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Integration of genome wide 
association studies and whole 
genome sequencing provides novel 
insights into fat deposition  
in chicken
Gabriel Costa Monteiro Moreira  1, Clarissa Boschiero1, Aline Silva Mello Cesar  1, 
James M. Reecy2, Thaís Fernanda Godoy1, Fábio Pértille  1, Mônica Corrêa Ledur3, 
Ana Silvia Alves Meira Tavares Moura4, Dorian J. Garrick  5 & Luiz Lehmann Coutinho  1

Excessive fat deposition is a negative factor for poultry production because it reduces feed efficiency, 
increases the cost of meat production and is a health concern for consumers. We genotyped 497 birds 
from a Brazilian F2 Chicken Resource Population, using a high-density SNP array (600 K), to estimate 
the genomic heritability of fat deposition related traits and to identify genomic regions and positional 
candidate genes (PCGs) associated with these traits. Selection signature regions, haplotype blocks and 
SNP data from a previous whole genome sequencing study in the founders of this chicken F2 population 
were used to refine the list of PCGs and to identify potential causative SNPs. We obtained high genomic 
heritabilities (0.43–0.56) and identified 22 unique QTLs for abdominal fat and carcass fat content traits. 
These QTLs harbored 26 PCGs involved in biological processes such as fat cell differentiation, insulin and 
triglyceride levels, and lipid biosynthetic process. Three of these 26 PCGs were located within haplotype 
blocks there were associated with fat traits, five overlapped with selection signature regions, and 12 
contained predicted deleterious variants. The identified QTLs, PCGs and potentially causative SNPs 
provide new insights into the genetic control of fat deposition and can lead to improved accuracy of 
selection to reduce excessive fat deposition in chickens.

In the past, slow growth rates were a challenge in poultry production systems; consequently, intensive selection 
of this trait in elite great-grand parent lines has dramatically increased poultry productivity. Modern commercial 
broiler chickens are produced from crosses that have been simultaneously selected for rapid growth, increased 
meat-production, and improved carcass yield1,2. However, chickens selected for higher body weight might exhibit 
increased appetite and excessive energy consumption, which may lead to excessive fat accumulation3–5.

Excessive fat deposition in chickens is a negative factor for meat production because it reduces feed efficiency 
and the value of the carcass6. Therefore, understanding the genetic architecture, uncovering genomic regions, 
and finding positional candidate genes (PCGs) associated with fat deposition related traits could be helpful in 
breeding programs.

A total of 200 quantitative trait loci (QTL) have been reported for abdominal fat weight, 139 for abdominal 
fat percentage and 11 for carcass fat content7. Previous QTL studies, performed in the same population evalu-
ated in this study (Embrapa F2 Chicken Resource Population) using 128 microsatellite markers for 22 autosomal 
chromosomes, mapped QTLs for abdominal fat traits8–10 and carcass fat traits9, but the genomic locations of 
these QTL had large confidence intervals. Genotyping of animals using high-density marker arrays can help the 
identification of genomic regions with smaller intervals11, which, in turn, facilitates the identification of candidate 
genes.
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Many studies have been performed to identify candidate genes for fat deposition traits in chicken12–15, but the 
discovery of a causal mutation is still a challenge. In a study with chicken, candidate genes for egg production and 
feed efficiency were identified by genome-wide association study (GWAS), and this information was integrated 
with selection signature results highlighting important biological processes and causal variants16. However, to the 
best of our knowledge, no integrative studies were performed to identify potential causal genes and mutations for 
fat deposition regulation.

Thus, the aims of this study were to estimate genomic heritability for different fat deposition related traits and 
identify genomic regions and PCGs in an F2 population from a cross between a broiler line and an egg-layer line. 
We also integrated these results to refine our list of candidate genes using selection signature regions and SNP 
data information previously obtained from whole genome sequence of the parental generation evaluated in this 
study.

Results
Genotyping and quality control. From the 529 genotyped chickens, 40 were removed before GWAS anal-
ysis. Of these, 12 were removed because their genotypes did not pass quality control (DishQC ≥0.82 and call 
rate ≥90% filter), and 28 did not have complete phenotypic data. As a result, 489 F2 chickens were used for the 
association analysis.

From the 580,961 SNPs originally available on the chicken SNP array, 399,693 SNPs segregating in the F2 
population were kept for further analysis. A total of 4,304 were removed due to low minor allele frequency (MAF 
≤0.02), and 23,603 SNPs located in sex chromosomes and unmapped linkage groups were also removed. After 
these filtering criteria, 371,786 SNPs from the autosomal chromosomes (GGA1-28) remained for the GWAS anal-
ysis. The average genotype density per chromosome was 541 SNPs/Mbp, with the lowest density being observed 
on GGA2 (297 SNPs/Mbp), and the highest density on GGA21 (816 SNPs/Mbp).

Descriptive Statistics. The number of animals, mean and standard deviations, variance components and 
estimated genomic heritabilities are presented in Table 1. Genomic heritability values ranged from 0.43 for carcass 
fat content (CFC) to 0.56 for abdominal fat percentage (ABFP).

Genome-wide association analysis (GWAS). The genomic windows associated with fat traits are 
detailed in Table 2. Twenty-two significant unique 1 Mb windows (based on genome position) present on GGA1, 
2, 7, 15, 20, 27 and 28 were identified. The posterior probability of association (PPA), as described by Onteru et 
al.17, ranged from 0.41 to 0.85 for these regions, and the percentage of genetic variance explained by the windows 
ranged from 0.53 to 1.71.

Many SNPs were fitted simultaneously in the model (see Methods), and due to high linkage disequilibrium, 
the QTL effect will be distributed across these markers, shrinking the SNPs effects at individual loci18. In order 
to identify the SNPs within the windows most probably linked to the QTL, we selected those with highest model 
frequency (Table 2), as adopted by Van Goor et al.19,20. The characterization of those SNPs including their effect, 
frequency in the population and frequency in the founder lines (TT and CC) is available in Supplementary 
Spreadsheet S1.

