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Combinational Biomarkers for 
Atrial Fibrillation Derived from 
Atrial Appendage and Plasma 
Metabolomics Analysis
Songqing Lai1, Xiumeng Hua2, Ran Gao3, Liang Zeng1, Jiangping Song2, Jichun Liu1 & 
Jing Zhang4

Atrial fibrillation (AF) is one of the most common types of arrhythmias and often leads to clinical 
complications. The objectives of this study were to offer insights into the metabolites of AF and to 
determine biomarkers for AF diagnosis or prediction. Sixty atrial appendage samples (AF group: 30; 
non-AF group: 30) and 163 plasma samples (AF group: 48; non-AF group: 115) from 49 AF patients and 
116 non-AF patients were subjected to liquid chromatography positive ion electrospray ionization 
tandem mass spectrometry (LC-ESI-MS/MS) metabolomics analysis. Consequently, 24 metabolites 
in atrial appendage samples and 24 metabolites in plasma samples were found to reflect metabolic 
differences between AF and non-AF patients (variable importance in projection (VIP) ≥ 1, P ≤ 0.05). Five 
identical metabolites including creatinine, D-glutamic acid, choline, hypoxanthine, and niacinamide 
(VIP ≥ 1.5, P < 0.01, FDR < 0.05) in atrial appendage and plasma samples were considered prominent 
features of AF patients, and the D-glutamine and D-glutamate metabolic pathway was also identified 
as a feature of AF patients. Finally, in plasma samples, the combination of D-glutamic acid, creatinine, 
and choline had an AUC value of 0.927 (95% CI: 0.875–0.979, P < 0.001) and displayed 90.5% sensitivity 
and 83.3% specificity; this group of metabolites was thus defined as a combinational biomarker for the 
recognition of AF and non-AF patients.

Atrial fibrillation (AF) is the most common type of arrhythmia and has a substantial effect on individual mor-
bidity and mortality as well as on healthcare expenditure. AF has a prevalence of 0.7% in individuals between the 
ages of 55 and 59 years; the incidence rises to 17.8% in individuals aged 85 years and over1,2. In recent decades, 
studies have indicated that control of traditional risk factors for cardiovascular disease may not reduce AF to 
an appreciable extent because there are some other well-established specific risk factors for AF3. These factors 
include age; arterial hypertension; congestive heart failure, including heart failure with impaired or preserved 
left ventricular systolic function; myocardial infarction4; valvular heart disease (VHD); and diabetes mellitus5. 
There are also emerging risk factors for AF, such as subclinical hyperthyroidism, obesity, chronic kidney disease, 
obstructive sleep apnea, heavy alcohol use, and even high-level endurance training, but the evidence does not 
clearly indicate that eliminating one or more of these risk factors protects against AF recurrence6,7.

Metabolomics is routinely applied as a tool for biomarker discovery to profile metabolites of biofluids, cells, 
and tissues8. Untargeted (global) and targeted mass spectrometry-based metabolomics are the main method-
ologies for metabolite recovery and identification9. These methodologies are based on gas chromatography or 
liquid chromatography mass spectrometry (GC-MS or LC-MS), which reveals concomitant changes in metabolic 
pathways including glycolysis, fatty acid β-oxidation, and lipid biosynthesis8.
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Biomarkers associated with the recurrence and prognosis10–12 or the initiation and maintenance13 of AF have 
previously been researched, including inflammatory factors14, prothrombotic markers15, and microRNAs16,17. A 
nuclear magnetic resonance (NMR) metabolomics technique was used to analyze atrial profibrillatory remod-
eling in a ventricular-tachypacing (VTP)-induced congestive heart failure (CHF) model in dogs1 and in atrial 
appendage tissues in AF patients18, but the results have not been replicated. The NMR technique has its own dis-
advantages, including low analytical resolution and insensitivity in comparison to mass spectrometry, although it 
is very powerful in metabolite qualification19,20. LC-MS has been deemed to be a fast, high-resolution separation 
technique similar to ultra-high-performance liquid chromatography (UHPLC), and LC-MS enables the detection 
of thermolabile molecules19. Since 2008, LC-MS has been popular in cardiovascular disease metabolomics analy-
sis21. In this study, untargeted LC-MS was utilized to investigate the different metabolites in atrial appendage and 
plasma samples. To distinguish altered metabolites in the samples and to discover metabolic biomarkers for AF 
diagnosis or prediction, comparative investigations were performed between AF patients and non-AF patients.

