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vibration to determine the size of the particle, in this case the size is estimated as 168 ± 2 nm from a 18.9 GHz 
breathing mode.

Super-localisation of multiple nano-bells. Figure 4 shows a sequence of images taken using our GHz/
nanoscale phononic microscope (see methods) of three particles deposited on a gridded coverslip, (a) is the 
optical image, (b) the SEM image of the same area, (c) the amplitude of the vibrational signal, (d) the acoustic fre-
quency measured from the dominant peak and (e) the reconstruction of the image using (c) to locate the particles 
and (d) to determine their size.

Figure 2. Modelled response of nano-bells. (left) Schematic of the experiment from the nanoparticles’ point of 
view. The particle sits on the transparent substrate and is illuminated by the pump beam and probe beam from 
below. The scattered light is collect in transmission from above. (a) The optical absorption cross section for the 
gold nanoparticles used in the experiment calculated using Mie theory for the pump wavelength. (b) The optical 
scattering cross section calculated for the probe wavelength, (c) the derivative of (b) with respect to size, and (d) 
the vibration frequencies of the particles as a function of size.

Figure 3. (a) Raw signal centred on the particle, (b) signal after processing to extract the change in scattering 
cross section as the particle vibrates (inset frequency content), (c) SEM of the particle and (d) optical image of 
same particle. Scale bars in (c) and (d) 500 nm.
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In Fig. 4a the picture shows two objects well separated and because of this, one can assume their localisation is 
trivial by optical means. However, the SEM image of the same area (see Fig. 4b) reveals a third object not localised 
by optical imaging. In this case two of the three particles are close together, separated by less than the width of the 
optical PSF so the reconstruction becomes more complex.

Here we rely on the vibrational frequency of nano-bells to attribute, like in STORM, a unique point-spread 
function to each particle. The acoustic scan provides the amplitude map of the particles which still shows only 
two objects (see Fig. 4c). However plotting the amplitude of each frequency present in the detected signal, lends 
to the reconstruction of the PSF of each particle (see Fig. 4d). Once the PSF of each particle is detected using its 
frequency signature, its location is determined by centroiding its PSF in a similar way to STORM (see Fig. 4e). 
Note that the PSF of different particles overlap although is not visible in Fig. 4d.

It can be seen that the ultrasonic reconstruction has successfully localised the nanoparticles in the sample at 
far higher precision than the resolution of the optical microscope is capable of. The precision in which the size and 
position of the particles are localised, determined from the signal and noise analysis, can be measured to ~3 nm 
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Figure 4. Images of three particles. (a) Optical image, (b) SEM, (c) acoustic amplitude, (d) acoustic frequency 
and (e) localisation of the particles with better precision than the diffraction limit. One is well separated 
from the others and can easily be resolved optically. The other two are ~200 nm apart and cannot be resolved 
optically, however, the acoustic signals clearly identifies the size and location of the particles allowing accurate 
reconstruction of the image shown in the SEM.
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(see methods). It is important to note that (with the exception of the SEM images) all the images presented in this 
paper were made through the same optics and all are constrained by the same conventional optical resolution.

This process breaks down in the event of multiple particles with the same frequency of vibration being imaged 
in the same optical point spread function similar to when two fluorophores turn on simultaneously within one 
PSF in STORM. However, if the particles in each optical point spread function are sufficiently size dispersed 
then they can be easily and reliably imaged. Figure 5 shows a large scale image identifying many particles in a 
50 × 50 μm field of view and super-resolution images for three different positions on our sample demonstrating 
reliable and robust reconstruction.

Discussion
By exploiting the polydispersity of the nanoparticles, and the different vibrational frequencies they exhibit, we 
have been able to determine their location and size at precision far higher than the native optical resolution of our 
system. We assume (a priori) that the particle is a sphere. For more complex particles, such as nanorods, it can be 
possible to also determine the shape, critical dimensions and orientation from their acoustic signatures but this 
is beyond this paper.

