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Impact of measurement noise, 
experimental design, and 
estimation methods on Modular 
Response Analysis based network 
reconstruction
Caterina Thomaseth1, Dirk Fey  2, Tapesh Santra2, Oleksii S. Rukhlenko2, Nicole E. Radde1 & 
Boris N. Kholodenko2,3

Modular Response Analysis (MRA) is a method to reconstruct signalling networks from steady-state 
perturbation data which has frequently been used in different settings. Since these data are usually 
noisy due to multi-step measurement procedures and biological variability, it is important to investigate 
the effect of this noise onto network reconstruction. Here we present a systematic study to investigate 
propagation of noise from concentration measurements to network structures. Therefore, we design an 
in silico study of the MAPK and the p53 signalling pathways with realistic noise settings. We make use of 
statistical concepts and measures to evaluate accuracy and precision of individual inferred interactions 
and resulting network structures. Our results allow to derive clear recommendations to optimize the 
performance of MRA based network reconstruction: First, large perturbations are favorable in terms 
of accuracy even for models with non-linear steady-state response curves. Second, a single control 
measurement for different perturbation experiments seems to be sufficient for network reconstruction, 
and third, we recommend to execute the MRA workflow with the mean of different replicates for 
concentration measurements rather than using computationally more involved regression strategies.

Advanced experimental techniques have facilitated our mechanistic understanding of intracellular processes in 
the last decades. However, the problem of network reconstruction from experimental data remains a challeng-
ing task, for which many different approaches have been suggested. Among those, Modular Response Analysis 
(MRA) has been proven successful in many applications1–4. MRA uses steady-state data of experiments in which 
each node of a network is perturbed successively (see Fig. 1a). These steady-state data are transformed into quan-
titative pairwise interaction strengths, denoted Local Response Coefficients (LRCs), which define the network 
structure. This is done in a two-step process, in which first concentration measurements are transformed into 
Global Response Coefficients (GRCs), which are then used to calculate the LRCs. MRA is an elegant method 
that gives reliable results in case that concentrations can be accurately measured and measurement noise can be 
neglected5.

MRA is however often applied in settings in which we have to deal with real noisy experimental data and few 
replicates, for example when using Western blotting to investigate signalling pathways, as exemplified in1,2. In 
these studies the authors addressed the issue of measurement noise by using statistical approaches, like Monte 
Carlo simulations or maximum likelihood, to estimate interaction strengths and respective uncertainties. Despite 
the extensive usage of MRA, the effect of noise in the input data on network reconstruction is not completely 
understood. Recent developments include statistical reformulations of the MRA that have been suggested to 
address the issue of noisy and sparse/insufficient data6. A further extension combines the classical deterministic 
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MRA framework with advanced nonparametric single-cell data resampling to discriminate between direct and 
indirect connectivities7.

Despite the broad literature tackling the issue of experimental noise, a comprehensive and systematic study 
on how network inference via MRA is affected by noise is still required. In particular, some of the studies do 
not consider noise propagation from the input data to the estimated LRCs, but start directly with the GRCs8. 
Furthermore, a realistic statistical characterization of the MRA variables (measured data, GRCs and LRCs) and a 
robustness analysis in a general experimental setup are also still missing.

In this study we develop a statistical framework to analyse noise propagation by transformations of input 
into output distributions (Fig. 1b). By comparing different experimental and computational strategies in an in 
silico study, we derive recipes for experimentalists and modellers regarding an optimal MRA workflow design. 
In particular, we investigate (1) how non-linear transformations and mathematical approximations of the MRA 
framework affect noise propagation; (2) the influence of perturbation strength, control strategy and number of 
replicates on the uncertainty of the estimated interactions; (3) the effects of different estimation methods on the 
performance of the network inference problem.

To evaluate the resulting network structure, we apply a performance evaluation method that was proposed 
in9 and is schematically depicted in Fig. 1c. It works similar to a Receiver Operating Characteristic (ROC) and 

Figure 1. Variability and noise in measurements affect network reconstruction via Modular Response Analysis. 
(a) MRA workflow for a three-node network. After subsequent perturbation of all nodes and quantification of 
concentration fold changes, LRCs rij are calculated via a two-step non-linear transformation. (b) One exemplary 
realization (one replicate) of the noisy measurement for protein 2 is evaluated in all experimental conditions 
(left part). These values are interpreted as samples of the corresponding distributions, described by the 
probability density function (pdf of zi

j) arising from the measurement noise. On the right we describe how 
network reconstruction is affected by the variability of the measured protein concentrations in terms of 
propagation of distributions from the measurements zi

j and zi
0 via the GRCs Rij to the LRCs rij. (c) Performance 

evaluation of inferred network structures is done by using the assessment method presented in9, which 
compares the inferred structure with a reference structure. Similar to ROC analysis, the Area Under the Curve 
(AUC) serves as a normalized measure for the fit quality, and varies from the average value 0.25 in the random 
case (darker grey triangle) up to the optimal value 1 for a correctly identified network (whole square).



www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |         (2018) 8:16217  | DOI:10.1038/s41598-018-34353-3

its Area Under the Curve (AUC value) for evaluating the performance of a classifier but additionally takes cor-
rectness of the sign of an inferred interaction into account. A correctly identified network has an AUC value of 1 
(whole square), the random case corresponds on average to an AUC value of 0.25 (darker grey triangle).

