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Evaluation of Microclimatic 
Detection by a Wireless Sensor 
Network in Forest Ecosystems
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Timely and accurate detection of microclimates is extremely valuable for monitoring and stimulating 
exchanges of mass and energy in forest ecosystems under climate change. Recently, the rapid growth of 
wireless sensor networks (WSNs) has provided a new approach for detecting microclimates in a complex 
environment at multiple temporal and spatial scales. However, applications of wireless sensors in forest 
microclimate monitoring have rarely been studied, and the corresponding observation accuracy, error 
sources and correction methods are not well understood. In this study, through field experiments in 
two typical subtropical forest ecosystems in Zhejiang Province, China, the accuracy of the temperature 
and humidity observed by the wireless sensors was evaluated against standard meteorological data. 
Furthermore, the observation error sources were analyzed and corresponding correction models were 
established. The results showed that the wireless sensor-based temperature and humidity values 
performed well within the total observation accuracy. However, the observation errors varied with 
season, daily periodicity and weather conditions. For temperature, the wireless sensor observations were 
overestimated during the daytime while they were underestimated during the nighttime. For humidity, 
the data observed by the wireless sensors generally appeared as overestimates. Adopting humidity as 
the corrected factor, correction models were established and effectively improved the accuracy of the 
microclimatic data observed by the wireless sensors. Notably, our error analysis demonstrated that 
the observation errors may be associated with the shell material of the wireless sensor, suggesting that 
shading measures for the wireless sensors should be considered for outdoor work.

Climate warming, variabilities in precipitation intensity and frequency, and resulting climatic events (e.g., 
extreme drought and flood) have already significantly influenced the physiological and ecological processes of 
forest ecosystems1–3. The exact and timely acquisition of forest meteorological information, especially on forest 
microclimates, is very valuable for monitoring and investigating carbon and water cycles, energy balance and 
interactions between the canopy and ground within forest ecosystems under climate change4,5.

Currently, the main means of monitoring forest microclimates is through in situ observations using a ther-
mometer screen or auto weather station. This approach usually ensures the observational accuracy of microcli-
matic variables. However, it is too expensive and requires too much labor to meet the need for continuous time 
monitoring over a relatively wide region due to limitations in power supply, etc. More importantly, it is infeasible 
to place the sensors in a complex terrain or at multiple layers and to adjust the layout regularly based on demand 
and supply6. Although the spatial pattern of the microclimates (e.g., temperature) of the canopy or land surface 
could be derived from remote sensing data, large uncertainties may be associated with the spatial and spectral 
resolution of the satellite7. Similarly, successive observations cannot be achieved due to the limitations in satellite 
transit time.

With the developments of wireless sensor network (WSN) technology, also known as the Internet of Things 
(IOT), wireless sensors have been increasingly used in monitoring the ecological environment8–17. Wireless sen-
sors are characterized by their low costs, high monitoring accuracy, flexible layouts and high-frequency con-
tinuous data18,19. These advantages make detecting microclimatic variables in a complex ecosystem (e.g., forest 
ecosystem) possible20,21. Hence, wireless sensors could provide valuable data for investigating and simulating 
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carbon and water cycles and energy balance within an ecosystem6,22–24. Although applications of wireless sensors 
for forest microclimate monitoring and the corresponding evaluations have been explored4,25, the observational 
accuracy of the sensors, sources of observational bias and correction approaches are less understood26–28.

To fill these gaps, this study investigated the suitability of wireless sensors for forest microclimate monitoring. 
Two typical subtropical forest sites, a mixed broadleaf forest site and bamboo forest site, were chosen as the study 
sites. Compared to observations from standard meteorological instruments in the study sites, the accuracies of 
the temperature and humidity data observed by the wireless sensors and the error sources were detected. Then, 
correction models of the climatic variables were established to improve the monitoring effectiveness of the wire-
less sensors in forest microclimates. Achieving these goals is beneficial to guiding sensor placement in forest 
ecosystem and provide a scientific basis for improving the designation and data correction of wireless sensors.

