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Hierarchy of quantum correlations 
using a linear beam splitter
Haleema Sadia Qureshi, Shakir Ullah & Fazal Ghafoor

Beam splitters are important components in numerous tasks of quantum information protocols used 
either in simple or in an interferometric arrangement or together with other quantum systems. This 
report shows interesting aspects of the quantum correlations of two-mode Gaussian state (TMGS) 
for the photons retrieved via a linear beam splitter when they are initially employed at the input of 
either pure or mixed two single-mode Gaussian states (TSMGSs). The quantum correlations obey the 
boundaries of quantum non-locality, steering, entanglement and discord for pure input states. Though 
Bell inequality does not violate, quantum steering, entanglement and discord exist in the quantum 
state evolved by the beam splitter when input states become mixed. Specifically, the quantum steering, 
entanglement and discord persist to some degrees against the thermal photon number, the Bell 
inequality is, nonetheless, obeyed by the quantum state except in a very sharp regime.

After the local-realism theory conjectured by Einstein, Podolsky and Rosen (EPR)1, scientists paid much atten-
tion to define quantum correlations, e.g. Bell non-locality, quantum steering, quantum entanglement, quantum 
discord, and quantum coherence2–16, mainly due to their useful applications to quantum information processing. 
In general, all kinds of quantum correlations satisfy the conditions: quantum coherence ⊇ quantum discord ⊇ 
quantum entanglement ⊇ quantum steering ⊇ Bell non-locality3,17–24 where, for example, P ⊇ Q means P is the 
superset of Q. This reveals that steerable states are a strict subset of the entangled states and a strict superset of 
the states that may exhibit Bell non-locality and similarly to the others, the so-called hierarchy relations of the 
quantum correlations.

Quantum entanglement between states of a composite system emerged as an interesting resource for the 
advancement of both basic physics and applications. Today, entanglement has proved to be the building blocks in 
devising various techniques in the science of quantum information processing25–27. The phenomenon of quantum 
steering investigated by Schrodinger28 in the subsystems of a composite quantum system, occupies an intermedi-
ate position between Bell non-locality and entanglement in modern quantum information theory. Mathematical 
inequalities for quantum steering measurement have been proposed for continuous- and discrete- variable quan-
tum systems4,7,19–21,29–31. On the other hand, Bell’s32 local realist model for measurement of EPR state was origi-
nally formulated as a function in the Wigner representation using measurements of the joint classical-probability. 
However, the Wigner function becomes quantum correlated when the quantum system is subjected to parity 
measurements. On the basis of displacement operation and parity measurements33, Bell non-locality in the field 
state of two spatially separated cavities has been studied34. Using Schmidt form for the entangled non-orthogonal 
states35 and quadrature-phase states36, Bell non-locality has been reported. Temporal evolution of non-local 
two-mode squeezed state is investigated in a thermal environment as well37,38. The Bell and Bell type inequalities 
in the quantum state of various systems has already passed all addressed loop-hole3,39. Furthermore, as compared 
to quantum entanglement, disentangled quantum systems exhibit another kind of quantum correlations, known 
as quantum discord13,14,17, is useful in quantum information theory. Beyond the quantum entanglement phenom-
enon, quantum discord quantifies quantumness of the correlations associated with the quantum systems40,41. Such 
measurements provide us with the amount of mutual information that is not locally accessible of multipartite 
systems. Quantum discord has been extensively investigated in several physical systems such as spin chains42–44, 
cavity quantum electrodynamics45–47 and quantum dots48.

Continuous variable states, as compared to discrete variable, are easy to manipulate experimentally25. The 
Gaussian type states which are one of the important class of the continuous variable states, usable at the input of a 
linear beam splitter, have been realized using techniques of optical parametric converter49, parametric down con-
verter50 and two-mode squeezing effect25. The approach of quantifying the quantum correlations of continuous 
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variable7,25,40,41,51 and discrete variable3,5,11,13 states have been studied. In the present study, we investigate in detail 
the quantum correlations of continuous variable states through a beam splitter. Linear beam splitter is the basic 
component in various tasks of quantum information protocols, such as quantum entanglement52–54, teleporta-
tion55, steering21, used either in simple or in an interferometric arrangement or together with other types of 
quantum systems. The study of quantum correlations of continuous variable states with respect to a linear beam 
splitter in simple is interesting from perspective of basic physics and applications.