Results
Characteristics of the participants.  In this study, a total of 165 cardiovascular disease patients were 
enrolled, including 49 AF patients (AF group) and 116 non-AF patients (non-AF group). There were fewer 
male patients in the AF group than in the non-AF group (27 (55.10%) vs. 89 (76.72%), P < 0.001). The heart 
rate (HR) of AF group was higher than that of non-AF group (80.04 ± 11.87 vs. 73.24 ± 10.08, P < 0.001), and 
the left atrial diameter (LAD) was also larger in the AF group than in the non-AF group (51.83 ± 13.33 mm 
vs. 38.77 ± 7.82 mm, P < 0.001), but the systolic pressure was lower in the AF group than in the non-AF group 
(118.85 ± 15.67 vs. 124.28 ± 16.94, P = 0.042). Furthermore, the creatinine clearance rate (Ccr) of the AF group 
was lower than that of the non-AF group (81.28 ± 21.34 ml/min vs. 94.24 ± 38.85 ml/min, P = 0.023). In addition, 
the heart failure history of AF group was higher than that of non-AF group (19 (38.78) vs. 23 (19.83), P = 0.011), 
and the major adverse cardiac and cerebrovascular event (MACCE) incidence were higher in the AF group than 
in the non-AF group (11 (22.45) vs. 9 (7.76), P = 0.008, respectively) either. Moreover, the patients were split 
into distinctly different groups based on the New York Heart Association (NYHA) classes of heart failure (I (2, 
4.08%), II (12, 24.50%), III (32, 65.30%), and IV (3, 6.12%) for the AF group vs. I (3, 2.59%), II (63, 54.31%), III 
(49, 42.24%), and IV (1, 0.86%) for the non-AF group, P < 0.001). The other clinical characteristics (Table 1) of 
the two groups were similar, such as age, BMI, diastolic pressure, ejection fraction (EF), and left ventricular end 
diastolic diameter (LVEDD).

Differential metabolite screening.  More than 80% of the metabolites in the LC-MS raw data with null 
data were deleted. The rest of the null data were replaced with 1/2 of the minimum signal. The acquired LC-MS 
raw data were normalized. A PCA model helped us delete a few outlier samples; the PCA scores were plotted to 
determine the aggregation and dispersion of samples (Fig. 1a,e). A PLS-DA score plot helped us to display the 

Characteristic
AF group 
(n = 49)

non-AF group 
(n = 116) P value

Age (years) 55.56 ± 9.31 54.31 ± 13.01 0.619

Male, n (%) 27 (55.10) 89 (76.72) 0.000

BMI (kg/m2) 24.17 ± 3.69 24.55 ± 3.77 0.550

HR (beats/min) 80.04 ± 11.87 73.24 ± 10.08 0.000

Diastolic pressure (mmHg) 73.65 ± 17.28 71.32 ± 11.60 0.620

Systolic pressure (mmHg) 118.85 ± 15.67 124.28 ± 16.94 0.042

EF% 61.93 ± 10.27 59.51 ± 10.53 0.140

LAD (mm) 51.83 ± 13.33 38.77 ± 7.82 0.000

LVEDD (mm) 51.50 ± 10.73 54.70 ± 10.96 0.066

Creatinine (μmol/L) 80.25 ± 20.56 79.44 ± 19.70 0.720

Ccr (ml/min) 81.28 ± 21.34 94.24 ± 38.85 0.023

Hypertension, n (%) 15 (30.61) 43 (37.07) 0.427

Heart failure history, n (%) 19 (38.78) 23 (19.83) 0.011

COPD, n (%) 2 (4.08) 2 (1.72) 0.730

Diabetes, n (%) 7 (14.29) 21 (18.10) 0.551

MACCE, n (%) 11 (22.45) 9 (7.76) 0.008

NYHA classes, n (%) 0.000

NYHA I 2 (4.08) 3 (2.59)

NYHA II 12 (24.5) 63 (54.31)

NYHA III 32 (65.3) 49 (49.24)

NYHA IV 3 (6.12) 1 (0.86)

Table 1.  Clinical characteristics of the participants (means ± S.D.). BMI: body mass index; HR: heart 
rate; EF: ejection fraction; LAD: left atrial diameter; LVEDD: left ventricular end diastolic diameter; Ccr: 
creatinine clearance rate; COPD: chronic obstructive pulmonary disease; MACCE: major adverse cardiac and 
cerebrovascular events; NYHA: New York Heart Association.
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classification effect intuitively (Fig. 1b,f). An OPLS-DA score plot helped us to evaluate the classification effect 
of the PLS model; the classification effect was more significant for the two groups when the degree of separation 
became larger (Fig. 1c,g). The PCA, PLS-DA, and OPLS-DA scores for the atrial appendage and plasma samples 
were mainly located within the 95% confidence intervals (Hotelling’s T2 ellipse). Validation of the models for the 
atrial appendage samples was performed. The S-plot of OPLS-DA is shown in Fig. 1d,h. After deleting outliers, 
there were 55 atrial appendage samples (25 from AF patients and 30 from non-AF patients) and 120 plasma sam-
ples (36 from AF patients and 84 from non-AF patients) in our metabolomics analysis study. After mathematical 
model analysis, 262 and 361 metabolites for the atrial appendage samples and plasma samples were acquired, 
respectively. Initially, the screening criteria were set as a P value ≤ 0.05 and a variable importance in projection 
(VIP) value ≥ 1; 24 metabolites for the atrial appendage samples and 24 metabolites for the plasma samples were 
determined to be potential biomarkers (Supplementary Tables S1 and S2).