Metallic particles are easily functionalised and well tolerated by biological cells17–19. We propose then to tag 
cells with “nano-bells” for super-resolution reconstruction imaging in the same way that fluorophores are fun-
cionalised and used in other super-resolution techniques. This new scheme for super-resolution imaging may 
offer significant advantages for living-cell applications over techniques based on fluorescent dyes. Nanoparticles 
will not bleach allowing long term repeated imaging. The phonons will not cause damage even though they have 
sub-optical wavelengths. Particles can be accessed and detected through relatively long optical wavelengths reduc-
ing phototoxicity and the vibrational modes of particles offer the possibility of mechanical characterisation2,11.

Nano-bells offers potential advantages for cell-imaging, however substantial technological challenges must be 
addressed. First, acquisition speed is not yet practical for biological applications and it could be increased through 
for instance wide-field detection. Second, current particle sizes are relatively large compared to the PSF of the 
optical system, however these were selected for ease of use and much smaller particles can be used if the optical 
probing wavelength is reduced. Third and final, biocompatibility of the current scheme might be low due to 
absorption of the excitation wavelength (420 nm) and generation of heat. Selecting an adequate material, a longer 
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Figure 5. (Left) 50 × 50 μm area image showing ~150 nanoparticles and their predicted sizes where the 
particles are shown at 300% of their measured size for clarity at this scale. (Right) (a,c,e) SEMs of nanoparticles 
overlaid with their optical images and (b,d,f) SEMs of the nanoparticles shown in (a,c,e) overlaid with the 
acoustic reconstruction where super-optical resolution is shown. False colour in (b,d,f) indicates particle size on 
the same color scale as the left figure.
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wavelength can be used for excitation and the thermal load which is very small for a single pulse can be reduced 
if the acquisition speed and signal-to-noise ratio increase. We expect that future technological developments will 
allow nano-bells to be a competitive super-resolution alternative.

In a normal optical imaging system the resolution is determined by considering when adjacent optical point 
spread functions overlap and can no longer be distinguished. In super-resolution localisation microscopy a differ-
ent criteria is considered and that is the precision with which a single fluorophore can be localised. In the scheme 
presented in this paper a similar approach is used and the resolution should become the precision of the localisa-
tion of the particle and, additionally, if required, consideration of the precision of the particle sizing.

Analysis of the signals and noise in the system puts the localisation precision for the images shown in this 
paper to be ~3 nm and the size accuracy to be ~2 nm (see methods). However, these noise derived figures need 
to be treated carefully–while the measurements are repeatable to these errors, the assumptions that we have used 
to derive the images are slightly naive. For instance, we treat the vibration of the particles and optical scattering 
from the particles as if they were suspended in free space and completely isolated from any optical or mechanical 
influences. The reality of the situation is that the particles are sat on a hard elastic surface and the optical refractive 
index of the surface differs from that of air. However, this does not appear to affect our ability to super-localise 
the particles.

In normal optical imaging the axial resolution is determined by the axial point spread function and normally 
given by ~λ/NA2. In this paper the particles all line on the plane of the substrate and axial resolution is not con-
sidered. However, the axial resolution of our system in a three dimensional sample would be determined by one 
of two schemes: firstly the standard optical resolution determined by the optical axial point spread function and 
secondly if the system were able to pick up the acoustic waves on the substrate then the axial resolution would be 
determined by the acoustic wavelength which has already been demonstrated to be better than 200 nm2.

In addition to the usual limits on resolution described above there is an additional consideration: the number 
of localised particles or channels available. In the examples shown in this paper six different particles sizes were 
used that would result in a maximum of six localised particles per optical point spread function. In a sample with 
a random mix of particles there is a large probability that two particles of the same size will be within one point 
spread function and this will result in these particles being unlocalised.