In this report, we study important aspects of the quantum correlations of photons retrieved via a linear beam 
splitter employing either pure or mixed TSMGSs of continuous variable system initially at the input. Boundaries 
of the quantum correlations of photons at the output obey quantum non-locality, steering, entanglement and dis-
cord in presence of the pure input states. On contrary, the Bell inequality does not violate, however, the quantum 
steering, entanglement and discord exist in some regime of angle θ of the beam splitter when the input states are 
mixed. Against the thermal photon number, the quantum steering, entanglement and discord persist to some 
degrees whereas the Bell inequality is obeyed except in a very sharp regime40,41. In this case, we find that all the 
four kinds of the quantum correlations form a hierarchy (see Fig. 1).

Results
Two single-mode Gaussian states at inputs. We employ TSMGSs of photons at the input of a lossless 
beam splitter with complex probability amplitudes (δ1, δ2). The characteristic function for the two separable states 
is written as
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At the output, characteristic function for the TMGS with complex amplitudes ξ1 and ξ2 becomes as

χ ξ ξ ξ ξ=


−



.†V( , ) exp 1

2 (3)AB1 2

where ξ ξ ξ ξ ξ=† ⁎ ⁎( , , , )1 1 2 2  and

Figure 1. Quantum correlations: quantum coherence ⊇ quantum discord ⊇ quantum entanglement ⊇ 
quantum steering ⊇ Bell non-locality, where P ⊇ Q represent P is the superset of Q etc.
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is the two-mode output covariance matrix. In Eq. (4) UBS is the 4 × 4 unitary transformation matrix of the beam 
splitter given by
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quantum steering, entanglement and Gaussian discord of the photons retrieved through the beam splitter using TSMGSs 
of various properties initially at the input. The Bell’s combination33,37 for the TMGS at the output of the beam splitter is 
evaluated as
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All the terms on the right side of Eq. (6) are defined in Eq. (19), as presented in Methods. The Bell’s combina-
tion  obeys the range of the inequality − < <2 2 when the quantum state becomes separable. Otherwise, it is 
inseparable.

Quantum steering7,19 owns the place between entanglement and Bell non-locality in the quantum correlations. 
How much A steers B for the covariance matrix VAB of the quantum state is quantified by
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The Gaussian quantum discord40,41, the superset of all the above mentioned quantum correlations, is measured 

as
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α = det , β = det , γ = det ,  δ = V4det ,AB  and λ± being the symplectic eigenvalues of the two-mode covar-
iance matrix VAB, given by λ = ∆ ± ∆ −± V2 4det AB

2 2  with ∆ = + +A B Cdet det 2det . To obtain the 
smaller symplectic eigen value λ−

  under the partially transposed state, we replace γ with −γ in the expression of 
λ−. Towards this measurement, TMGS becomes inseparable if the condition D > 1, is satisfied. The quantum state 
is either separable or inseparable when the measurement obeys the condition 0 ≤ D ≤ 140,41.

As shown in Fig. 2, response of the quantum non-locality, steering, entanglement and quantum Gaussian 
discord are plotted against the beam splitter angle θ using μ1 = μ2 = 1, τ1 = 0.1, φ1 = −π and φ2 = ϕ = π for various 
values of the non-classicality τ2. Apparently, influence of all the four kinds of the quantum correlations is maximal 
for the choice of θ = π

4
. However, the influence minimizes gradually when the angle θ deviates from π

4
. Moreover, 

effect of the correlations grows with increasing non-classicality τ2 except in the regimes θ = 0 and π
2

. In Fig. 2(a), 
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Bell’s combination of the evolved quantum state violates the inequality − < <2 2 which predicts the quantum 
system is non-local. The subsystem A, on the other side, steers B showing the quantum steering SA→B effect in the 
system (see Fig. 2(b)). Like Bell non-locality and quantum steering, entanglement between the two subsystems 
exhibits as well (see Fig. 2(c)). To get insight beyond the entanglement phenomenon, the Gaussian quantum dis-
cord D is next investigated as shown in Fig. 2(d). Obviously, the condition D > 1 is obeyed, leads to inseparability 
of the TMGS. This means that maximal information can be extracted from the quantum system. Finally, we con-
clude that the four kinds of the quantum correlations reveal similar characteristics in their own respects i.e. the 
entangled pure states are steerable and also violate Bell inequality whereas the Gaussian quantum discord shows 
enhanced profile for the quantum correlations produced by the beam splitter.