Among the 24 metabolites for the atrial appendage samples, 8 metabolites (hypoxanthine, carnitine, 
5-aminopentanoic acid, betaine, L-valine, creatinine, choline, and D-glutamic acid) had VIP values above 
3.0, which indicated a strong difference between the AF group and the non-AF group. Eleven metabolites 
(5-aminopentanoic acid, adenosine, betaine, carnitine, creatinine, deoxyguanosine, D-glutamic acid, glycero-
phosphocholine, L-valine, n-pentadecylamine, and taurine) were significantly increased in the AF group relative 
to the levels in the non-AF group, whereas the 13 remaining metabolites (butyrylcarnitine, choline, dimethylg-
lycine, guanosine, hypoxanthine, L-acetylcarnitine, L-alanine/sarcosine, L-alpha-aminobutyric acid, L-arginine, 
L-histidine, L-proline, niacinamide, and pantothenic acid) were all decreased (Supplementary Table S1).

Among the 24 metabolites of the plasma samples, 9 metabolites (choline, niacinamide, betaine, L-valine, 
L-lactic acid/TF-methoxyacetic acid/glyceraldehyde, creatine, glycerophosphocholine, creatinine, and 3-methyl-
2-oxovaleric acid/2-ketohexanoic acid) had VIP values above 3.0, which indicated a strong difference between 
the AF and non-AF groups. Seven metabolites (L-leucine, glutarate semialdehyde/alpha-ketoisovaleric acid, 
L-lactic acid/TF-methoxyacetic acid/glyceraldehyde, creatinine, 3-methyl-2-oxovaleric acid/2-ketohexanoic acid, 
a methacholine-like metabolite, and tagatose/glucose/fructose/galactose/mannose/sorbose/allose) were signifi-
cantly decreased in the AF group relative to the levels in the non-AF group, whereas the 17 remaining metabolites 
(choline, oxidized glutathione, niacinamide, betaine, L-valine, D-glutamic acid, gluconic acid, hypoxanthine, cre-
atine, citrulline, glycerophosphocholine, malic acid, (S)-2-methylmalate/(R)-2-methylmalate/2-hydroxyglutarate, 
acetylcholine/deoxycarnitine, N6,N6,N6-trimethyl-L-lysine, ergothioneine, and N-acetyl-DL-serine) were all 
increased (Supplementary Table S2).

There were 8 identical metabolites in the atrial appendage samples and the plasma samples of all the patients in 
the LC-MS metabolomics analysis: betaine, choline, creatinine, D-glutamic acid, glycerophosphocholine, hypox-
anthine, L-valine, and niacinamide. Interestingly, relative to those in non-AF patients, 4 identical metabolites in 
AF patients (betaine, D-glutamic acid, glycerophosphocholine, and L-valine) had the same tendency to increase 
in all samples, 1 metabolite in AF patients (creatinine) increased in atrial appendage samples but decreased in 
plasma samples, and 3 metabolites in AF patients (choline, hypoxanthine, and niacinamide) declined in atrial 

Figure 1.  Chemometric analysis of metabolites. (a,e) PCA score plot of the atrial appendage samples and 
plasma samples. (b,f) PLS-DA score plot of LC-MS data for the atrial appendage samples and plasma samples, 
respectively. (c,g) OPLS-DA score plot of the atrial appendage sample and plasma sample LC-MS data (S-1 and 
S-2 denote the atrial appendage and plasma samples of the non-AF group; AF-1 and AF-2 denote the atrial 
appendage and plasma samples of the AF group). The x-axis represents the samples’ score on the first principal 
component, and the y-axis represents the samples’ score on the second principal component. R2X [1]: the 
explained variation of the first principal component of the model; R2X [2]: the explained variation of the second 
principal component of the model. (d,h) OPLS-DA S-plot of LC-MS data for atrial appendage samples and 
plasma samples, respectively. Each spot represents one compound. The compounds that are near the lower left 
corner and the upper right corner make greater contributions to the classification of each group.
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appendage samples but rose in plasma samples. To determine which metabolites caused segregation, a VIP 
value ≥ 1.5, a P value < 0.01, and a false discovery rate (FDR) < 0.05 were used22; based on these criteria, 5 iden-
tical metabolites were filtered, including creatinine, D-glutamic acid, choline, hypoxanthine, and niacinamide.

HCA of differential metabolites and pathways.  Heatmaps were created through HCA to provide intu-
itive visualizations of the differences in the patient metabolites between the AF and non-AF groups; comparisons 
of the atrial appendage samples and the plasma samples of the non-AF group and the AF group are shown in 
Fig. 2a,b, respectively. The heatmaps clearly show that the metabolic profiles of the AF group were more easily 
distinguished from those of the non-AF group in the atrial appendage samples than in the plasma samples.

KEGG analysis of the differential metabolites in the atrial appendage samples and plasma samples are shown 
in Tables 2 and 3. There were 7 significantly altered pathways (P < 0.05) involving atrial appendage sample metab-
olism (Table 2): ‘aminoacyl-tRNA biosynthesis’, ‘arginine and proline metabolism’, ‘glycine, serine, and threonine 
metabolism’, ‘purine metabolism’, ‘taurine and hypotaurine metabolism’, ‘pantothenate and CoA biosynthesis’, 
and ‘beta-alanine metabolism’, all of which showed ≥ 2 hits. Similarly, there were 6 significantly altered pathways 
(P < 0.05) involving plasma sample metabolism (Table 3): ‘valine, leucine, and isoleucine biosynthesis’, ‘glycero-
phospholipid metabolism’, ‘valine, leucine, and isoleucine degradation’, ‘pantothenate and CoA biosynthesis’, ‘argi-
nine and proline metabolism’ and ‘propanoate metabolism’, all of which also had ≥ 2 hits. Next, MetPA analysis of 
the differential metabolites was performed (Fig. 2c,d).