Results and Discussion
Overall observation accuracies.  First, the overall accuracy of the temperature and humidity observed by 
the wireless sensors were evaluated. All the wireless sensor-based observations were collected, and the outliers 
(out of three standard deviations) were removed. The valid data were compared to the corresponding standard 
meteorological observations at both the mixed broadleaf forest site and bamboo forest site, as shown in Fig. 1. The 
results showed that the wireless sensors generally performed well in terms of observation accuracy with slight 
overestimates. The overall average temperature and humidity observed by the meteorological gradient systems 
were 14.9 °C and 60.2% RH, respectively, and the overall average temperature and humidity observed by the wire-
less sensors were 15.1 °C and 67.1% RH, respectively. The linear regression analysis showed that for temperature, 
the slope and R2 of the regression between the gradient and sensor observations were 1.04 and 0.94, respectively, 
and the Root Mean Square Error (RMSE) and Evaluation Accuracy (EA) were 1.94 and 87% (Fig. 1a). For humid-
ity, the slope, R2, RMSE and EA were 0.91, 0.89, 10.9 and 82%, respectively (Fig. 1b).

Diurnal and seasonal observation accuracies.  Diurnal variabilities of errors of temperature and humid-
ity observed by the wireless sensor are shown in Fig. 2. The errors, which were the differences between the wire-
less sensor observations and corresponding gradient observations, were summarized by hour of day. A positive 
error indicates the wireless sensor exhibited an overestimate of the standard value. The results showed that for 
temperature, the errors mainly appeared during the daytime (7:00 am - 5:00 pm), accounting for 64% of the total 
errors. The average diurnal error was 1.6 °C, and the maximum value of errors appeared at 10:00 am-11:00 am 
with an average of 2.7 °C. During the nighttime (6:00 pm - 6:00 am), the errors were mainly negative and relatively 
small (average of 0.7 °C) compared to those during the daytime. In general, humidity was overestimated by the 
wireless sensors throughout the entire day. Positive errors mainly occurred during the nighttime with an average 
of 8.7% RH, which accounted for 74% of the total humidity errors. The average error during the daytime was 4.3% 
RH, and the minimum errors appeared at 9:00 am.

The seasonal variations in the errors of temperature and humidity observed by the wireless sensor were 
detected, shown in Fig. 3. Like the diurnal variabilities in the errors throughout the year, the temperature errors 
were positive and mainly appeared in the daytime of each season, while they were negative at night with fewer 
fluctuations. The daytime errors (average value) accounted for 64% (1.6 °C), 82% (2.7 °C), 62% (1.1 °C) and 64% 
(1.9 °C) of the total errors in each season, respectively. The maximum value of errors was exhibited in the summer. 
The average errors in the nighttime temperatures were −0.8 °C, −0.5 °C, −0.6 °C and −1 °C, respectively, and the 
maximum value of errors appeared in the winter. For humidity, the errors mainly were positive and larger during 
the nighttime. The nighttime errors accounted for 73%, 73%, 70% and 73% of the total humidity errors in each 
season, respectively. The nighttime (daytime) errors were 7.7% RH (2.8% RH), 8.9% RH (0.36% RH), 9.3% RH 
(4.9% RH) and 12.9% RH (4.6% RH), respectively. The results demonstrated that the observation errors in the 

Figure 1.  Overall accuracy evaluation of temperature (a) and humidity (b) observed by the wireless sensor. 
(n = 39796 and 44227 points for temperature and humidity, respectively).
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wireless sensors were impacted by variations in not only diurnal but also seasonal climates to some extent, espe-
cially by daytime high temperatures in the summer and nighttime low temperatures in the winter.

Observation accuracy in different weather.  In addition to the diurnal variations in meteorology, the 
variations in air humidity with weather conditions, such as cloudy and rainy, may lead to some random errors 
observed by the wireless sensor. Here, we further analyzed the diurnal differences between the wireless sensors 
and gradient system observations in clear and cloudy/rainy conditions. The cloudy/rainy condition was defined 
as a 5-hour duration in which the humidity was over 80% RH.