On the other hand, Bell inequality does not violate when the input states of the beam splitter are chosen mixed 
states (see Fig. 3(a)). This aspect of the study is in accord with the ones reported in ref.58. We further show the 
quantum steering SA→B in Fig. 3(b) using the identical conditions of the input states as used in Fig. 3(a). In this 

Figure 2. The quantum correlations of TMGS at the output of beam splitter for fixed values of μ1 = μ2 = 1, 
τ1 = 0.1, φ1 = −π and φ ϕ π= =2 . (a) Bell’s combination, (b) quantum steering, (c) quantum entanglement, 
and (d) quantum discord against beam splitter angle θ. In all the plots the dotted-purple, dashed-red and solid-
green lines are for τ = .0 252 , 0.3 and 0.35, respectively.

Figure 3. The quantum correlations of TMGS at the output of beam splitter for fixed values of τ1 = 0.2, τ2 = 0.4 
φ1 = −π and φ2 = ϕ = π. (a) Bell’s combination, (b) quantum steering, (c) quantum entanglement, and (d) 
quantum discord against beam splitter angle θ. In all the plots the dotted-purple, dashed-red and solid-green 
lines are for μ1 = μ2 = 0.6, 0.8 and 1, respectively.
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case, the quantum state is non steerable when the purities of the input states become as μ1 = μ2 = 0.6. However, for 
μ1 = μ2 = 0.8, the quantum steering is zero before the angle θ = π

6
 of the beam splitter and suddenly exhibits in 

the system beyond this angle. After maximal effect is reached, the steering diminishes gradually and vanish at π
3

. 
In comparison to Bell non-locality and quantum steering, we next show entanglement between the TMGS using 
logarithmic negativity En (see Fig. 3(c)). In this case, entanglement exists in different ranges of θ with distinct 
purities, for instance when μ1 = μ2 = 0.6, En lies in a short range θ≤ ≤π π2

9
5
18

. This result reveals that the quan-
tum state of the system is non steerable (Fig. 3(b)) and Bell inequality does not violate as well (Fig. 3(a))19,20. 
Further, the quantum discord D satisfies the condition 0 ≤ D ≤ 1 in the entire range of θ as shown in Fig. 3(d). 
Here, in a region, where the logarithmic negativity is zero, the Gaussian quantum discord appears non zero24. The 
behavior of the discord does not tell us whether the state is separable or inseparable. Looking at the entanglement 
however shows that in this case the state is separable when En = 0 otherwise it is inseparable (see Fig. 3(c)). 
However, the quantum discord in the system always shows maximal inseparability in the photons when the input 
photons employed are in pure states. Since maximal quantum discord D means maximal quantum entanglement, 
maximal quantum information from the system may be extracted in this case.

To conclude with this discussion, we find that when there is entanglement in the system, it must always exhib-
its quantum discord. Contrarily, the system exhibiting quantum discord does not necessarily show the entan-
glement phenomenon. Likewise, every violation of Bell inequality shows quantum steering in the system and 
quantum steering is a witness of entanglement. In both the cases, the system showing the latter one may not 
reveal the former. Hence, in presence of mixed input states, the boundaries of all the four kinds of the quantum 
correlation form a hierarchy.

An arbitrary single-mode Gaussian and a thermal state at inputs. Now as an example, we consider 
the first input an arbitrary single-mode Gaussian state and the second input a thermal state, the covariance matrix 

for the two states is = ⊕V A C,in  with sub matrices A
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 Using Eqs. (6–9), it is easy to estimate expressions 
for Bell inequality, quantum steering, quantum entanglement and quantum discord explicitly.