An impact value greater than 0.10 indicates that the altered pathways clearly affect AF23, so we filtered out 5 
metabolic pathways (‘taurine and hypotaurine metabolism’, ‘D-glutamine and D-glutamate metabolism’, ‘arginine 
and proline metabolism’, ‘pantothenate and CoA biosynthesis’, and ‘histidine metabolism’) in the atrial appendage 

Figure 2.  Heatmaps from hierarchical clustering analysis and a diagram of the metabolic pathway enrichment 
analysis. (a) Heatmaps comparing the atrial appendage samples of the non-AF group (S-1) to those of the AF 
group (AF-1). (b) Heatmaps comparing the plasma samples of the non-AF group (S-2) to those of the AF group 
(AF-2). The rows represent the samples, and the lines represent the metabolites to be identified. The color 
scale (right) indicates the relative expression levels of the metabolites across all samples; green represents an 
expression less than the mean, while red represents an expression level greater than the mean. (c,d) The MetPA 
analysis based on the KEGG analysis of atrial appendage samples and plasma. Larger circles represent a greater 
impact of a pathway.
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samples and 3 metabolic pathways (‘valine, leucine and isoleucine biosynthesis’, ‘pyruvate metabolism’, and 
‘D-glutamine and D-glutamate metabolism’) in the plasma samples. After comparing the two groups, we deter-
mined the ‘D-glutamine and D-glutamate metabolism’ pathway to be the main canonical pathway in AF, which 
is consistent with the fact that D-glutamic acid is a prominent feature of AF in cardiovascular disease patients24.

Pathway Total Expected Hits Raw P -log(P) Holm adjust FDR Impact

Aminoacyl-tRNA biosynthesis 75 0.72 5 0.00 7.49 0.04 0.04 0.00

Arginine and proline metabolism 77 0.74 4 0.01 5.22 0.43 0.20 0.24

Glycine, serine and threonine metabolism 48 0.46 3 0.01 4.61 0.78 0.20 0.06

Purine metabolism 92 0.88 4 0.01 4.59 0.78 0.20 0.03

Taurine and hypotaurine metabolism 20 0.19 2 0.01 4.20 1.00 0.24 0.36

Pantothenate and CoA biosynthesis 27 0.26 2 0.03 3.63 1.00 0.32 0.18

beta-Alanine metabolism 28 0.27 2 0.03 3.56 1.00 0.32 0.00

Nitrogen metabolism 39 0.37 2 0.05 2.95 1.00 0.46 0.00

Glycerophospholipid metabolism 39 0.37 2 0.05 2.95 1.00 0.46 0.03

Lysine degradation 47 0.45 2 0.07 2.62 1.00 0.54 0.08

D-Arginine and D-ornithine metabolism 8 0.08 1 0.07 2.60 1.00 0.54 0.00

D-Glutamine and D-glutamate metabolism 11 0.11 1 0.10 2.30 1.00 0.67 0.33

Selenoamino acid metabolism 22 0.21 1 0.19 1.65 1.00 1.00 0.00

Ether lipid metabolism 23 0.22 1 0.20 1.61 1.00 1.00 0.00

Alanine, aspartate and glutamate metabolism 24 0.23 1 0.21 1.58 1.00 1.00 0.06

Valine, leucine and isoleucine biosynthesis 27 0.26 1 0.23 1.47 1.00 1.00 0.01

Vitamin B6 metabolism 32 0.31 1 0.27 1.32 1.00 1.00 0.01

Propanoate metabolism 35 0.33 1 0.29 1.25 1.00 1.00 0.00

Valine, leucine and isoleucine degradation 40 0.38 1 0.32 1.14 1.00 1.00 0.00

Nicotinate and nicotinamide metabolism 44 0.42 1 0.35 1.06 1.00 1.00 0.04

Histidine metabolism 44 0.42 1 0.35 1.06 1.00 1.00 0.14

Primary bile acid biosynthesis 47 0.45 1 0.37 1.01 1.00 1.00 0.01

Cysteine and methionine metabolism 56 0.54 1 0.42 0.87 1.00 1.00 0.00

Table 2.  KEGG analysis of the differential metabolites in atrial appendage samples. Total: the number of 
metabolites in each metabolic pathway. Hits: the number of differential metabolites in the target metabolic 
pathway. Raw P: P value of the hypergeometric test. Holm adjust: P value after the Holm false positive adjustment. 
FDR: false discovery rate. Impact: metabolic pathway influence value (a higher value denotes a stronger influence).

