

D D D R f

( ),

( 1 ) (25)

C C AB BC

C C AB BC

1 1 4

2 2 4

In the case of an incomplete quantum channel among Alice, Bob, and Charlie, the success probability is displayed 
in Fig. 7(c). (The detailed analysis can be found in the Method section). Here, we assume = . = .+ −q q0 65, 0 35, and 
η η= = .0 8AB BC . In Fig. 7(c), the black solid line shows the optimal success probability of Bob and Charlie when an 
ideal situation is presented. In Fig. 7(c), the black dotted line (red dotted line) shows the success probability (optimal 
success probability) of the uncorrected (corrected) displacement operator in the Banaszek model. The black dotted 
line exhibits a discontinuity near α = .1 32 , because the condition of the beam splitter changes rapidly. In the 
Banaszek model, the success probability decreases when the optical system is corrected.

Imperfect Huttner-like model. Since unlike the Banaszek model, the Huttner-like model combines a coherent 
signal and an auxiliary coherent state whose polarizations are othogonal, modeling an imcomplete quantum 
channel in the Huttner-like model is more difficult than in the Banaszek model. Figure 8(a) shows three quantum 
channels where photon loss is present. In the first model (1), only the coherent signal experiences photon loss. 
In the second model (2), an equal portion of photon loss exists in both the coherent signal and auxiliary coher-
ent state. Meanwhile, In the third model (3), only an auxiliary coherent state experiences photon loss. The 
transmission rate of the beam splitter in 1  and 3  is ηAB. However, the transmission rate of the beam splitter in 
2 is ηAB . The incomplete quantum channel between Bob and Charlie has the same structure as the complete 
quantum channel between Alice and Bob, except for the transmission rate of the beam splitter.

Let us consider the BPSK signal α α|+ 〉 |− 〉{ , } and the auxiliary coherent light α|− 〉. When the incomplete 
quantum channel is 1 , Bob sends the post-measurement state αη± R AB1  and the auxiliary coherent state 

α− R2  to Charlie. Then, Charlie obtains the coherent signal αη η± R AB BC1  and auxiliary coherent light 
α− R2 . Bob and Charlie can discriminate Alice’s quantum state without error if their displacement operators 

are corrected in the following way:

α αη

αη α

α αη η

αη η α

→ ′ = − − − −

→ ′ = − − − −

→ ′ = − −

→ ′ = − − .

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

D D D R R R R

D D D R R R R

D D D R R R R

D D D R R R R

( (1 )(1 ) (1 ) ),

( (1 )(1 ) (1 ) ),

( (1 ) ),

( (1 ) ) (26)

B B AB

B B AB

C C AB BC
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1 1 3 2 3 1

2 2 3 1 3 2

1 1 4 2 4 1
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when the incomplete quantum channel is 2, Bob combines the post-measurement state α η± R AB1  and 
the auxiliary coherent light α η− R AB2  and sends the signal to Charlie. Charlie receives the coherent signal 

α η η± R AB BC1  and the auxiliary coherent light α η η− R AB BC2  from Bob. If the displacement operators of 
Bob and Charlie are corrected in the following manner, it is possible to discriminate Alice’s quantum state without 
error:

α η α η

α η α η

α η η α η η

α η η α η η

→ ′ = − − − −

→ ′ = − − − −

→ ′ = − −

→ ′ = − − .

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

D D D R R R R

D D D R R R R

D D D R R R R

D D D R R R R

( (1 )(1 ) (1 ) ),

( (1 )(1 ) (1 ) ),

( (1 ) ),

( (1 ) ) (27)

B B AB AB

B B AB AB

C C AB BC AB BC

C C AB BC AB BC

1 1 3 2 3 1

2 2 3 1 3 2

1 1 4 2 4 1

2 2 4 1 4 2

when the incomplete quantum channel is 3, Bob combines the post-measurement state α± R1  and auxil-
iary coherent light αη− R AB2 . And Bob sends it to Charlie. Then, from Bob, Charlie receives coherent signal 
and auxiliary coherent light αη η− R AB BC2 . If displacement operators of Bob and Charlie are corrected in the 
following manner, they can discriminate Alice’s quantum state without error:

αη α

α αη

αη η α

α αη η

→ ′ = − − − −

→ ′ = − − − −

→ ′ = − −

→ ′ = − − .