Carcass fat content exhibited the highest number of significant QTLs (Fig. 1), followed by ABF, CFCDM and 
ABFP (Supplementary Figs S1, S2 and S3). For CFC, the region that explained the largest amount of genetic varia-
tion was on GGA1 (175 Mb), with 1.28% of the genetic variance. For ABF, the region was on GGA1 (53 Mb), with 
1.32% of the genetic variance. For CFCDM, it was on GGA28 (4 Mb), with 1.71% of the genetic variance, and for 
ABFP, it was on GGA28 (0 Mb), with 1.09% of the genetic variance.

Adjacent significant windows were considered as likely representing the same QTL, and their respective per-
centages of genetic variance explained were summed. For abdominal fat traits, three adjacent windows on GGA1 
(52–54 Mb) were associated and cumulatively accounted for 3.3% of the genetic variance for ABF, and two adja-
cent windows on GGA2 (61–62 Mb) cumulatively accounted for 2.17% and 1.37% of the genetic variance for ABF 
and ABFP, respectively (Table 2).

For carcass fat content traits, four adjacent windows on GGA1 (168–171 Mb) were associated and cumula-
tively accounted for 3.27% of the genetic variance for CFC; two adjacent windows on GGA7 (35–36 Mb) cumu-
latively accounted for 2.18% and 1.31% of the genetic variance for CFC and CFCDM, respectively; two adjacent 
windows on GGA15 (9-10 Mb) cumulatively accounted for 1.53% of the genetic variance for CFC; and two 
adjacent windows on GGA28 (3-4 Mb) cumulatively accounted for 2.47% of the genetic variance for CFCDM 
(Table 2).

Trait N Average ± SDa
Genetic 
variance

Residual 
variance

Total 
variance

Genomic 
heritabilityb

ABF 476 15.60 ± 7.26 11.481 10.301 21.782 0.47

ABFP 476 1.56 ± 0.60 0.133 0.169 0.302 0.56

CFC 451 145.35 ± 40.52 212.237 159.809 372.047 0.43

CFCDM 451 39.75 ± 4.63 8.404 9.859 18.263 0.54

Table 1. Descriptive statistics, variance components and genomic heritability. ABF: abdominal fat weight in 
grams; ABFP: abdominal fat percentage; CFC: carcass fat content in grams; CFCDM: carcass fat content on dry 
matter basis. aMeans and standard errors. bGenomic heritability estimated with a Bayes B model.



www.nature.com/scientificreports/

3SCIENtIFIC REPORTS |         (2018) 8:16222  | DOI:10.1038/s41598-018-34364-0

Co-located QTLs (the same QTL associated with abdominal fat and carcass fat content traits) were identified 
on GGA1 at 53 Mb, GGA1 at 179 Mb, GGA7 at 35 Mb and on GGA28 (3-4 Mb).

Overlap with previously reported QTLs. The 22 QTL regions identified in our study overlapped with 
56 previously published QTLs for fatness traits mapped in different populations. The QTL on GGA28 at 0 Mb is 
novel (Table 3).

Five of the detected QTLs overlapped with known QTLs for ABF, CFC and CFCDM mapped in the same F2 
population9,10 used herein (Table 3). These known QTLs covered 1.9 Mb (#11817 and #11809), 23.1 Mb (#17129), 
2.7 Mb (#17122), and 23.1 Mb (#17130 and #17120).

Positional candidate genes, overlap with selection signature regions, haplotype blocks and 
screening of sequencing SNPs. From the 22 QTLs identified, 14 contained PCGs selected based on Gene 
Ontology terms related to fat deposition from literature records. Among these, four PCGs overlapped with selec-
tion signature regions (Table 4; Supplementary Fig. S4.) identified in a previous study from our group21. In that 
previous study, our group reported a genome-wide characterization of regions under selection based on the Fst 
method applied to the sequencing variants of 14 broilers and 14 layers (founders of Embrapa F2 Chicken Resource 
Population)21. One PCG (CRY1) was located 1.5 kb from a selection signature region (Table 4, Supplementary 
Fig. S4).