The total number of channels available is a function of the particle properties and the instrumentation. In 
this case, the frequency bandwidth of the vibration is determined by the vibrational decay of the particles due 
to thermal relaxation, phonon scattering and radiation of acoustic waves into the medium around the particles. 
The bandwidth of the instrumentation is potentially very high but the optical detection method (size modulation 
of the scattering) restricts the size range of the particles that can be detected (although alternative methods20 go 
much higher in frequency).

For our implementation the practical number of channels is estimated to be around 50 (see methods). For a 
random arrangement of particles with 50 available channels, we estimate that 7 particles in a PSF will have less 
than 50% probability of having unlocalised particles (two or more particles of the same size). This can be dramati-
cally increased using a more complex particle, for instance nanorods21 or nanoshells22 because these exhibit richer 
acoustic behaviour and more particles can be detected with orthogonal signals. It must be noted that increasing the 
number of channels decreases the probability of two particles of the same size occurring in the same PSF. However 
this does not increase the number of channels that can be measured from a single PSF simultaneously. Instead, this 
number is largely limited by the physical dimensions of the particles and the object that they are intending to image.

When two or more particles are very close or touching the situation becomes more complex still. Close but not 
mechanically coupled particles can still have complex coupled electromagnetic resonances and these can result 
in high sensitivity to certain vibrational modes which can be detected optically23. In addition situations where 
there is physical contact, extra vibrational modes and signals can exist that may also be detected. This can be a 
rich source of additional information but can be very complex and difficult to invert to determine the image. The 
coupling to the matrix or substrate can also lead to additional frequency components in the signals which tends 
to lie at lower frequencies than the main vibrational modes that we observe24. These signals can provide additional 
information about the coupling of the particles to the substrate and media. In finite element modelling studies we 
were able to observe that there was no significant problems separating signals from different particles when they 
were further than 10–20 nm apart.

We have shown how the vibrational frequencies of different size nanoparticles can be used to isolate and 
pick out the optical signal from individual particles even if they are imaged together within the same optical 
point-spread function. We proposed to use “nano-bells” as a novel route to imaging with super-optical resolution. 
This potential new technique can be implemented through a conventional optical microscope, remove the limita-
tions of bleaching, be live-cell compatible18,19 and lead to super-resolved mechanical characterisation.

Methods
Substrate preparation. A lithography process was used to make the gridded cover-slips. A photoresist coating 
(BPRS 150) was coated on a clean cover-slip and then, the ultraviolet (UV) exposure was performed using a Karl 
Suss MJB3 Mask Aligner with a power of 7 mW/cm2 through the gridded mask. Later, a developing solution (1:8) of 
AZ400K and deionised (DI) water was used for the developing process, and the cover-slip was washed with DI water 
and dried with nitrogen gas. Then, 10 nm of indium tin oxide (ITO) and 20 nm of gold (Au) were coated and lift-off 
process was made using warm acetone in an ultrasonic bath. Finally a thin ITO film, ~50 nm, was sputter coated 
over the entire surface before depositing the gold nanoparticles on the gridded cover-slip. This extra ITO layer avoids 
charging effects during scanning electron microscopy (SEM) so that reference images could be taken of the particles. 
The gridded cover slip contained reference coordinates that were clearly visible in both optical and SEM microscopes 
so that the same imaging area and orientation could easily be found in all instruments.
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SEM imaging. Prior to and after optical imaging the samples were imaged using a JEOL 7100F FEG-SEM 
electron microscope using a voltage of 15 keV, x19,000 magnification for the high resolution images and a work-
ing distance of 10 mm. The gridded coverslips were overcoated with 50 nm of ITO prior to particle deposition in 
order to remove artefacts caused by charge build up. This step avoids the need of coating the whole sample with 
a metal layer (after deposition the particles) which will affect the acoustic data and the vibrational modes of the 
nano-bells.