Response of the four kinds of the quantum correlations against the angle θ is further shown in Fig. 4 for n = 0, 
μ = 1, φ = 0, and ϕ = π along with various non-clasicality τ of the input states. As shown in Fig. 4(a), the Bell ine-
quality violates except at the angle θ = 0 and 

2
π  of the beam splitter. The influence of the four kinds of the quantum 

Figure 4. The quantum correlations of TMGS at the output of beam splitter for fixed values of n = 0, μ = 1, 
φ = 0 and ϕ = π. (a) Bell’s combination, (b) quantum steering, (c) quantum entanglement, and (d) quantum 
discord against beam splitter angle θ. In all the plots the dotted-purple, dashed-red and solid-green lines are for 
τ = 0.2, 0.3 and 0.35, respectively.
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correlations indicate enhanced profile with the non-classicality τ. In each case of the correlations, the behavior is 
qualitatively similar to the ones reported in Fig. 2. In comparison to the study presented in Fig. 3, we further show 
Bell inequality, quantum steering, entanglement and discord against the angle θ of the beam splitter in the presence 
of thermal photons using n = 0.1, τ = 0.35 φ = 0, and ϕ = π with various values of the purity μ of the input states 
(see Fig. 5). In this case, effect of the non-local correlations in the system is degraded. As a result, Bell inequality 
does not violate, examining a local behavior (see Fig. 5(a))37,38. The Gaussian state, on the other hand, is steerable 
(see Fig. 5(b)) under the same parametrization as used in Fig. 5(a). We note that in comparison to the study pre-
sented in Fig. 3(b), the quantum steering in the system represents various asymmetrical profile with respect to the 
maximal steering effect in the system. In Fig. 5(c), generation of entanglement between TMGS occurs in a broader 
range of the angle θ unlike the entanglement behavior generated by the beam splitter as shown in Fig. 3(c). In this 
case, maxima produced by the beam splitter is independent of the purity of the input state. In both the cases, profile 
of the entanglement reveals qualitatively similar behavior. Furthermore, quantumness of the TMGS as measured 
by the Gaussian quantum discord (see Fig. 5(d)) indicates similar characteristics in comparison to the one reported 
in Fig. 3(d). It is obvious from Fig. 5, the Gaussian quantum discord, quantum entanglement, quantum steering 
and Bell non-locality represent hierarchy of the quantum correlations as studied in this system.

Finally we summarize our study in Fig. 6 for the four kinds of the quantum correlations versus the thermal 
photon number n using the other parameters as μ = 1, τ = 0.35, φ = 0, and ϕ = π. We note that characteristics of the 
four kinds of the quantum correlations show inverse relation in presence of the thermal photons n. In each case, the 
effect of non-classical correlations decreases as the thermal photons n increases at the input of the beam splitter. 

Figure 5. The quantum correlations of TMGS at the output of beam splitter for fixed values of n = 0.1, τ = 0.35, 
φ = 0 and ϕ = π. (a) Bell’s combination, (b) quantum steering, (c) quantum entanglement, and (d) quantum 
discord against beam splitter angle θ. In all the plots the dotted-purple, dashed-red and solid-green lines are for 
μ = 0.6, 0.8 and 1, respectively.

Figure 6. The quantum correlations of TMGS at the output of beam splitter for fixed values of μ = 1, τ = 0.35, 
θ = π/4, φ = 0 and ϕ = π. The dotted-green, dashed-purple, dot-dashed-red and solid-brown lines represent 
respectively the Bell non-locality, quantum steering, quantum entanglement, and quantum discord against 
thermal photon number n.
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Bell inequality violates strictly in the smallest regime 0 ≤ n < 0.025 and is obeyed when n ≥ 0.025 which shows 
almost total loss of the quantum non-locality in the retrieved TMGS37,38. Note that effect of the quantum steering 
SA→B in the quantum state vanishes when n ≥ 0.22. This means that subsystem A steers B in the limit 0 ≤ n < 0.22. 
In comparison to  and SA→B, the generation of entanglement between the two modes as measured by the logarith-
mic negativity En lies in the range 0 ≤ n ≤ 1.17. In the same limit 0 ≤ n ≤ 1.17, the Gaussian quantum discord D in 
the TMGS exhibits an enhanced profile which represents an important indicator to examine the non-classical 
correlations. Apparently, the results of all the quantum correlations, as displayed on Fig. 6, demonstrate transpar-
ently that > > >→D E Sn

A B  which means that  is the subset of SA→B and similarly the others.

Summary
In this report, we have studied four kinds of the quantum correlations such as Bell non-locality, quantum steering, 
entanglement and discord via a linear beam splitter using TSMGSs initially at the input. Influence of each one 
correlation with respect to the others have been analyzed both for pure and mixed input states.