Trait
GGA_
Mba

Genome interval (start – end 
position)a

N° of SNP/
window

% genetic 
variance 
explained PPAb SNP IDc

Model 
frequency

ABF

1_52 52,000,127–52,998,004 387 1.23 0.56 rs313050579 0.0108

1_53 53,002,697–53,997,943 282 1.32 0.56 rs312317108 0.0158

1_54 54,001,671–54,998,619 257 0.75 0.42 rs15271198 0.0173

1_179 179,001,074–179,999,169 411 0.67 0.54 rs13557213 0.0111

2_30 30,004,050–30,999,519 315 0.63 0.47 rs317553502 0.0138

2_61 61,003,805–61,992,322 290 0.94 0.52 rs13619262 0.0527

2_62 62,001,908–62,998,786 307 1.23 0.56 rs314667858 0.0253

27_3 3,000,222–3,996,811 820 0.84 0.77 rs315719114 0.0097

28_4 4,004,758–4,964,406 629 0.53 0.68 rs314073448 0.0038

ABFP

2_61 61,003,805–61,992,322 290 0.71 0.57 rs13619262 0.0272

2_62 62,001,908–62,998,786 307 0.66 0.47 rs14193698 0.0193

7_35 35,001,761–35,996,723 386 0.58 0.58 rs312894632 0.0106

28_0 23,942–999,295 829 1.09 0.80 rs316394502 0.0512

28_3 3,000,142–3,988,940 621 0.82 0.73 rs15251024 0.0146

CFC

1_53 53,002,697–53,997,943 282 0.91 0.51 rs314857319 0.0083

1_168 168,005,668–168,997,872 318 0.56 0.41 rs312378109 0.0093

1_169 169,001,420–169,999,438 346 0.82 0.44 rs315077363 0.0109

1_170 170,002,808–170,999,129 446 0.98 0.48 rs13973557 0.0223

1_171 171,000,120–171,999,874 407 0.91 0.52 rs315852521 0.0142

1_175 175,003,078–175,996,880 405 1.28 0.52 rs313574684 0.0246

7_35 35,001,761–35,996,723 386 0.73 0.52 rs314947533 0.0125

7_36 36,000,235–36,898,384 257 0.58 0.44 rs312848275 0.0158

15_9 9,002,743–9,999,015 639 0.82 0.64 rs316091564 0.0637

15_10 10,001,717–10,999,147 577 0.71 0.63 rs13528818 0.0156

28_4 4,004,758–4,964,406 629 0.82 0.75 rs314212680 0.0069

CFCDM

1_105 105,000,541–105,997,476 383 1.16 0.60 rs13916775 0.0154

1_175 175,003,078–175,996,880 405 1.49 0.60 rs313574684 0.0206

1_179 179,001,074–179,999,169 411 0.89 0.53 rs317863254 0.0121

7_35 35,001,761–35,996,723 386 0.95 0.58 rs16614131 0.0170

7_36 36,000,235–36,898,384 257 1.23 0.57 rs312848275 0.0257

20_12 12,000,087–12,998,691 562 0.54 0.67 rs739732531 0.0204

28_3 3,000,142–3,988,940 621 0.76 0.62 rs315921612 0.0176

28_4 4,004,758–4,964,406 629 1.71 0.85 rs313086976 0.0181

Table 2. Characterization of 1 Mb genomic windows associated with abdominal fat and carcass fat content 
traits in the Embrapa F2 Chicken Resource Population. ABF: abdominal fat weight in grams; ABFP: abdominal 
fat percentage; CFC: carcass fat content in grams; CFCDM: carcass fat content on dry matter basis. aMap 
position based on Gallus_gallus-5.0, NCBI assembly. bPosterior probability of association (PPA) as described by 
Onteru et al.17. cSNP within the window with the highest model frequency.
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In order to demonstrate further support for our findings, we checked the distribution of SNPs model frequen-
cies within the genomic windows and their overlap with selection signature regions. Manhattan plots for ABF, 
CFC and CFCDM are presented in Fig. 2.

Those SNPs with the highest model frequency within the large effect genomic windows are likely to be in 
linkage disequilibrium with the candidate genes and causative mutation. Thus, the detection of haplotype blocks 
was performed and three PCGs were located within haplotypes blocks that harbored the SNPs with the highest 
model frequency within the associated genomic window. The characterization of the genomic windows, haplo-
type blocks and the overlapped PCGs are shown in Table 5. All of the haplotype blocks detected and the harboring 
SNPs with the highest model frequency in each associated genomic window can be found in Supplementary 
Spreadsheet S2.

Using the SNP data generated from the whole genome sequence of the founders of this population, we 
observed that 15,036 SNPs were located in the 26 PCGs. The annotation of these SNPs are in Fig. 3.

We also looked for potentially deleterious and high impact sequence SNPs, which may affect protein function 
or result in truncated proteins, based on SIFT score estimates and Ensembl prediction. Twelve potentially dele-
terious SNPs were identified in eight PCGs (Table 6), but none of the mutations in our PCGs were annotated as 
having high impact.

Discussion
Genomic heritability. Genomic heritability was estimated using relationships inferred from high-density 
SNP panel genotypes instead of pedigree-based relationships. The use of close relatives and a higher density 
of SNPs may lead to a better genomic prediction with less bias22,23 than can be achieved using pedigree-based 
relationships.

For the evaluated traits, pedigree-based heritability estimates were found in the literature. In a study with 1,069 
purebred full-sib male chickens, Chen et al.24 reported heritability estimates for ABF and ABFP of 0.62 and 0.24, 
respectively. Zerehdaran et al.25 reported heritability estimates for ABF and ABFP of 0.62 ± 0.09 and 0.71 ± 0.09, 
respectively, using 3,278 chickens from a meat-type population after nine generations of intercrossing. A higher 
value was reported for ABF (0.82) using the records of 300 chickens from a commercial female grandparent 
stock26, and could be explained by the fact that female broiler chickens generally deposit more abdominal fat than 
male broiler chickens4,27.

In the same population (Embrapa F2 Chicken Resource Population), pedigree-based heritability for ABF was 
estimated at 0.33 ± 0.19 in the F2-CTCT generation (layer males crossed with broiler females) and 0.82 ± 0.3 in 
the F2-TCTC generation (broiler males crossed with layer females)28. Considering the carcass fat content traits, 
heritability estimates for CFC expressed in percentage of wet carcass was 0.53 ± 0.10, and the heritability for fat 
percentage in dry-matter basis (CFCDM) was 0.55 ± 0.10, using records of 3,422 chickens3.

Figure 1. Manhattan plot of the posterior means of the percentage of genetic variance explained by each 1 Mb 
SNP window across the 28 autosomal chromosomes for CFC (carcass fat content in grams): (A) genomic 
windows located on macrochromosomes, and (B) genomic windows located on microchromosomes.
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Genomic heritability estimates for ABF (0.33) and ABFP (0.31) were reported in one recent study performed 
with 1,408 chickens from a Brazilian broiler population under multiple trait selection29. Our genomic heritability 
estimates (Table 1) for fat deposition related traits were high (greater than 0.43), similar to the pedigree-based 
heritability reported for the same traits in the same F2 population. Therefore, a high proportion of the total var-
iance for fat deposition traits is explained by genetic variance22, and selection against fat deposition can achieve 
good results in chicken.

Genome-wide association (GWAS). We observed that genetic variation explained by each 1 Mb genomic 
window ranged from 0.53 to 3.3% depending on the trait analyzed. Cumulatively, the significant windows asso-
ciated with ABF, ABFP, CFC and CFCDM explained 8.14%, 3.28%, 9.12% and 8.73% of the genetic variance, 
respectively. Previous QTL mapping studies, using microsatellites markers in the same experimental population 
evaluated here, detected QTLs explaining 6.65%, 12.18%, 9.9% and 11% of the phenotypic variance for ABF, 
ABFP, CFC and CFCDM, respectively9,10, corroborating our findings. It is important to highlight that most of the 
genomic windows explained <0.53% of the genetic variance for the traits analyzed in our study (Supplementary 
Spreadsheet S3) and these percentages were not considered.

We performed the GWAS studies in a F2 experimental population generated from a cross between a white-egg 
type (layer, CC) line and a meat-type (broiler, TT) line30. These lines have a different background and previously 
underwent multi-trait selection for different traits for several generations, exhibiting considerable differences in 
growth and carcass traits8,31. According to Campos et al.10, chickens from this broiler line exhibit 15 fold more fat 
deposition than hens from the layer line reared as broilers.