The results (Fig. 4) showed that the observation errors were larger in clear rather than cloudy/rainy condi-
tions. In clear conditions, the diurnal errors in temperature accounted for 67% of the total errors, and the average 
was 2 °C, while the average of the nighttime errors was −0.9 °C. On cloudy/rainy days, there was not an obvious 
difference between the diurnal and nighttime errors, and the average of these errors was −0.3 °C and −0.5 °C, 
respectively. For humidity, the nighttime errors accounted for 84% of the total errors in clear conditions, and the 
average error during the nighttime and daytime was 12% RH and 4.3% RH, respectively. Like with temperature, 
the difference between the diurnal and nighttime errors was also not significant in cloudy/rainy conditions. The 
average of the diurnal and nighttime errors in humidity was 2.1% RH and 3.1% RH, respectively.

In summary, the temperature and humidity errors in the wireless sensors were affected by variabilities in 
temperature and humidity with day and night, seasons and weather. The error characteristics implied that the 
observation errors may be associated with the sensor shell. The shell used in this study is plastic, and the sen-
sor is wrapped in the shell. During a clear day, the shell was rapidly warmed by solar radiation, leading to a 
higher temperature in the shell than that of the ambient air and consequently an overestimate of the temperature. 
Nevertheless, during a clear night, a weak atmospheric counter radiation caused a low temperature and a corre-
sponding low saturated vapor pressure29. The plastic was more able to dissipate heat, resulting in a lower temper-
ature and more dew in the shell. Hence, the wireless sensor may underestimate air temperature and overestimate 
air humidity.

Corrections of the wireless sensor observations.  According to the evaluations mentioned above, the 
errors in temperature and humidity observed by the wireless sensors may be related to the air humidity within 
the diurnal period, which partly resulted from the weather and the sensor in the shell. Correlations (r) between 
errors and the corresponding humidity observed by the gradient system were detected during the daytime and 
nighttime. The results showed that for temperature the daytime errors significantly and negatively related to 
humidity (r = −0.66, p < 0.001), while the nighttime errors showed a significant positive correlation with humid-
ity (r = 0.75, p < 0.001). In contrast, for humidity, the daytime errors showed a significant positive relationship 
with humidity (r = 0.57, p < 0.001), while the nighttime errors exhibited a significant negative correlation with 
humidity (r = −0.67, p < 0.001). Hence, to correct the observation error in the wireless sensor, humidity was 
selected as the correction factor, and the error correction model of the wireless sensor was established by hour 
based on the linear regression function.

The relationships between the observation errors in the wireless sensors temperature and humidity are shown 
as follow:

Δ = × +T k RH’ b , (1)i i
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Figure 2.  Diurnal variations in the errors of temperature (a) and humidity (b) observed by the wireless sensors. 
The x-axis indicates the time of day, and the y-axis indicates the observation errors of the wireless sensors. 
The upper and lower boundaries of the box indicate the 75th and 25th percentiles, respectively, (referred as 
Q3 and Q1, respectively) of the error bound, and the red line within the box marks the median. The error 
bars above and below the box indicate the maximum (Q3 + 1.5*IQR, where IQR = Q3 − Q1) and minimum 
(Q1 − 1.5*IQR), respectively. The red crosses indicate outlying points.
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Δ = × +RH k RH’ b (2)i i

where i (i = 1~24) indicates the hour of the day. ΔT and ΔRH indicate temperature and humidity errors observed 
by the wireless sensors at a certain hour, respectively, and RH’ indicates the corresponding relative humidity. ki 
and bi indicate the slope and interception of linear regression at the hour, respectively.

The parameters of the correction models are shown in Fig. 5. For temperature, k exhibited an inverted U-shape 
in the diurnal periodicity, while for humidity, k appeared in an opposite pattern. For temperature, the values of k 
in the nighttime were positive with an average of 0.009, while those in the daytime were negative with an average 

Figure 3.  Diurnal variations in the errors in temperature (a–d) and humidity (e–h) observed by the wireless 
sensors in the spring, summer, autumn and winter. The symbols in this figure are the same as those in Fig. 2.
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of −0.02. For humidity, the regression slopes were larger in absolute terms during the nighttime than those dur-
ing the daytime, and the averages of the slopes were −0.18 and −0.05, respectively. Based on the relationships 
between the observation errors and humidity, the correction models of temperature (T) and humidity (RH) were 
established as follows:

= − Δ = − × +T T T T (k RH’ b ), (3)raw raw i i

= − Δ = − × +RH RH RH RH (k RH’ b ) (4)raw raw i i

The corrected T (RH) was the difference between the raw temperature (humidity) observed by the sensors 
(Traw (RHraw)) and ΔT (ΔRH), which was calculated considering formula 3 (4).