Pathway Total Expected Hits Raw P -log(P) Holm adjust FDR Impact

Valine, leucine and isoleucine biosynthesis 27 0.26 3 0.00 6.26 0.15 0.15 0.12

Glycerophospholipid metabolism 39 0.37 3 0.01 5.19 0.44 0.16 0.03

Valine, leucine and isoleucine degradation 40 0.38 3 0.01 5.12 0.47 0.16 0.04

Pantothenate and CoA biosynthesis 27 0.26 2 0.03 3.63 1 0.53 0.07

Arginine and proline metabolism 77 0.74 3 0.04 3.35 1 0.56 0.06

Propanoate metabolism 35 0.33 2 0.04 3.15 1 0.57 0.00

Glycine, serine and threonine metabolism 48 0.46 2 0.08 2.58 1 0.86 0.00

D-Glutamine and D-glutamate metabolism 11 0.11 1 0.10 2.30 1 1 0.33

Aminoacyl-tRNA biosynthesis 75 0.72 2 0.16 1.84 1 1 0.00

Ether lipid metabolism 23 0.22 1 0.20 1.61 1 1 0.00

Glycolysis or gluconeogenesis 31 0.30 1 0.26 1.35 1 1 0.00

Vitamin B6 metabolism 32 0.31 1 0.27 1.32 1 1 0.01

Pentose phosphate pathway 32 0.31 1 0.27 1.32 1 1 0.09

Pyruvate metabolism 32 0.31 1 0.27 1.32 1 1 0.14

Glutathione metabolism 38 0.36 1 0.31 1.18 1 1 0.00

Histidine metabolism 44 0.42 1 0.35 1.06 1 1 0.01

Nicotinate and nicotinamide metabolism 44 0.42 1 0.35 1.06 1 1 0.04

Lysine degradation 47 0.45 1 0.37 1.01 1 1 0.02

Purine metabolism 92 0.88 1 0.59 0.52 1 1 0.01

Table 3.  KEGG analysis of the differential metabolites in plasma samples. Total: the number of metabolites in 
each metabolic pathway. Hits: the number of differential metabolites in the target metabolic pathway. Raw P: 
P value of the hypergeometric test. Holm adjust: P value after the Holm false positive adjustment. FDR: false 
discovery rate. Impact: metabolic pathway influence value (a higher value denotes a stronger influence).
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Differential metabolite correlation heatmap.  Differential metabolite correlation heatmaps for the 
atrial appendage samples and the plasma samples are shown in Fig. 3. Among the atrial appendage metabo-
lites, the first 11 metabolites (from glycerophosphocholine to betaine) positively correlated with each other but 
negatively correlated with the last 13 metabolites (from L-acetylcarnitine to guanosine). Likewise, the last 13 
metabolites were positively correlated with each other. Interestingly, the degrees of correlation of the positive and 
negative correlations were relatively strong, as the colors were much darker (Fig. 3a).

Among the plasma metabolites, the 16 increased metabolites (from hypoxanthine to D-glutamic acid on the 
right side) were nearly positively correlated with each other but were negatively correlated to the last 7 metabolites 
(from 3-methyl-2-oxovaleric acid/2-ketohexanoic acid to L-leucine), which were decreased and were positively 
correlated with each other. The metabolites 3-methyl-2-oxovaleric acid/2-ketohexanoic acid and glutarate semi-
aldehyde/alpha-ketoisovaleric acid as well as D-glutamic acid and N-acetyl-DL-serine showed positive degrees of 
correlation reaching 0.8. However, glycerophosphocholine was negatively correlated (degree of correlation: −1.0) 
with creatinine (Fig. 3b).

Statistical analysis for the identified differential metabolites.  After the differential metabolite 
screening, Z-scores were used for statistical analysis (see Supplementary Fig. S1). The Z-scores were transformed 
based on the relative content of the metabolites. It was found that the degree of variation of the metabolites in the 
different groups was considerable in this study. Relative to Z-score of those in the non-AF group (S-1, S-2), the 
Z-score of the atrial appendage samples in the AF group was in the range of −2 to 3 (Fig. S1a), and the Z-score 
of the plasma samples in the AF group was in the range of −3 to 4 (Fig. S1b). Although the Z-score range of the 
atrial appendage samples was smaller, the plots were more diffuse, and the difference between the AF and non-AF 
groups was more obvious, suggesting that the levels of metabolites in the atrial appendage samples varied more 
widely than those in the plasma samples.

ROC curve analysis of the differential metabolites.  After the screening and statistical analysis 
described above, 5 identical metabolites (creatinine, D-glutamic acid, choline, hypoxanthine, and niacinamide) 
and one cardinal pathway (‘D-glutamine and D-glutamate metabolism’) had been filtered, indicating that the 
metabolite D-glutamic acid is critical in the pathophysiological mechanisms of AF. Thus, we drew ROC curves 
based on D-glutamic acid. The ROC curves are shown in Fig. 4. The metabolites A, B, C, D, and E represent 
D-glutamic acid, creatinine, choline, niacinamide, and hypoxanthine, respectively. The optimal cutoff values were 
chosen to calculate the sensitivity (true positive rate, TPR) and specificity (true negative rate, TNR) for the ROC 
curves (Supplementary Table S3).

Among the metabolites of the atrial appendage samples, metabolite C (AUC = 0.883, 95% CI: 0.785–0.980, 
P < 0.001) showed a high diagnostic effectiveness (Fig. 4b, Supplementary Table S3). Metabolite D (AUC = 0.933, 
95% CI: 0.864–1.000, P < 0.001) and metabolites A/B/E (AUC = 1.000, 95% CI: 1.000–1.000, P < 0.001), as well 
as their combinational markers, exhibited excellent diagnostic effectiveness in distinguishing AF from non-AF in 
cardiovascular disease patients (Fig. 4a–d, Supplementary Table S3).