Almost all the QTLs detected overlapped with previously reported QTLs associated with fat deposition traits 
in this or in other populations, confirming and refining previous results. The QTL located in the first bases of 
GGA28 was novel and might be a population specific QTL. Additionally, the QTL located on GGA27 at 3 Mb 
associated with ABF overlapped with a QTL previously mapped in the TT Reference population for chicken skin 
weight and percentage, used as indicators of subcutaneous fat29. The TT Reference population originated after 17 
generations of multiple trait selection on birds from the broiler line (TT) used in the cross to obtain the Embrapa 
F2 Chicken Resource Population32. Thus, our findings indicate that even after many generations of multiple trait 
selection, the QTL located on GGA27 still has an effect on fat deposition whereas the other QTLs detected herein 
were fixed in the TT Reference population.

We compared the size of the QTL regions obtained in this study with a previous one that used 128 microsat-
ellite markers in the same population9,10. For example, the QTL for ABF on GGA27 at 3 Mb overlapped with two 
known QTLs mapped to a region of 1.9 Mb (#11817 and #11809). The high-density SNP panel narrowed this 
region down to a 1 Mb interval, thus allowing a more focused search for candidate genes.

GGA (Mb) Known QTLs for fatness traitsa

1 (52) ABF (#6806, #12478); ABFP (#3350); SCFT (#14359); CFWID (#14360); VISAT (#17319); SCNF (#17325); TWF (#17332)

1 (53) ABF (#6806, #6869, #9665, #12478); ABFP (#3350, #12590); SCFT (#14359); CFWID (#14360); VISAT (#17319); SCNF 
(#17325); TWF (#17332); CFCDM (#17117)

1 (54) SCFT (#14359); CFWID (#14360); VISAT (#17319); SCNF (#17325); TWF (#17332); CFCDM (#17117)

1 (105) ABF (#6858, #12466, #14361); ABFP (#14362); SCFT (#14359); VISAT (#17319); SCNF (#17325); TWF (#17332); CFC 
(#17119)

1 (168-172)b ABF (#7010, #66054); ABFP (#7011); TWF (#17332); CFC (#17129); CFCDM (#17120, #17130); SFWT (#1856)

1 (175)b ABF (#7010); CFC (#17129); CFCDM (#17120, #17130); SFWT (#1856)

1 (179)b ABF (#7010); CFC (#17129); CFCDM (#17120, #17130); SFWT (#1856)

2 (30) VISAT (#17320); SCNF (#17326, #17327); TWF (#17333)

2 (61-63) VISAT (#17320); SCNF (#17326, #17327); TWF (#17333)

7 (35) ABF (#2167)

7 (36) ABF (#2167)

15 (9-11)b ABF (#2347, #9451, #12631); ABFP (#9450); CFC (#17122); CFCDM (#17121); FATDIS (#12645)

20 (12) ABF (#19476, #30881); ABFP (#19477, #30882)

27 (3)b ABF (#11809, #11817, #66072); ABFP (#3354, #11820, #11934); CFC (#17126, #17135); CFCDM (#17125); IF (#3360)

28 (0) —

28 (3) ABF (#2417, #12632); SFWT (#2418, #12641)

28 (4) ABF (#2417, #12632); SFWT (#2418, #12641)

Table 3. Overlap of QTLs identified in our study with previously fatness QTLs reported from the Chicken 
QTLdb7. ABF: abdominal fat weight; ABFP: abdominal fat percentage; CFC: carcass fat content; CFCDM: 
carcass fat content on dry matter basis; CFWID: cingular fat width; FATDIS: fat distribution; SCFT: 
subcutaneous fat thickness (fat thickness under skin); SCNF: subcutaneous neck fat weight (subcutaneous 
neck adipose tissue); SFWT: skin fat weight; TWF: total white fat weight (total white adipose tissue); VISAT: 
visceral fat weight (visceral adipose tissue weight). aPreviously known QTLs were reported by QTL ID numbers 
available at Chicken QTLdb7 – release 33. bIndicates that this genomic window overlaps with known QTLs 
mapped in the same population9,10.
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The QTLs mapped on GGA1 (at 53 and 179 Mb), GGA7 (35 Mb), and GGA28 (3-4 Mb) were associated with 
both abdominal fat and carcass fat content traits, indicating that they might be pleiotropic or reflect multiple 
causal mutations in the same QTLs.

We checked the overlap of our QTLs associated with fat deposition related traits and previously mapped QTLs 
for body weight at 35 (BW35) and also 41 (BW41) days-of-age mapped in the same F2 population8,33–35. From the 
22 QTLs detected, 17 did not overlap with QTLs for body weight traits as expected since we included BW42 as a 
covariate in our analysis. The inclusion of BW42 as a covariate allowed the detection of 17 QTLs associated with 
fat deposition traits but with no phenotypic association with body weight traits. The five QTLs that overlapped 
with BW traits may have pleiotropic effects.

Positional candidate genes for fat deposition. Positional candidate genes were selected based on their 
associated Gene Ontology (GO) terms and literature information. From the 26 PCGs selected, 17 showed GO 
terms for fat cell differentiation, insulin and triglycerides levels among other processes involved in fat deposition 
(Table 7).

From the genes related to lipid metabolic processes described in Table 7, eight were annotated with GO terms 
for insulin synthesis, secretion and regulation, including the IL6 gene that exhibited a GO term for positive reg-
ulation of pancreatic β cell activation (responsible for synthesizing and secreting insulin36). Increases in insulin 
levels in chicken may affect expression of genes related to glucose and lipid metabolism37, consequently affecting 
fat accumulation. Based on these facts, we considered the genes annotated with GO terms related to insulin as 
PCGs for lipid metabolism and fat deposition regulation in chicken.