After the correction, the temperature and humidity observed by the wireless sensors obviously improved 
and were more consistent with the standard values. The evaluation results (Fig. 6) showed that the slope (k) 
and R2 of the linear regression between the wireless sensor-based and standard temperature were 1.01 and 0.96, 
respectively, and the RMSE and EA were 1.35 °C and 91%, respectively. For humidity, the k and R2 between the 
calibrated sensor-based and standard observations were 1.002 and 0.93, respectively, and the RMSE and EA were 
7.1% RH and 88%, respectively.

Conclusions
Based on field experiments, this study evaluated the accuracy of the temperature and humidity observed by wire-
less sensors in two typical subtropical forest ecosystems and further determined the sources of the observation 
error and established the corresponding correction models. Our findings showed that the sensor-based temper-
ature and humidity performed well in terms of the total observation accuracy, which is suitable for monitoring 
forest microclimates. However, the observation errors varied with seasons, day and night, as well as weather 

Figure 4.  Diurnal variations in the errors in temperature (a,b) and humidity (c,d) observed by wireless sensors 
on clear and cloudy/rainy days. The symbols in the figure are the same as those in Fig. 2.
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conditions. For temperature, the wireless sensor observations exhibited an overestimate during the daytime, while 
it showed an underestimate for temperature during the nighttime. Moreover, the error was larger during the day-
time than during the nighttime, and the error was larger on clear days than on cloudy/rainy days. For humidity, 

Figure 5.  The slope and intercept of the linear regression of the wireless sensor-based temperature (a,b) and 
humidity (c,d) errors with air humidity in a diurnal cycle. The x-axis indicates the time of day (i.e., hours). The 
y-axis indicates the regression parameters.

Figure 6.  Accuracy evaluation of the calibrated temperature (a) and humidity (b) observed by the wireless 
sensors.
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the data observed by the wireless sensors generally appeared as an overestimate, and the observed errors were 
larger at night and on clear days than those during the daytime and on cloudy days. Adopting humidity as the 
corrected factor, the correction models were established at an hour scale and were shown to effectively improve 
data accuracy and the applicability of the wireless sensors in forest ecosystems. Notably, the error analysis demon-
strated that the sensor-based observation errors in temperature and humidity may be associated with the shell 
material of the wireless sensor. Hence, we suggest that shading measures should be considered when wireless 
sensors are arranged in the open air in future work or use other heat spreader materials as opposed to plastics in 
the shell of the sensor.

Methods
Study sites.  In this study, two typical subtropical forest flux-observation sites in Zhejiang Province, China 
were selected as the study sites. One study site is the Tianmushan forest ecosystem research site in the Chinese 
Forest Ecosystem Research Network (CFERN) in Hangzhou, which represents an evergreen and deciduous 
mixed broadleaf forest ecosystem30. This site is located in Tianmushan National Nature Reserve, where the annual 
temperature ranges from 8.8 °C to 14.8 °C, annual precipitation ranges from 1390 mm to 1870 mm and relative 
humidity ranges between 76% and 81%. A 40-meter-high flux observation tower was established in the core area 
of the reserve (30°20′59″N, 119°26′13″E). The other study site is the flux-observation site in the moso bamboo 
(Phyllostachys pubescens) technology park in Anji, which represents the Mao bamboo forest ecosystem31. Like 
the other study site, a 40-meter-high tower stands in the park (30°28′34″N, 119°40′25″E), where the annual tem-
perature, precipitation and relative humidity are approximately 16.6 °C, 1270 mm and over 70%, respectively.

The meteorological gradient observation system (hereafter referred as the gradient system) on the two flux 
towers were similar, including wind speedometers, thermometers and moisture meters placed at 2 m, 7 m, 11 m, 
17 m, 23 m, 30 m and 38 m along each tower. These gradient system observations were treated as the standard 
meteorological observations with high observation accuracy. Additionally, two infrared temperature instruments 

Figure 7.  Layout of the wireless sensors on the flux towers.