Image registration and alignment. The imaging areas in the SEM and optical microscope were registered 
using the indexed grid lines fabricated on the coverslips which could be clearly observed in both instruments at 
low magnification. The grid lines were used to rotate the optical images to match the SEM, the relative scaling 
of the SEM and optical images was performed using the scale bars in the SEM images and the positional infor-
mation from the microscope stage respectively. Initial registration of the images was performed using the grid 
lines, however, final registration was performed by eye in Fig. 4 because the grid lines were not visible in the high 
resolution SEM images.

Noise and localisation error estimation. The noise contribution to the positional error in the centroid-
ing was estimated by measuring the standard deviation of signal level in regions with no particles and using this 
as a measure of the signal noise. This error was then used with simple error propagation analysis to estimate the 
position error of the calculated centroids and these calculations were confirmed by simulation of signals with 
random noise added. This gave an estimation of the positional error for our system as 3 nm for the typical signals 
shown in the results. This was achieved by manually identifying a rough window location for each particle, cen-
troiding to get a first estimate of the particles and using this estimate to position a Gaussian mask (approximately 
twice optical point spread function size) to suppress noise from dark pixels outside the particle position. The 
particle size error was estimated by considering the effect of background noise on the measurement.

Channel width and number estimation and spatial bandwidth determination. This technique 
requires that individual particles can be differentiated. The number of different particles (or “channels”) that 
the system can observe simultaneously determines the ultimate spatial-bandwidth of the system when imaging 
arbitrary objects. When imaging typical objects the volume occupied by high contrast objects is usually a small 
fraction of the total imaging volume in which case the imaging resolution is determined by the spatial localisation 
accuracy rather than the number of channels available. In the case of the nanospheres resonances used in this 
paper we detect a single vibrational frequency for each particle: the breathing mode frequency. This is because of 
a combination of factors; the breathing mode is preferentially excited by the pump beam (because it is effectively 
uniformly heated due to the action of hot electrons rapidly spread heat27) and the detection mechanism is most 
sensitive to the breathing mode size changes. The number of channels can therefore be determined simply by 
considering the frequency separation required to localise two particles (~1.5 GHz) within the system bandwidth 
(1THz). This gives an indication of the maximum number of different particles that could be imaged separately in 
the volume or area of one optical point spread function (~50 different particles). If we consider a more complex 
particle it would be possible to detect additional non-redundant vibration frequencies and multiplex additional 
signal using wavelength or polarisation tagging and the number of channels could be increased considerably.

References
 1. Rayleigh, L. Xxxi. investigations in optics, with special reference to the spectroscope. The London, Edinburgh, Dublin Philos. Mag. J. 

Sci. 8, 261–274 (1879).
 2.  Pérez-Cota, F. et al. High resolution 3d imaging of living cells with sub-optical wavelength phonons. Sci. reports 6 (2016).
 3. Hell, S. W. Nanoscopy with focused light (nobel lecture). Angewandte Chemie Int. Ed. 54, 8054–8066, https://doi.org/10.1002/

anie.201504181 (2015).
 4. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emissiondepletion 

fluorescence microscopy. Opt. Lett. 19, 780–782, https://doi.org/10.1364/OL.19.000780 (1994).
 5. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat. 

methods 3, 793–796 (2006).
 6. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Sci. 313, 1642–1645 (2006).
 7. Sonnefraud, Y. et al. Experimental proof of concept of nanoparticle-assisted sted. Nano letters 14, 4449–4453 (2014).
 8. Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. 