Several genes, namely PLA2G1B, SELM, DOK5, HTR2A, and GDF3 have been previously associated with 
obesity38–42. The PLA2G1B gene harbored a SNP associated with fat accumulation and distribution in humans38. 
In mice, the knock-out of SELM gene resulted in elevated white adipose tissue deposition39. In the DOK5 gene, 
genetic variants were associated with obesity in North Indian patients40. In the HTR2A gene, polymorphisms 
were associated with central adiposity in a study with humans41. Mice that were GDF3 deficient exhibited a mod-
est reduction in adiposity42. These studies corroborate the selection of these genes as PCGs for fat deposition.

Four genes were located within selection signature regions previously identified21 in founders of the F2 popula-
tion used in this study: CHST11, NR4A2, GPD2 and INSR (Supplementary Fig. S4), indicating that SNPs in these 

GGA (Mb) PCGa Ensembl gene IDb
Number of 
SNPsc

SNP density 
(SNPs/kb)d

1 (52) MB ENSGALG00000012541 221 60

1 (53)e CRY1g ENSGALG00000012638 675 20

1 (54)e CHST11f ENSGALG00000030607 2593 17

1 (168)
HTR2A ENSGALG00000016992 535 21

RB1 ENSGALG00000016997 1673 20

1 (170) FOXO1 ENSGALG00000017034 835 13

1 (175) SLC7A1 ENSGALG00000017085 559 30

2 (30) IL6 ENSGALG00000010915 161 60

7 (36)e
NR4A2f ENSGALG00000012538 1961 27

GPD2f ENSGALG00000012543 628 15

15 (9)
PLA2G1B ENSGALG00000020989 145 88

SIRT4 ENSGALG00000007244 314 71

15 (10) SELM ENSGALG00000025972 166 82

20 (12) DOK5 ENSGALG00000007786 663 19

28 (0)

SLC1A6 ENSGALG00000000558 554 25

ANGPTL4 ENSGALG00000000619 305 43

RAB11B ENSGALG00000000613 384 30

28 (3)

STK11 ENSGALG00000040008 738 22

GDF3 ENSGALG00000003161 103 49

TM6SF2 ENSGALG00000029015 214 65

SLC25A42 ENSGALG00000002621 239 35

SLC5A5 ENSGALG00000041932 244 54

SLC39A3 ENSGALG00000020582 170 116

28 (4)e

PIK3R2 ENSGALG00000003428 275 15

INSRf ENSGALG00000040758 578 17

SLC35E1 ENSGALG00000003794 103 22

Table 4. Genomic windows associated with fat deposition traits that harbor positional candidate genes. 
aPositional candidate genes. bEnsembl gene ID based on Galgal5 (Ensembl Genes 90 Database). cNumber of 
SNPs annotated on the PCG. dSNP density in the respective PCG. eIndicates that this genomic window overlaps 
with a selection signature region21. fIndicates that the positional candidate gene was annotated within a selection 
signature region. gIndicates that this positional candidate gene was located 1.5 kb from a selection signature 
region.
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genes exhibit frequency differences between the parental lines, and may be associated with fat deposition. Thus, 
these genes exhibits additional evidences to support their selection as candidates, even considering that the selec-
tion signature regions did not overlap with the SNPs with the highest model frequency in each window (Fig. 2); 

Figure 2. Manhattan plot of the SNP model frequencies distribution within each significant genomic window 
showing overlap with selection signature regions for: (a) abdominal fat weight (ABF); (b) carcass fat content 
(CFC); (c) carcass fat content on dry matter basis (CFCDM). The X-axis denotes the significant SNP window 
represented by the number of the respective chromosome and the Y-axis shows the model frequencies from 
Bayes B analysis.

GGA_
Mba Traits associated SNP IDb

Haplotype blocksc

Start-End positiona Size (kb) PCGsd

7_36 CFC, CFCDM rs312848275 36,163,395–36,333,047 169.653 NR4A2, GPD2

28_4 CFCDM rs313086976 4,111,155–4,174,053 62.899 INSR

Table 5. Characterization of the genomic windows and their respective haplotype blocks that encompass 
PCGs for fat deposition. CFC: carcass fat content in grams; CFCDM: carcass fat content on dry matter basis. 
aMap position based on Gallus_gallus-5.0, NCBI assembly. bSNP within the window with the highest model 
frequency. cHaplotype block that harbor the SNP with the highest model frequency within the genomic window. 
dPositional candidate genes located within the haplotype blocks.

Figure 3. Functional annotation of unique SNPs identified in 26 PCGs. The percentage was estimated based on 
the total number of SNPs annotated in 26 PCGs.
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in most cases, are located nearby. Moreover, NR4A2, GPD2 and INSR were located within haplotype blocks that 
harbored the SNP with the highest model frequency within the genomic window associated, providing additional 
information in support of the PCGs.

The CHST11 gene is associated with lipid metabolism, and its expression affects lipid accumulation in adipo-
cytes43. The NR4A2 gene encodes a member of the steroid-thyroid hormone-retinoid receptor superfamily. NR4A 
receptors regulate hepatic glucose44, and consequently, lipid metabolism. Additionally, this gene influences reti-
noid signaling44–46, and although the mechanisms have still not been clearly elucidated, it is known that retinoid 
plays an important role in lipid metabolism47.

The protein encoded by GPD2 gene acts on the mitochondrial membrane, and its expression may affect glu-
coneogenesis and glucose homeostasis48. In a study with mice, Brown et al.49 reported a reduction of 40% in the 
weight of white adipose tissue in the individuals with knocked-out GPD2. NR4A2 and GPD2 genes overlapped 
with one selection signature region (Supplementary Fig. S4), indicating that selection possibly affected the fre-
quency of SNPs in both genes. These SNPs may be associated with glucose homeostasis and lipid metabolism.

The INSR gene plays an important role in insulin signaling50, and as mentioned before, insulin levels affect 
lipogenesis, and consequently, lipid accumulation. Additionally, the INSR gene overlapped with a selection sig-
nature region previously reported (Supplementary Fig. S4) with genetic variants mainly fixed in the broiler line21. 