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

D D D R R R R
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D D D R R R R
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1 1 3 2 3 1
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Figure 8 shows the success probability of the quantum channels  ∈i( {1, 2, 3})i . (A detailed analysis can be 
found in the Method section). The solid line represents the success probability of ideal quantum channels. The 
black dotted line (red dotted line) is the success probability of the corrected (uncorrected) case in the Huttner-like 
model. In 2  and 3 , unlike the ideal case, the the success probability of the uncorrected case depends on R2. In 
Fig. 8(c,d), the black dotted line shows the largest case for ∈R [0, 1]2 . Similar to the Banaszek model, Fig. 8(b) 
shows that the success probability of the corrected case is smaller than that of the uncorrected case. Figure 8(b,c) 
show that the difference between the corrected and uncorrected cases diminishes. However, Fig. 8(d) shows that 
the success probability of the corrected case is larger than that of the uncorrected case. In addition, the success 
probability of the corrected case is identical to that of the ideal case.

In fact, the case where photon loss occurs can be understood as the case of existence of eavesdroppers. Let us 
suppose that there are eavesdroppers David and Eve. In that case, David tries to eavesdrop between Alice and Bob, 
but Eve tries to eavesdrop between Bob and Charlie. When David and Eve extract a maximum information from 
the coherent signal, it can be understood as 1  channel and the optimal success probability for the no-correction 
model diminishes rapidly. Therefore, Alice, Bob, and Charlie can detect the existence of the eavesdroppers David 
and Eve. Meanwhile, if David and Eve attempt to extract information from the auxiliary light, which can be 
understood as the case of 3 channel, the optimal success probability of the no-correction model diminishes 
slightly. In that case, Alice, Bob, and Charlie hardly notice the existence of eavesdroppers David and Eve. However, 
David and Eve cannot obtain any information from the coherent signal.

Comparison with quantum probabilistic cloning scheme. In this section, we compare the sequential 
state discrimination strategy with the strategy of quantum probabilistic cloning. When elements of a set of pure states 
are not orthogonal to each other, there is no unitary operation to copy a pure state of the set51. However, there is a 
quantum operation to make a probabilistic copy of a pure state out of non-orthogonal pure states, which was first 
suggested by Duan and Guo52. Based on this idea, a method exists to copy an unknown coherent state with a certain 
probability. Quantum probabilistic cloning strategy of coherent states needs processes such as 
α α α α⊗ → ⊗ → ⊗0 2 0 . Since the process of α α α⊗ → ⊗2 0  can be easily obtained 
using 50/50 beam splitter, one should find a method to increase the amplitude such as α α⊗ → ⊗0 2 0 . 
Ho et al.42 described a method of probabilistic amplification of the coherent state using a controlled-Z gate42. 
According to J. Ho et al.42, the success probability of the process such that α α α→ ′ +g N g( 0 1 ) is given by

α
+

+ | | .
′

P N
g

g
3

1
1 3

(1 )
(29)clone

2

2
2 2

Figure 9(a) describes the state discrimination strategy of multi-parties using a quantum probabilistic cloning 
strategy. Alice prepares a coherent state α α α∈ +| | −| |{ , } out of two coherent states α α+| | −| |{ , }, with 
equal prior probability. The coherent state α  goes through an optical controlled-Z gate, with the pure state 
(ancilla) in a logical basis. Ancilla is measured using the projective measurement. When quantum probabilistic 
cloning succeeds, one can obtain α =g( 2 ) using the optical controlled-Z gate. Then, we can have α α⊗  
when α2  is transmitted through the 50/50 BS. The state α α⊗  is sent to Bob and Charlie. They should then 
perform an optimal discrimination on the phase of α , without an error. The probability, that Bob and Charlie 
optimally discriminate the quantum state, is obtained as:



www.nature.com/scientificreports/

1 2Scientific REPORTS |         (2018) 8:16915  | DOI:10.1038/s41598-018-35047-6

α+ | | − .
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− | |

− | |
P e e

21
(1 2 )(1 ) (30)clone

B C( , )
2

2 2 2
2

2

The result of J. Ho et al.42 indicates that as |α| increases, g becomes smaller than the theoretical value. 
Therefore, if |α| is not very small, the success probability of quantum probabilistic cloning strategy is less than 
Eq. (14). Figure 9(b) shows the success probabilities of sequential state discrimination and quantum probabilistic 
cloning strategies when the quantum channel and detector are perfect. In this figure, sequential state discrimi-
nation strategy produces better success probability than the quantum probabilistic cloning strategy. In a realistic 
situation, the success probability of the sequential state discrimination strategy can be much larger than that of 
the quantum probabilistic cloning strategy.

Discussion
In this report, we proposed optical designs for sequential state discrimination of two coherent states. We showed 
that the proposed Banaszek model and Huttner-like model can optimally perform sequential state discrimina-
tion. It should be noted that the two models use neither electric feedback nor complicated interactions, and are 
easier to implement than receivers for minimum error discrimination35–41,44. Moreover, since the Huttner-like 
model combines Alice’s coherent state with auxiliary light, it can provide a secure QKD to Alice, Bob, and Charlie.

Furthermore, we compared our strategy of sequential state discrimination to that of probabilistic quantum 
cloning. The probabilistic quantum cloning of coherent states includes a process that conditionally amplifies the 
amplitude of unknown coherent states. In addition, the amplification process can be applied only to coherent 
states with a weak amplitude. However, sequential state discrimination can be used in coherent states with any 
amplitude. In addition, the success probability of sequential state discrimination is larger than that of probabilistic 
quantum cloning.

Here, we considered sequential state discrimination of two coherent states. It is natural to extend our result 
to the case of N coherent states. Unfortunately, up to now, optimal unambiguous discrimination for N coherent 
states has not been shown. Even though F. E. Becerra et al.47 proposed unambiguous discrimination of four sym-
metric coherent states, the design does not provide optimal success probabilty53. Therefore, a deeper understand-
ing of optimal unambiguous discrimination for N coherent states is needed.

Methods
Mathematical derivation of optimal success probability. In this section, we derive the optimal suc-
cess probability. The derivation can be found in the result of M. Namkung et al.28,30. Since α α′ ′( , )1 2  exists on the 
tangential point between a plane α α α α= ′ + ′P q q( ) ( )s 1 1 1 2 2 2 and a surface α α α α′ ′ = − ′ − ′ − ′g s( , ) (1 )(1 )1 2 1 2

2, 
α α′ ′( , )1 2  can be obtained from the following condition as:

λ λ
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Eq. (31) yields the following relation:

α
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q
q
q
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(1 ) (1 )

(1 ) (1 )
(32)
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1

1
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By Eq. (32) and α α′ ′ =g( , ) 01 2 , we have following equations:

Figure 9. (a) The strategy using quantum probabilistic cloning42. Here, Bob and Charlie locally use optimal 
unambiguous discrimination. (b) The success probability of sequential state discrimination and quantum 
probabilistic cloning. The red solid line (black solid line) denotes the success probability of ideal sequential state 
discrimination (ideal quantum probabilistic cloning).



www.nature.com/scientificreports/

13Scientific REPORTS |         (2018) 8:16915  | DOI:10.1038/s41598-018-35047-6

α
α

α α α

α

α

α
α

α α α

α

α

′ = − ′ = −
− −

′ = − ′ = −
− −

s
q
q

s q
q

s
q
q

s q
q

1 1
(1 )(1 )

1 1
(1 )(1 ) (33)

1
2 2

1 1 1 2

2 2

1 1

2
1 1

2 2 1 2

1 1

2 2

when α< ′ < − ′ ∀ ∈s i0 1 ( {1, 2})i
2  is fulfilled, the object function Ps
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The inequality, which is equivalent to α< ′ < − ′s0 1i
2, can be given as follows:
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If α α′ = − ′ ′ =s1 , 01
2

2 , the success probability can be analytically obtained:
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In the first inequality, the equality condition is α = 01 , which implies that Bob discriminates only ψ1 . The 
second inequality can be analytically obtained from the condition α∂ ∂ =P / 0s

B C( , )
1 .