Study site Start date End date number of days

Tianmushan site

2013/9/1 2013/9/21 21

2013/11/4 2013/11/29 6

2014/3/21 2014/4/10 21

2015/5/13 2015/5/22 10

Anji site

2011/12/6 2011/12/23 18

2012/6/15 2012/6/18 4

2012/7/4 2012/7/9 6

2012/10/17 2012/10/26 10

Table 1.  The dates of the wireless sensor observations in this study.
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(SI-1111) were placed at 2 m and 23 m along each tower to capture the land surface and canopy temperatures, 
respectively. The meteorological information was automatically collected every 30 minutes.

Wireless sensor network.  The wireless sensor used in this study is the Telos-Rev.B sensor node, which 
loads the temperature/humidity sensor module SHT1132. The measurement range for temperature is from −40 °C 
to 123.8 °C, and the accuracy of the measurement is ±0.3 °C at a 0.01 °C resolution. The measurement range for 
humidity is from 0 to 100% (RH), and the observational accuracy is ±3.0% (RH) at a 0.01% (RH) measurement 
resolution.

In this study, the wireless sensor network was based on the GreenOrbs deployments33. Three types of nodes 
were implemented in this study, including wireless sensor nodes equipped with the temperature/humidity sensor 
(abbreviated to sensor nodes), sink notes and task manager node. The information was collected by each sensor 
node and then transferred to sink notes through adjacent routers. Finally, the information was transferred to the 
task manager nodes by the bridging ability of the sink nodes, so that it could be handled in the user terminal.

Field experiments.  The wireless sensors were placed along the flux tower at the Tianmushan and Anji sites, 
and the accuracies were evaluated by the corresponding gradient system observations. The details of the exper-
iments are described as follows. Two or more wireless sensors were placed at each layer of the flux towers and 
placed as close as possible to the instruments of the gradient system to reduce observation uncertainties. The 
layouts of the wireless sensors on the flux towers are shown in Fig. 7.

Each field experiment generally lasted 10~20 days due to the limitation of the battery life of the wireless sensor. 
In total, seven and ten field experiments were carried out in the Tianmushan site from September 2013 to May 
2015 and Anji site from December 2011 to October 2012, respectively. Excluding the missing data due to power 
or sensor failures and severe weather, there were 97 site-days of valid data samples (Table 1). The sensor-based 
temperature and humidity data essentially covered all seasons and different weather types (e.g., clear, cloudy and 
rainy day), providing robust temporal coverage and reliability.

Considering the battery life and data integrity, the sampling period of the wireless sensor was set to 10 min-
utes, and the data within a half hour were averaged. The data outliers with network-transmission problems were 
discarded. Additionally, based on the long-term microclimatic observations of the gradient systems the reasona-
ble ranges of temperature and humidity in the study sites were 15 °C~45 °C and 0~100%, respectively. Hence, the 
wireless sensor observations beyond these ranges were excluded in further analyses.

Statistical analysis.  For the accuracy evaluation of the wireless sensors, the linear regression relationships 
between the wireless sensor- and flux tower-based climatic observations were detected in our present work. 
Additionally, root mean square error (RMSE) and evaluation accuracy (EA) were also used, which are shown as 
the following:

= ∑ Δ − Δ= Sensor Tower
n

RMSE
( )

,
(5)

i
n

1
2

=


 −



 ×

RMSE
Mean

EA 1 100,
(6)

where ΔSensor and ΔTower represent the wireless sensor- and flux tower-based climatic observations, respec-
tively, n represents the sample size, mean denotes the average of the observations from the gradient system or 
profile system.

In this study, the overall accuracies of the temperature and humidity observed by the wireless sensors were 
first evaluated. Considering the potential impacts of climatic conditions and plant seasonal activities on equip-
ment precision, observational accuracy of the wireless sensors were further detected during different seasons, at 
different daily periodicities and in different weather conditions. Meanwhile, the error characteristics and causes 
were analyzed. Then, an optimized correction factor was selected to establish correction models for adjusting the 
original sensor-based observations. Finally, the data before and after the correction were compared.
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