Associated 
Gene Name SNP ID GGA

Genome 
positiona SIFT scoreb

Amino acid 
changed

FOXO1 g.170581941 > C/T 1 170,581,941 deleterious low 
confidencec (0.01) Pro/Leu

NR4A2

g.36224286 > C/T

7

36,224,286 deleterious (0) Val/Met

g.36225242 > G/T 36,225,242 deleterious (0) Arg/Ser

g.36225278 > C/T 36,225,278 deleterious (0.01) Val/Met

SIRT4 rs316192467 15 9,435,175 deleterious (0.02) Ala/Thr

DOK5 g.12473540 > C/A 20 12,473,540 deleterious (0.02) Lys/Asn

ANGPTL4 g.846035 > G/A 28 846,035 deleterious (0.03) Ser/Phe

TM6SF2

g.3553753 > T/C

28

3,553,753 deleterious low 
confidencec (0.01) Leu/Pro

rs315426765 3,554,427 deleterious (0.05) Leu/Phe

rs741325985 3,554,836 deleterious (0.04) Val/Met

SLC39A3 rs316529053 28 3,285,533 deleterious (0) Arg/His

SLC35E1 g.4327417 > G/A 28 4,327,417 deleterious (0.05) Gly/Arg

Table 6. Characterization of deleterious SNPs identified in eight PCGs. aPosition based on Gallus_gallus 5.0 
assembly. bSIFT (Sorting Intolerant From Tolerant) score. cDeleterious low confidence: little sequence diversity 
in this position affecting the substitution model and consequently, means of conservation value and the 
confidence of the prediction74.

Gene Gene Ontology terms

CRY1 response to insulin, lipid storage, glucose homeostasis

HTR2A positive regulation of fat cell differentiation

RB1 regulation of lipid kinase activity

FOXO1 cellular response to insulin stimulus, insulin receptor signaling pathway, negative regulation of fat cell differentiation, glucose 
homeostasis

IL6 positive regulation of B cell activation

NR4A2 fat cell differentiation

GPD2 oxidation-reduction process, gluconeogenesis, glycerol-3-phosphate dehydrogenase activity

PLA2G1B phospholipid metabolic process, lipid catabolic process, lipid metabolic process

SIRT4 negative regulation of insulin secretion, positive regulation of lipid biosynthetic process

SELM adipose tissue development

DOK5 insulin receptor binding

ANGPTL4 triglyceride homeostasis, negative regulation of lipoprotein lipase activity

RAB11B insulin secretion involved in cellular response to glucose stimulus

STK11 negative regulation of lipid biosynthetic process, glucose homeostasis

TM6SF2 regulation of lipid metabolic process

PIK3R2 cellular response to insulin stimulus, insulin receptor signaling pathway, cellular glucose homeostasis

INSR
cellular response to insulin stimulus, insulin binding, insulin-activated receptor activity, insulin-like growth factor receptor 
binding, insulin-like growth factor I binding, insulin-like growth factor II binding, insulin receptor substrate binding, insulin 
receptor signaling pathway, insulin receptor complex, glucose homeostasis, positive regulation of glucose import

Table 7. List of PCGs that exhibited GO terms related to lipid metabolic processes.
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These findings indicate that selection could affected the frequency of SNPs in this PCG leading to changes in 
lipogenesis and lipid accumulation in chickens.

In humans, CRY1 is expressed in subcutaneous abdominal and visceral fat depots51. In chicken, the CRY1 gene 
is located 1.5 kb from a selection signature region previously identified in chicken by our group13 (Supplementary 
Fig. S4). Genetic variants located in this gene may have their frequencies affected by selection52.

Seven other genes (MB, SLC7A1, SLC1A6, SLC25A42, SLC5A5, SLC39A3 and SLC35E1) were not annotated 
with GO terms related to fat deposition but were considered PCGs for fat deposition for the reasons explained 
below. Myoglobin (MB) expression was associated with fatty acid metabolism in a study with mice53. Members 
of the solute carrier (SLC) family encodes membrane-bound transporters54, and one of these has been associated 
with obesity in humans55,56. Additionally, the SLC1A6 gene belongs to the SLC1 family that regulates glutamate 
transport, and in liver cells, this amino acid is a precursor of fatty acid biosynthesis57. In a study with rats, mice 
and rabbits, Collin et al.58 demonstrated that glutamate transporter activity might regulate energy balance. Energy 
balance is directly related with fatty acid biosynthesis and consequently, fat storage.

Some positional candidate genes were considered based on their function on lipid metabolism in mammals, 
because no information was available in chickens. Although many studies reported that the function of some 
genes can be different in chickens compared to mammals59–65, Li et al.59 reported differentially expressed genes 
consistent with conservation of lipid metabolism and adipogenesis processes in chicken and mammal. We per-
formed an investigation for potential candidate genes based on GO terms and literature information, and we 
considered those genes as candidates for fat deposition regulation in chickens. We suggest further functional 
studies to validate our findings.

SNPs annotated in PCGs genes. The density of sequence SNPs in our PCGs ranged from 13 to 116 SNPs/
kb, with an average of 40 SNPs/kb. Previous studies in chicken reported average density of SNPs across the entire 
genome ranging from 5 to 78 SNPs/kb50,66, corroborating our findings. The top three genes with the highest SNP 
density were SELM, PLA2G1B and SLC39A3 (Table 4). These genes should be thoroughly investigated, since this 
variability may be affecting fat deposition in the F2 Chicken Resource Population.

Genetic variants in PCGs that overlapped with selection signature regions may exhibit polymorphisms 
responsible for phenotypic variation67–69. Moreover, haplotype blocks that harbor the SNP with the highest model 
frequency can carry the causative mutation70,71. Thus, the genetic variants annotated in potentially functional 
gene regions from CRY1, CHST11, NR4A2, GPD2 and INSR are important candidates for further association and 
functional studies.

Approximately 65% of the sequence SNPs detected in our PCGs were located in intronic regions (Fig. 3). 
Intronic SNPs can modulate gene expression, and consequently, affect the phenotype72,73. However, they are com-
monly deemed as potentially neutral. The other 35% of the SNPs detected were annotated in functional gene 
regions: up/downstream from the gene, 3’and 5’-UTRs, exons (synonymous and non-synonymous), and splice 
sites (Fig. 3).

Variants in coding regions can be related to phenotypic variation, and, more specifically, non-synonymous 
variants imply amino acid changes74. Changes in amino acids can potentially affect protein function. To predict 
whether SNPs in coding regions are deleterious or not (may affect the protein function), we predicted the SIFT 
score as described in the Methods section.