The TMGS evaluated by the beam splitter exhibits non-locality, quantum steering, entanglement and discord, 
when pure input states are taken into account. The quantum correlation shows similar behavior in each case. 
Upon increasing the non-classicality of the input modes, the quantum correlations indicate enhanced profile.

On the other hand, the Bell inequality is obeyed by the quantum state when mixed states are employed at 
the input. Similarly, the quantum state is non steerable when mixedness of the input states are enhanced (see 
Fig. 3(b)), otherwise, the quantum state is steerable in various ranges of the beam splitter angle θ. However in 
such a situation, quantum entanglement (discord) in the TMGS is obtained in different (whole) ranges (range) of 
the beam splitter angle θ. The effect of the quantum steering, entanglement and discord increases quantitatively 
with increased purity of the input states. To clearly get insight, the effect of violation of Bell inequality, quantum 
steering, entanglement and discord is specifically shown against thermal photon number. In this case, the Bell 
inequality is obeyed except in a very sharp regime of the thermal photons. However, the quantum steering, entan-
glement and discord still exhibits by the TMGS.

Finally for mixed input states, we identified that Bell non-locality leads to steerability in the system and quan-
tum steering is a witness of entanglement but the reverse is not always true. Similarly, entanglement in the system 
always exhibits quantum discord but the latter may not necessarily shows the former. Hence, based on these anal-
ysis, the hierarchy relation quantum discord ⊇ quantum entanglement ⊇ quantum steering ⊇ Bell non-locality 
is satisfied by the four kinds of the quantum correlation in the system, where P ⊇ Q means P is the superset of Q, 
stating such that steerable states are a strict subset of the entangled states, and a strict superset of the states that 
may exhibit Bell non-locality.

The present study may prove extremely availing from perspective of basic physics and its application to 
numerous quantum information protocols.

Methods
Gaussian states. An important class of continuous variable states, in the representation of Wigner function 
is called a Gaussian state if it characterizes a quasiprobability distribution. Here we consider the phase-space 
quadratures =X x p x p( , , , )A A B B

ˆ ˆ ˆ ˆ ˆ  for a two-mode quantum system which satisfy the canonical commutation rela-
tions = Ωˆ ˆX X i[ , ]i j ij, with Ω = ⊕

−= ( )0 1
1 0k 1

2  being the symplectic form. The first and second statistical moments 

are the relevant quantities which define the Gaussian state with the mean quadratures ˆ =X X and with the ele-
ments ˆ ˆ ˆ ˆ ˆ ˆ= 〈 + 〉 − 〈 〉V X X X X X X[ ]AB ij i j j i i j

1
2

 of the covariance matrix VAB. Since the correlations in Gaussian 
states are independent of local unitary operation, the first moment X becomes 0.

For a TMGS, the covariance matrix can be written in block form as A C
C B

VAB T=







, where  and  are the 

2 × 2 covariance matrices of subsystems A and B, and  is the correlation matrix between the two-modes. In 
order to describe a physical quantum state, every covariance matrix must satisfy the strong form of uncertainty 
principle on the canonical operators + Ω ⊕ Ω ≥V i( ) 0AB A B .

Quantum correlations. Bell non-locality32 is a channel in which non-local correlated random variables 
can be generated among distant parties after performing local measurements on their subsystems, such that the 
correlations are not pre-determined at the source. In order to investigate the non-locality of the output state in the 
phase space, we explicitly calculate its Wigner function59. The Wigner function in terms of the output character-
istic function for the output TMGS after the action of beam splitter can be defined as
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expression can be described as an expectation value of the displaced parity operator. According to Banaszek and 
Wodkiewicz33, photon detection probability for EPR-like state is directly related to the phase space density. 
Therefore, a Bell type inequality is defined to measure quantum non-locality. The displaced parity operator for a 
two-mode field becomes ˆ α αΠ ′ ′ = ′ ⊗ ′D D( , )1 2 1 2, with α α′ = ′ − ′††

D D D( )( 1) ( )i a i
a a

a ii
i i

i
, where †a a( )i i  is annihilation 

(creation) operator and 
† ⁎

α′ = α α′ − ′D e( )a i
a a( )

i
j i j i  are the single-mode displacement operators for the two fields. The 

Wigner function α α′ ′W ( , )TMGS 1 2  in Eq. (13) can be expressed in terms of parity operator as