Likewise, among the metabolites of the plasma samples, metabolite A had AUC values less than 0.7, metabo-
lites B/C/D/E and the combinational markers AC/AD/AE had higher AUC values between 0.7 and 0.8 (P < 0.001), 
and metabolites AB/ABD/ABE/ACD/ACE/ADE had AUC values greater than 0.8 but less than 0.9 (P < 0.001) 
(Fig. 4e–h, Supplementary Table S3). However, none of the metabolites had a sensitivity greater than 0.9 and a 

Figure 3.  Correlation heatmaps of differential metabolites. (a) Differential metabolite correlation heatmaps for 
atrial appendage samples. (b) Differential metabolite correlation heatmaps for plasma samples. The color scale 
(right) indicates the degree of correlation of the differential metabolites; red represents a positive correlation, 
while blue represents a negative correlation. In addition, 1 and −1 indicate the strongest positive and negative 
correlations, respectively.
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specificity greater than 0.8 except the combinational marker ABC (Supplementary Table S3). The combinational 
marker ABC, which comprises D-glutamic acid, creatinine, and choline, displayed an AUC value of 0.927 (95% 
CI: 0.875–0.979, P < 0.001), while its diagnostic effectiveness reached 90.5% sensitivity and 83.3% specificity for 
the prediction of AF in plasma samples (Fig. 4h, Supplementary Table S3).

Discussion
After decades of research and therapeutic intervention for AF, scientists are still striving to understand the 
causes and mechanisms of the condition. Biomarkers derived from blood, such as markers of coagulation, 
renal function, inflammation, myocardial injury, and cardiovascular stress, have been associated with clinical 
events3. Biomarkers derived from the blood may reflect the current disease state or the prognosis of diseases. 
Accompanied by the development and progression of AF, metabolite biomarkers might reflect the pathophysio-
logical mechanisms of AF. Mayr et al.18 performed an untargeted NMR-based metabolomic analysis to demon-
strate that both β-hydroxybutyrate and its ketogenic amino acid as well as glycine were increased in AF patients’ 
atrial myocardial samples. This NMR-based metabolomic analysis focused on postoperative AF. However, the 
NMR technique has its own disadvantages, as previously mentioned. Furthermore, an ideal innovative biomarker 
for diagnosis or prognosis should be able to be measured through minimally invasive techniques, should have 
high sensitivity and specificity, and should have good operability and repeatability to be feasible for the patients. 
Therefore, biomarkers in the blood are worth continued consideration.

In this study, 60 atrial appendage samples and 163 plasma samples from 165 cardiovascular disease patients 
(49 AF patients and 116 non-AF patients) were subjected to LC-MS/MS-based metabolomics to investigate 
whether AF alters the metabolism of cardiovascular disease patients. Moreover, untargeted metabolites in tis-
sue and plasma were compared to determine whether the differential metabolites could be potential biomarkers 
for AF diagnosis or prediction. Twenty-four metabolites from plasma samples and 24 metabolites from atrial 
appendage samples were screened for their ability to distinguish AF from non-AF patients (Supplementary 
Tables S1 and S2).

Eight identical metabolites were identified between the atrial appendage samples and the plasma samples 
before the comparison of expression in this study (Supplementary Tables S1 and S2). Betaine1, choline1,18, 
and L-valine18 have been reported in the literature to be associated with AF, and our LC-MS/MS metabolites 
added to this consensus. Betaine has been reported to be a novel biomarker for colorectal cancer25. Choline 
can be oxidized to betaine but shows the opposite relationship in metabolic syndrome as a key component cor-
related with mitochondrial dysfunction26. This finding suggests that the decreased choline and the increased 
betaine in the atrial appendage samples of AF patients may well be associated with mitochondrial dysfunction. 
Creatinine has been reported to be significantly decreased in the blood samples of patients with AF with hyper-
tension27, and our results also showed that creatinine was decreased in the plasma samples. Furthermore, we 
found that creatinine increased in the atrial appendage samples of AF patients. The most likely reason is that 
cardiomyocytes uptake creatinine from the extracellular matrix, leading to AF; however, this possibility needs 