Twelve potentially deleterious SNPs were identified in eight PCGs (Table 6), and most of them are located in 
PCGs involved in lipogenesis, levels of triglycerides and obesity. Moreover, two of these genes exhibited more 
than one deleterious mutation: NR4A2, involved in the regulation of hepatic glucose affecting lipid metabolism, 
and TM6SF2, involved in the regulation of triglyceride levels in the liver. Changes in the function of these genes 
may affect fat deposition in chicken. All deleterious mutations are important candidates for further association 
and functional studies.

From the 12 potentially deleterious SNPs, only rs315426765 SNP on the TM6SF2 gene was present in the 
Affymetrix genotyping array. However, that SNP was removed after genotyping quality control due to low MAF. 
The search for potential candidate SNPs identified previously from whole genome sequence data in similar 
chicken populations allowed us to identify a great number of SNPs, which are not present in the Affymetrix gen-
otyping array, improving our chances to identify potentially causative mutations.

In summary, our study identified 22 unique QTLs for abdominal fat and carcass fat content, and approxi-
mately 40% of the QTLs detected were considered novel QTLs for the traits analyzed. The 22 QTLs detected har-
bored 26 PCGs that were involved in biological processes of fat deposition. Three of these 26 PCGs were located 
within haplotype blocks that were associated with fat traits and five of these 26 genes overlapped with selection 
signature regions. From the total number of SNPs annotated in PCGs, approximately 35% were in functional 
regions, and from those 12 were predicted to be deleterious variants. The NR4A2 gene is a strong candidate for 
fat deposition regulation in chicken, since it is within a QTL for carcass fat content traits, is in linkage disequilib-
rium with the SNP with the highest model frequency, is under selection in the founder lines, and contains three 
potential causal SNPs.

GWAS using a high density of SNPs allowed us to map QTLs with better resolution than previously done 
with microsatellite markers, thus facilitating the search for PCGs. The integration of haplotype blocks detection, 
selection signature regions and potentially deleterious SNPs allowed us to refine the list of PCGs for fat deposi-
tion traits. The PCGs identified, especially those within the haplotype blocks, overlapped with selection signature 
regions and harboring genetic variants located on potentially functional gene regions, are strong candidates for 
selection in poultry breeding programs aiming to improve the accuracy of selection and reduce excessive fat dep-
osition. Further functional validation studies could be helpful to understand the role of the candidate genes and 
genetic variants associated with fat deposition regulation.
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Methods
All experimental protocols related to animal experimentation in this study were performed in agreement with 
resolution number 010/2012 approved by Embrapa Swine and Poultry Ethics Committee on Animal Utilization 
to ensure compliance with international guidelines for animal welfare.

Chicken Population. A total of 529 chickens from the Embrapa F2 Chicken Resource Population were geno-
typed (28 parental chickens from layer and broiler lines; 5 chickens from F1 and 496 chickens from the F2-TCTC 
generations). This F2 population is the result of crosses between two closed parental lines: a broiler line (called 
TT) and a layer line (called CC). The TT line had been selected for higher body weight, feed conversion, carcass 
and breast yield, viability, fertility, hatchability, reduction of abdominal fat weight and metabolic syndromes. The 
CC line had been selected for egg production, egg weight, feed conversion, viability, sexual maturity, fertility, 
hatchability, egg quality and low body weight. More details about the Embrapa F2 Chicken Resource Population 
were described by Rosário et al.30. All the birds from the Embrapa F2 Chicken Resource Population were reared as 
broilers with free access to water and a corn and soybean meal-based diet33. More details of the diet content can 
be found on Nones et al.9.

This F2-TCTC generation was previously used to map numerous QTLs for performance, carcass and chemical 
component traits8–10,31,33,75 using microsatellite markers. For the study reported in this paper, selection of families 
for genotyping and GWAS was based on F1 males that appeared to be heterozygous for QTL effects reported in 
previous studies.

Phenotype measurement. A total of 502 chickens from the F2 population were slaughtered and eviscer-
ated at 42 days of age, after 6 h of fasting to avoid contamination of the carcass during slaughter and post-slaughter 
processing. The body weight at 42 days of age (BW42) was measured and carcasses were stored at 4 °C for 6 h. 
Then, the carcass and its cuts were weighed. Abdominal fat was removed from chilled carcass for weighing 
(abdominal fat weight, ABF). Abdominal fat percentage (ABFP) was calculated dividing ABF by BW42 and mul-
tiplying by 10010.

Fat (ether extract) was measured by near-infrared reflectance spectroscopy (NIRS) and estimated as per-
centage according to the weight of each sample (250 g of ground and homogenized carcass)9. Carcass fat content 
weight (CFC) was estimated by multiplying the percentage in the sample by BW42. Carcass fat content on dry 
matter basis (CFCDM) was estimated dividing sample fat by carcass dry matter content and multiplying by 100. 
More details about trait measurement can be found in Campos et al.10, Nunes et al.3 and Nones et al.9.

DNA extraction, genotyping and quality control. Genomic DNA was extracted from blood samples 
with DNAzol® protocol. After extraction, DNA integrity was evaluated on agarose gel (1%), quantified in spectro-
photometer NanoDrop® (Thermo Fisher Scientific), and diluted to the final concentration of 20 ng.µL−1. Diluted 
genomic DNA was prepared for genotyping following Affymetrix protocols and genotyped with the 600 K Axiom 
Chicken Genotyping Array. That array comprises SNPs chosen to be segregating for different chicken lines66.

Quality control analysis and genotype calling were performed with Affymetrix Power Tools v1.17.0 
(APT). Samples that exhibited DishQC ≥0.82 and call rate ≥90% were kept for further analysis. Among those 
high-quality samples, the most accurate and polymorphic marker SNPs, with call rate ≥98% and minor allele fre-
quency (MAF) ≥2%, were kept for further analysis. In this step, R scripts from the package SNPolisher were used. 
SNPs located in the sex chromosomes, unmapped linkage groups, without genomic annotation and those that 
were monomorphic were removed from the analysis. SNP annotation was based on the Gallus_gallus-5.0 chicken 
assembly (NCBI). Missing genotypes were replaced by their average covariate value at that locus76.