α α
π

α α′ ′ = Π ′ ′W ( , ) 4 ( , ),
(14)TMGS 1 2 2 1 2

where ( , )1 2α αΠ ′ ′  is the quantum expectation value of ˆ α αΠ ′ ′( , )1 2 . Using correlations between parity measure-
ments, the Bell’s combination () becomes as32

 = Π + Π + Π − − Π −J J J J(0, 0) ( ,0) (0, ) ( , ), (15)1 2 1 2

where J1 and J2 represents magnitude of the displacements. The Bell’s combination for the TMGS is evaluated as

 = P , (16)1

where ∫ ∫ ξ ξ χ ξ ξ μ μ= = = − −
π

−
P d d a a c b b c( , ) [( )( )]1 2

1
2

2 1 2 1 2
1
4 1 2 1

2
1 2 2

2 1/2
2  is the global purity of the output 

quantum state and

= + − − + − −

− − + + −

− −

−

 J b b b c J b b b c

J b J b c J J b b c

1 exp[ ( ) ] exp[ ( ) ]

exp[ ( 2 ) ( ) ], (17)

1 1 2 1 2 2
2 1

2 1 1 2 2
2 1

1 2 2 1 2 1 2 1 2 2
2 1

with a1 = f1 + f11, a2 = f2 + f22, b1 = f1 − f11, b2 = f2 + f22, c1 = | f12| + | f3|, and c2 = | f12| − | f3|. One can choose 
J1b2 = J2b1 or J2 = J1b2/b1, so 1 can be expressed as

 = + − − − − + − .− −J b b b c J b c J b b b b c1 2exp[ ( ) ] exp[ 2( / )( ) ] (18)1 1 2 1 2 2
2 1

1 2 2 1 2 1 1 2 2
2 1

Eq. (16) reveals reduction of the Bell’s combination in value with a decrease in the global purity of the output 
state. To make 1 maximal, we evaluate J1 with use of the condition,  =d dJ/ 01 1 . It results in = +J b c b b( 2 / )1 2 2 2 1  

− −b b c z( ) ln( ),1 2 2
2 1  where =



 +



z 1 c

b b
2

1 2

. Substituting J1 in Eq. (18), the optimized Bell’s combination appears 

as

 = P , (19)1 max

where  = + − − 

− 


b R z1 2 exp[ ]ln( ) exp z

R R1 max 2 1
2 ln( )

1 2
, with = +R b c b b2 /1 2 2 2 1 and = +R b c b b/2 2 2 2 1. Eq. 

(19) indicates that the Bell’s combination depends on the parameters μ μ τ τ, , ,1 2 1 2, beam splitter angle θ, phases of 
the input modes and the phase shift of the beam splitter.

Quantum steering7,19 is an interesting quantum mechanical phenomenon which fills the space between entan-
glement and Bell non-locality on the part of the quantum correlation effect in a system. The steering provides one 
party with the ability to perform a measurement on their side of an entangled quantum system. As a response, the 
set of parameters of other party at a non-local distance are influenced. In a composite quantum system with sub-
systems A and B associated with the TMGS, A steers B if the condition + ⊕ Ω ≥V (0 ) 0AB

i
A B2

, is not satisfied by 
Gaussian measurements19. Quantum steering is asymmetric in general i.e. ≠→ →S SA B B A, where steering from A 
to B can be quantified with7

=










.→S
V

max 0, 1
2

log det
4 det (20)

A B

AB
2



The degree of entanglement for bipartite quantum state of a composite system at the output of the beam split-
ter can be quantified by using logarithmic negativity11. The logarithmic negativity can be obtained by 

λ= − −E max {0, log (2 )},n 2  where λ−
  is the smallest of the two symplectic eigenvalues under the positive partial 

transpose11,51 of the two-mode covariance matrix VAB, given by λ = ∆ ± ∆ −±
 V2 4 det AB

2 2  with 
∆ = +det detA B − .2 det 

Quantum discord40,41 is another type of quantum correlations which describes the total correlations measure-
ment in a quantum state that is basically the difference between the equivalent expressions of two classical mutual 
information. We measure the discord within the domain of generalized Gaussian measurements on bipartite 
system that are described by TMGS of covariance matrix VAB. The general form of Gaussian quantum discord is 
expressed in Eq. (9).
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