Figure 4.  ROC curve analysis of differential metabolites. (a–d) ROC curve analysis of the atrial appendage 
samples. (e–g) ROC curve analysis of the plasma samples. The metabolites A, B, C, D, and E represent 
D-glutamic acid, creatinine, choline, niacinamide, and hypoxanthine, respectively. The sensitivity (true positive 
rate) was set as the ordinate, and 1-specificity (false positive rate) was set as the abscissa. An AUC value 
approaching 1.0 indicates a better diagnostic effectiveness.
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further investigation. Hypoxanthine has been reported to accumulate substantially in the ischemic pig myocar-
dium28; hypoxanthine was increased in the plasma samples but was decreased in the atrial appendage samples 
in our study. Hypoxanthine is involved in the purine metabolism pathway. Hypoxanthine can be metabolized 
to xanthine and uric acid by xanthine oxidase29. Ordinarily, the endogenous cause of increased hypoxanthine 
is hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency, which leads to gout, hyperuricemia, 
and Lesch-Nyhan syndrome30. Researchers have demonstrated that hypoxanthine can cause endothelial dys-
function through oxidative stress-induced apoptosis29. To a certain extent, our results hint that hypoxanthine 
imbalance can result in AF. Additionally, glycerophosphocholine has been reported to accumulate in human 
aortic tissue and plasma in response to early atherosclerosis18; in our study, glycerophosphocholine was increased 
in the atrial appendage samples and plasma samples of AF patients. D-glutamic acid belongs to the group of 
D-amino acids, which are metabolized only by D-aspartate oxidase (DDO) in mammals31 and are now thought 
to be naturally occurring physiologically active substances and biomarkers32,33. D-glutamic acid might activate 
transporter-associated Cl− conductance and has been reported to regulate neuronal transmission34. Kazuaki et.
al. demonstrated that in 2-DM patients, preserved left ventricular ejection fraction reduced heart rate recovery 
and was associated with AF35, illustrating that autonomic neuropathy seems to be involved in the pathogenesis of 
AF. Thus, D-glutamic acid may influence the autonomic nervous system, resulting in AF. Furthermore, our results 
from the LC-MS/MS metabolomics analysis regarding hypoxanthine, D-glutamic acid, and niacinamide sug-
gest that these metabolites might be novel biomarkers associated with AF, but this conclusion should be closely 
inspected.

We used a VIP value ≥ 1.5, a P value < 0.01, and an FDR < 0.05 to screen the metabolites22, and 5 identical 
metabolites (creatinine, D-glutamic acid, choline, hypoxanthine, and niacinamide) in the samples from the two 
groups were filtered (Supplementary Table S1 and S2).

KEGG analysis (Tables 2 and 3) and metabolic pathway enrichment analysis (Fig. 2c,d) were performed to 
identify the potential metabolic pathways perturbed in AF. An impact value greater than 0.10 for the altered 
pathways has been deemed to reflect a clear influence on AF23. Only one common pathway (‘D-glutamine and 
D-glutamate metabolism’) was selected from the samples of the two groups. The fact that the ‘D-glutamine and 
D-glutamate metabolism’ pathway had an impact value greater than 0.10 (0.33) suggests that the ‘D-glutamine 
and D-glutamate metabolism’ pathway and the metabolite D-glutamic acid are prominent features of AF in cardi-
ovascular disease patients. The KEGG analysis offered us a foundation on which to determine that the metabolite 
D-glutamic was indispensable to AF.

Receiver operating characteristic (ROC) curves have been successfully applied to evaluate the diagnostic accu-
racy of biomarkers in many studies22,36. An area under the curve (AUC) greater than 0.7 represents very high 
diagnostic effectiveness, and the effectiveness is particularly good when the AUC value is greater than 0.937. ROC 
curves based on D-glutamic acid were drawn to explicitly determine which metabolites can definitely diagnose 
AF in patients. Our results revealed that the combinational marker comprised of D-glutamic acid, creatinine, 
and choline had an AUC value of 0.927 (95% CI: 0.875–0.979, P < 0.001), while the diagnostic effectiveness of 
this combinational biomarker achieved 90.5% sensitivity and 83.3% specificity, demonstrating that its ability to 
predict AF in plasma samples was satisfactory (Fig. 4h, supplementary Table S3). In this study, we performed 
LC-MS metabolomics on atrial appendage samples and plasma samples from patients with or without AF. Our 
results demonstrate that measuring changes in metabolite patterns is a feasible method for evaluating the clinical 
characteristics of AF. In addition, we screened an affected pathway, the ‘D-glutamine and D-glutamate metabo-
lism’ pathway. The plasma metabolites creatinine, D-glutamic acid, and choline were defined as a combinational 
biomarker to recognize AF and non-AF on the basis of the patients’ blood. However, future comparison with the 
results of a metabolomics analysis with a larger sample size is needed to validate our findings.

Materials and Methods
Participants.  Related investigations were conducted under the approval of the Ethics Committees of the 
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking 
Union Medical College (Beijing, China). All participants provided written informed consent at the time of enroll-
ment. Two groups of cardiovascular disease patients, an AF group (49 AF patients) and a non-AF group (116 
non-AF patients), were included in the present study. Sixty atrial appendage samples and 163 plasma samples 
were collected from the patients at Fuwai Hospital from May 2015 to March 2016. Atrial appendage samples 
were obtained from cardiovascular disease patients who had surgical treatment. All methods were performed in 
accordance with the relevant guidelines and regulations. The datasets and methods, including the methods of data 
acquisition and analysis, are available from the corresponding author upon reasonable request. The workflow of 
our study is shown in Fig. 5.

Sample collection and preparation.  Atrial appendage samples were collected during surgery following 
surgical principles. The atrial appendage was cut into small pieces, transferred to a clean tube, and immediately 
stored at −80 °C until use. The blood samples were collected in ethylenediaminetetraacetic acid (EDTA)-coated 
anticoagulation tubes the morning after the patients were hospitalized. The collected blood was immediately 
centrifuged to isolate the plasma at 3,000 × g for 10 min at 4 °C, and the clear supernatant was transferred to a new 
Eppendorf tube. All plasma samples were promptly frozen in a −80 °C freezer until analysis. Sample preparation 
followed a method that has been described in recent literature38. Frozen samples were thawed at room temper-
ature, extracted in 75% aqueous methanol containing 0.1% formic acid, and analyzed by untargeted LC-MS as 
follows.
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LC-ESI-MS/MS analysis.  Methyl alcohol, acetonitrile, and all other materials and chemicals were of HPLC 
grade and were obtained from Sigma-Aldrich Co. (USA). Ultrapure water (Milli-Q) was obtained from a Milli-Q 
Gradient Direct 16 system (Millipore, USA). Sample analysis was performed using an electrospray ionization 
(ESI) TSQ Vantage triple quadrupole quantum mass spectrometer (Thermo Scientific, USA) with a Surveyor 
Autosampler combined with an Agilent 1200 Series HPLC System (Agilent Technologies, Waldbronn, Germany) 
equipped with Xcalibur 3.0 software (Thermo Finnigan, USA).