Descriptive statistics and heritability. The mean and standard deviation of each phenotype were calcu-
lated using in-house scripts in R software (http://www.r-project.org/). The estimation of variance components 
was performed using a Bayes C model in GenSel software18. The resultant posterior means of the variance com-
ponents were used as priors in a Bayes B model to estimate genomic heritability for each trait using GenSel. Sex 
and hatch were included as fixed effects in the model, and BW42 was used as a fixed covariate for ABF and CFC.

Genome-wide association analysis. The SNPs retained after quality control were used in the GWAS anal-
ysis with a Bayesian approach, performed with the GenSel software18. In the first step, a Bayes C model was used 
to estimate the genetic and residual variances, and these values were used to run a Bayes B model, as performed by 
Cesar et al.76. The Bayes B model samples the effects of SNPs assuming that some fraction of their effects are zero 
and with unequal variance of each effect77. The mathematical model presented below was used in the association 
analysis:

∑ β δ= + +
=

y Xb a e,
j

k

j j j
1

In this model, y represents the vector of phenotypic values; X is the incidence matrix for fixed effects; b is the 
vector of fixed effects; k is the number of SNPs; aj is the column vector representing the SNP as a covariate in locus 
j coded with the number of B alleles; βj is the random substitution effect for locus j assumed to be normally dis-
tributed N (0, σ2

βi) when δj = 1 but βj = 0 when δj = 0, with δj being a random variable 0/1 indicating the absence 
(with probability π) or presence (with probability 1-π) of the locus j in the model, and e is the vector of residual 
effects assumed to be normally distributed N (0, σ2

e). Sex and hatch were included as fixed effects in the model, 
and BW42 was used as a fixed covariate for ABF and CFC.

http://www.r-project.org/
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We assumed π = 0.9988 in the Bayes B models and obtained 41,000 Markov Chain Monte Carlo (MCMC) 
samples with the first 1,000 samples being discarded. A map file was used to position the SNPs into 943 
non-overlapping windows of 1 Mb. We adopted 1 Mb non-overlapping windows in our study in agreement with 
other recent GWAS studies in chickens reported in the literature using genomic prediction methodology19,20,78,79. 
Many SNPs were fitted simultaneously in the model and due to high linkage disequilibrium, the QTL effect can 
be distributed across these markers18, and these previous studies showed that the 1 Mb windows can capture the 
effects.

Each window is expected to explain 0.106% of the genetic variance (100%/943) based on an infinitesimal 
model20, and windows that explained five times more than the expected value (0.53%) were considered to be bio-
logically significant. Thus, we selected only biologically significant windows to characterize and identify PCGs. 
Additionally, within each significant window (QTLs), we selected the SNP most frequently included in the model.

Overlap with previously mapped QTLs. We checked the overlaps of all genomic windows detected 
with QTLs previously mapped in chicken7, using Chicken QTLdb - release 33, accessed in September, 2017. We 
used the search tool in Chicken QTLdb website, using our QTL coordinates based on Gallus_gallus-5.0 chicken 
genome assembly. Previously mapped QTLs overlapped were reported by their respective QTL ID numbers. The 
genomic windows that did not overlap with previously annotated QTL regions were considered novel discoveries.

Identification of candidate genes, overlap with selection signature regions, haplotype blocks 
and SNP screening. The goal of this study was to investigate PCGs based on literature information to pro-
vide new insights for further studies, and also to better understand the genetic architecture of fat deposition traits. 
In this context, the list of annotated genes within each associated genomic window were searched using NCBI and 
OMIM databases, the BioMart tool and literature to find GO terms and biological processes related to abdominal 
fat, lipid metabolism, fat content, and fat deposition. For all the analyses, we considered the gene annotation from 
Ensembl Genes 90 Database and the Gallus_gallus-5.0 (NCBI) chicken genome assembly.

To refine the list of candidate genes, we compared our list of PCGs against selection signature regions identi-
fied in a previous study with 28 parental chickens from the two lines that generated the F2 population analyzed in 
our study21. That study used whole genome sequence to identify genetic variants and applied the Fst method21,80 
to estimate the divergence between populations and identify regions under selection (TT vs. CC lines). We used 
the CrossMap tool (http://crossmap.sourceforge.net/) to convert selection signature coordinates (from Gallus_
gallus-4.0) to the Gallus_gallus-5.0 chicken genome assembly (NCBI).

We also compared our list of PCGs against the haplotype blocks that harbored the SNPs with the highest 
model frequency within each associated genomic window. PLINK v.1.981 software was used to detect the haplo-
type blocks, with default parameters.

Additionally, to identify potential candidate genetic variants for fat deposition in chicken, we performed a 
screening of SNPs located in PCGs, using the same dataset of sequencing SNPs used to detect the selection signa-
ture regions (all the 13 million SNPs from NGS data identified were submitted to dbSNP-NCBI with the handle 
“LBA_ESALQ”)21.

In order to refine our list of PCG variants, we searched for genetic variants predicted as deleterious and high 
impact. To predict whether SNPs in coding regions are deleterious or not (may affect the protein function), we 
obtained the SIFT (sorting intolerant from tolerant) scores. That score is an assessment of the level of conser-
vation in homologous protein sequences82 implemented by the VEP tool83. SIFT scores were predicted for all 
non-synonymous and stop codon (gained/lost) variants located in the PCGs.

The prediction of high impact SNPs was also performed using the VEP tool83 that provides an estimation of 
the putative impact of the variant classified as high impact, i.e. annotating all the mutations annotated as tran-
script ablation, splice acceptor, splice donor, stop gained, frameshift, stop loss, start lost and transcript amplifica-
tion, mutations that may cause protein truncation, loss of function or trigger nonsense mediated decay (http://
www.ensembl.org/info/genome/variation/predicted_data.html).

Data Availability
All SNPs reported (identified by sequencing) were submitted to dbSNP-NCBI with the handle “LBA_ESALQ”. 
The datasets used and/or analysed during the current study (genotypes and phenotypes) are available from the 
corresponding author on reasonable request.
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