When α α′ = − ′ ′ =s1 , 02
2

1 , the success probability can be found as

≤ −P q s(1 ) (37)s
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2
2

By combining Eq. (36) with Eq. (37), we find = −⁎P q q smax { , }(1 )s
B C( , )

1 2
2.

Analytic optimal success probability and optimal designs in the case of equal prior probabili-
ties. In the main text, we saw that the Banaszek model or Huttner-like model can faciliate an optimal success 
probability. Even though the success probability of two pure states with arbitrary prior probability cannot be 
analytically found, the success probability of two pure states with identical prior probability can be analytically 
obtained26. In this section, we show that when the prior probabilities are identical, the optimal success probability 
of the Banaszek model and Huttner-like model is equal to the result of J. A. Bergou et al.26.

Figure 10(a) shows the Banaszek model which performs sequential state discrimination with an optimal success 
probability in the result of J. A. Bergou et al.26. The model consists of only a 50/50 beam splitters (BS). In the Banaszek 
model, let us denote the paths to be L1(Left1), U1(Up1), L2(Left2), and U2(Up2), respectively. Each beam splitter 
performs the following transformation β β β⊗ ⊗⟶0 / 2 / 2L U

BS

L U
, β β β⊗ − ⊗⟶0 / 2 / 2L U

BS

L U
. 

For the beam splitter used in the Banaszek model, the input state transforms in the following way:
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when the displacement operator β β− ⊗ −ˆ ˆD D( /2) ( /2)2 L1 1 U1
 is applied, the following state is obtained:
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Finally, passing through BS3 and PS (phase shifter), the state becomes the final state:
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The probability of a conclusive result in Bob’s photon detectors is given by
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Figure 10. The path in Banaszek model and Huttner-like model. In these examples, we use 50/50 beam 
splitters.
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Meanwhile, the post-measurement state of Bob is obtained as:
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when the post-measurement state of Bob is β / 2i , this state transforms into the following form (Here, 
= ′L2 L ):
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Therefore, the probability of a conclusive result in Charlie’s photon detectors is as follows:
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Then, the success probability that Bob and Charlie can perform sequential state discrimination is given by
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The optimal success probability is identical to the result of Bergou et al.26.
Next, we show that the Huttner-like model can provide the optimal success probability in the result of J. A. 

Bergou et al.26. The Huttner-like model is shown in Fig. 10(b). Suppose that Alice combines coherent light α±  
in the vertical direction with auxiliary coherent light α−  and sends it to Bob. Then, in Bob’s beam splitter BS3, 
we can see the following transformation:
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The probability of a conclusive result in Bob’s photon detectors is given by
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In BS4 of Charlie’s optical system, a similar transformation to Eq. (47) occurs. Therefore, we have 
α α|+ = |+Pr [(off, on) ] Pr [(off, on) ]B C , α α|− = |−Pr [(on, off) ] Pr [(on, off) ]B C . Then, the success probability 

that Bob and Charlie can perform sequential state discrimination is obtained as
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We can see that the optimal success probability is identical to the result of Bergou et al.26.

Analytic success probabilities of imperfect scenario. In this section, we determine the success prob-
ability in the case of an optical design with no-correction. Firstly, the success probability of the Banaszek model 
without correction is given by
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Secondly, the success probability of the Huttner-like model without correction is obatained as:
(channel model: 1)
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Since the derivation of Eqs (49–52) is very lengthy, we do not reproduce all the steps of the process. However, 
the derivation can be evaluated in a smilar manner as shown in the previous section.
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