Sci. 297, 1160–1163 (2002).
 9. Turko, N. A., Peled, A. & Shaked, N. T. Wide-field interferometric phase microscopy with molecular specificity using plasmonic 

nanoparticles. J. biomedical optics 18, 111414 (2013).
 10. Pelton, M. et al. Damping of acoustic vibrations in gold nanoparticles. Nat. nanotechnology 4, 492 (2009).
 11. Guillet, Y., Rossignol, C., Audoin, B., Calbris, G. & Ravaine, S. Optoacoustic response of a single submicronic gold particle revealed 

by the picosecond ultrasonics technique. Appl. Phys. Lett. 95, 061909 (2009).
 12. Hodak, J. H., Martini, I. & Hartland, G. V. Observation of acoustic quantum beats in nanometer sized au particles. The J. chemical 

physics 108, 9210–9213 (1998).
 13. Hartland, G. V. Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 57, 403–430 (2006).
 14. Crut, A., Maioli, P., Del Fatti, N. & Vallée, F. Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and 

encapsulation effects. Ultrason. 56, 98–108 (2015).
 15. Huang, B, Wang, W, Bates, M & Zhuang, X Three-dimensional super-resolution imaging by stochastic optical reconstruction 

microscopy. Science (New York, N.Y.), 319 (5864):810–3, (February 2008).
 16. Fuentes-Domínguez, R. et al. Size characterisation method and detection enhancement of plasmonic nanoparticles in a pump-probe 

system. Appl. Sci. 8 (2017).
 17. Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. & Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause 

acute cytotoxicity. Small 1, 325–327 (2005).
 18. Chai, Y., Tian, D., Wang, W. & Cui, H. A novel electrochemiluminescence strategy for ultrasensitive dna assay using luminol 

functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin–streptavidin system. Chem. 
Commun. 46, 7560–7562 (2010).

http://dx.doi.org/10.1002/anie.201504181
http://dx.doi.org/10.1002/anie.201504181
http://dx.doi.org/10.1364/OL.19.000780


www.nature.com/scientificreports/

9Scientific REPORTS |         (2018) 8:16373 

 19. Guerrero-Martínez, A., Pérez-Juste, J. & Liz-Marz´an, L. M. Recent progress on silica coating of nanoparticles and related nano. 
materials. Adv. materials 22, 1182–1195 (2010).

 20. Juvé, V. et al. Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. Nano letters 10, 1853–1858 
(2010).

 21. Hu, M. et al. Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimenta l analysis. J. Am. 
Chem. Soc. 125, 14925–14933 (2003).

 22. Mongin, D. et al. Acoustic vibrations of metal-dielectric core–shell nanoparticles. Nano letters 11, 3016–3021 (2011).
 23. Tchebotareva, A. L. et al. Acoustic and optical modes of single dumbbells of gold nanoparticles. ChemPhysChem 10, 111–114, 

https://doi.org/10.1002/cphc.200800289 (2009).
 24.  Guillet, Y., Audoin, B., Ferrie, M. & Ravaine, S. All-optical ultrafast spectroscopy of a single nanoparticle-substrate contact. 

PHYSICAL REVIEW B 86, https://doi.org/10.1103/PhysRevB.86.035456 (2012).
 25. Elzinga, P. A., Lytle, F. E., Jian, Y., King, G. B. & Laurendeau, N. M. Pump/probe spectroscopy by asynchronous optical sampling. 

Appl. spectroscopy 41, 2–4 (1987).
 26. Bartels, A. et al. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Rev. Sci. Instruments 78, 

035107 (2007).
 27. Gusev, V. E. & Wright, O. B. Ultrafast nonequilibrium dynamics of electrons in metals. Phys. Rev. B 57, 2878 (1998).

Acknowledgements
This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/
K021877/1, EP/G061661/1]. The authors would like to acknowledge the Nanoscale and Microscale Research 
Centre (nmRC) at the University of Nottingham for providing access to instrumentation and SEM imaging.

Author Contributions
Experimental concept and design: Matt Clark, Richard Smith, Fernando Pérez-Cota and Rafael Fuentes-
Domínguez. Experimental measurement and analysis: Rafael Fuentes-Domínguez. Sample preparation and SEM 
imaging: Shakila Naznin and Rafael Fuentes-Domínguez. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1002/cphc.200800289
http://dx.doi.org/10.1103/PhysRevB.86.035456
http://creativecommons.org/licenses/by/4.0/