Data processing.  Raw data acquired from the HPLC-MS systems were converted into databases with equal 
quality and retention time peak alignment. Then, peak discrimination, total peak area normalization, filtering, 
alignment, and matching were performed. Afterward, annotated metabolites were put through SIMCA-P 13.0 
(Umetrics AB, Umea, Sweden) for statistical analysis. Principal component analysis (PCA) was conducted using 
the Pareto model as an unsupervised analysis to view the clustering trend while removing outlier samples. Later, 
partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis 
(OPLS-DA) were employed as a supervised analysis using a permutation test (200 permutations) to prevent over-
fitting of the PLS-DA model39. PLS-DA and OPLS-DA were performed to clarify the groups among clusters40, 
which was particularly helpful for detecting and removing abnormal samples to improve the accuracy of the 
model. Finally, Student’s t-test (P < 0.05) was combined with the variable importance in projection (VIP) value41 
of the first principal component or the data were visualized using the S-plot42 in OPLS-DA to search for distinct 
metabolites.

Heatmap analysis was used to further study the relationships between metabolites and samples, where the 
intent was to discern similar metabolic profiles among samples or identical metabolic activity among metabolites. 
Heatmaps were created using the pheatmap R package (Kolde R. Pheatmap: Pretty Heatmaps; R package version 
1.0.8; https://cran.r-project.org/web/packages/pheatmap/index.html). Cluster analysis or clustering is always 
used to determine the metabolic patterns of metabolites under different experimental conditions. Hierarchical 
clustering analysis (HCA) of samples in the heatmap was performed using the average linkage clustering method 
and Euclidian distances. Metabolites with the same metabolic pattern might possess the same function or partic-
ipate in the same metabolic process or cellular pathway.

Additionally, metabolite-metabolite correlation analysis (MMCA)43 was performed with Pearson’s 
product-moment correlation (Pearson’s r) in R statistical software. MMCA offers a new insight into metabolo-
mics. For instance, similar trends in variation among metabolites indicate positive correlations, while different 
trends in variation indicate negative correlations. When the linear correlation of two metabolites is enhanced, the 
correlation coefficient tends toward 1 or −1 for a positive correlation or a negative correlation, respectively. The 
correlation matrix was calculated through the cor function in R (v3.1.3) software (https://www.r-project.org/). 
The metabolite correlation heatmap was drawn based on the correlation coefficients.

Standard scores, also called Z-scores, which are used to identify distinct metabolites, can evaluate the relative 
contents of the metabolites in each sample. The formula for the Z-score is z = (x − μ)/σ (x, specific score of the 
metabolites; μ, mean; σ standard deviation).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)44 (http://www.genome.jp/kegg/) is a database 
resource that integrates genomic, chemical, and systemic functional information. KEGG analysis was used to 
analyze the interrelationships of the metabolites in the metabolic pathways. In addition, enrichment analysis 
was performed with MetaboAnalyst 3.0 (www.metaboanalyst.ca), a comprehensive server for metabolomic data 
analysis, including three functional analyses: enrichment analysis, pathway analysis, and integrated pathway anal-
ysis45. MetPA is a part of MetaboAnalyst that is mainly based on the KEGG metabolic pathways46. MetPA uses 
pathway enrichment analysis and pathway topological analysis to identify the potential metabolic pathways inter-
fered with by biological perturbation. The topological analysis selected in this study was ‘relative betweenness 
centrality’. Furthermore, MetPA can analyze the related metabolic pathways of different metabolites between two 
groups through hypergeometric tests.

Statistical analysis.  Statistical analysis was performed with SPSS 22.0 software. Continuous variables 
were expressed as the means ± S.D., and categorical variables were presented as counts and percentages (%). 
Continuous variables were calculated by nonparametric tests or t-tests, categorical variables were analyzed 
using chi-square or Fisher’s tests, and multilevel data analysis was performed with the Mann-Whitney U test. A 

Figure 5.  The workflow of the metabolomics analysis of the plasma and atrial appendage samples from AF and 
non-AF patients.

https://cran.r-project.org/web/packages/pheatmap/index.html
https://www.r-project.org/
http://www.genome.jp/kegg/
http://www.metaboanalyst.ca
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two-tailed P value < 0.05 was considered statistically significant. ROC curves and AUCs were calculated in SPSS 
22.0 software (IBM, USA), but the combinational marker ROC curves first required binary logistic regression.

Data Availability Statement
Raw data are provided in the Supplementary Information of this article. Other data are available from the corre-
sponding author (zhangjingfw@163.com).
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