Results are given for two test-bed examples of well-known signalling pathways, a model for the 
mitogen-activated protein kinase (MAPK) pathway and a model for the tumour suppressor protein p53. These 
models show very different non-linear properties regarding their steady-state behaviour in dependence of pertur-
bation strengths. Our results show that large perturbations and few technical replicates, combined with a simple 
control strategy and a basic estimation method, lead to an optimal bias-variability trade-off of the estimated 
pairwise interactions and also give robust results regarding network reconstruction.

Results
MAPK and p53 test-bed models with complementary dynamic behaviours. We used two test-bed 
examples to investigate noise propagation and impacts of the experimental design on the MRA estimates. The 
models are similar in that they both consist of three states (nodes) with two positive and one negative interactions 
(Fig. 2). However, both models feature very different equations, dynamics, and non-linear properties (Suppl. 
Fig. S1), allowing us to judge the generality of our results, and to investigate the impacts of moderate and strong 
non-linearities.

A model of signal transduction of the MAPK pathway upon EGF stimulation is illustrated in Fig. 2a. It consists 
of a three-tiered cascade of phosphorylation-dephosphorylation cycles in which pRaf phosphorylates and thereby 
activates MEK, which then activates ERK, which negatively feeds back to Raf10. Both MEK and ERK require phos-
phorylation at two sites to become fully active, which is for simplicity assumed to happen in a single reaction step 
for both proteins11. Variables x1, x2 and x3 represent protein activities. All reactions are modelled using Michaelis 
Menten type equations (Suppl. Fig. S1a). This system exhibits moderate non-linearity for the chosen parameters 
(Suppl. Fig. S1a).

The p53 model (Fig. 2b) is based on the core signalling system of the DNA damage response12. Here, ATM 
activates p53 by phosphorylation and protein stabilisation, p53 activates MDM2 by inducing gene expression, 
and MDM2 mediates a negative feedback loop to p53 by promoting p53 degradation13. In contrast to the MAPK 
system, the p53 system exhibits a strong degree of non-linearity (Suppl. Fig. S1b), including three ultra-sensitive 
Hill type equations for the reaction kinetics (Suppl. Fig. S1b).

Problem formulation. MRA is a mathematical approach to reveal interaction strengths from steady-state 
perturbation data of a dynamic network of interacting modules. In our examples each module consists of a single 
protein, and we refer to them as nodes5. Considering the network at equilibrium, pairwise interaction strengths 
between nodes are characterized by quantifying the immediate change of the activity of one node of the network 
caused by a small change of another node, whereas the rest of the network is unaffected. Local Response 
Coefficients (LRCs) express these local effects among N nodes and are defined as the fractional change of the 
steady-state concentration of node i (xi) with respect to that of node j (xj), while keeping all other nodes xk, k ≠ i, 
j, at a constant level,
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These LRCs describe pairwise interactions between nodes when they act in isolation and are not directly 
accessible. A perturbation of one parameter pj, which specifically affects the activity of node j, spreads over the 
whole network, thus generating a global change of the equilibria of all nodes. This global change can be quantified 
from fold change measurements of concentrations relative to the unperturbed system. Formally, Global Response 
Coefficients (GRCs) are defined as the total derivative of the logarithm of the steady-state variables ( xln i) with 
respect to the perturbed parameter (pj) (see exemplary network in Fig. 1a),
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Figure 2. Two test-bed models. Shown are the reaction kinetic schemes (left) and the arising network structure 
(right) for (a) the MAPK system; (b) the p53 system. The coloured nodes (blue, green, red) indicate the 
measured species, which define the states of the models.
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The corresponding MRA equations5
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establish a mathematically exact relationship between the GRCs and LRCs and can be used to extract LRCs from 
GRCs.

In our in silico study we assume that the investigated dynamical system can be described by a true underlying 
noise-free Ordinary Differential Equation (ODE) model =x f x p( , ), with state variables = … ∈ +x x x( , , )N

N
1  

and parameters = … ∈ +p p p( , , )N
N

1 . The state variable xi represents the activity of node i. The parameters pj 
> 0, j = 1, …, N, are all equal to one in the nominal setting (control experiment), and can be varied to simulate 
the perturbation experiment affecting the corresponding node j. These parameters often affect preserved quanti-
ties such as total protein concentrations or production rates. The true LRCs ≠r i j,ij

true , are obtained by calculat-
ing the normalized entries of the Jacobian matrix at steady state, as described in5,
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When the underlying ODE system is not known, LRCs can be inferred from concentration measurements via two 
non-linear transformations. In a first transformation T1, differential GRCs are estimated from the steady states 
obtained in the control experiment =x p x( ( ) : )i j i

0  and respective steady states in the perturbation experiments 
+ Δ =x p p x( ( ) : )i j j i
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where we have approximated the derivative in (2) with finite differences and xi
0 with the average of xi

0 and xi
j. The 

N ⋅ (N − 1) LRCs are then obtained via substituting these Rij into equation (3), which corresponds to solving N 
linear systems with N − 1 equations in N − 1 independent variables each5,14,
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We note here that Δpk cancels out since it appears as a factor on both sides in this system. Due to the approxima-
tion (5), the values 

rij obtained in this way are also an approximation of the true LRCs ( )rij
true , and depend in par-

ticular on the perturbation strengths. In the following we will always consider Rij directly and thus refer to this 
measure simply as GRC. A second non-linear transformation, defined as T2, provides a solution for all coefficients 
rij. As shown in Suppl. S2 for N = 3, we can rewrite equation (6) as a linear system,

= ⋅ R A Ry x( ) ( ) , (7)ij ij

in which the vector x contains all unknowns 
rij, while Ry( )ij  and A(Rij) are functions of the GRCs. The solution of 

this linear equation system, assuming that A has linearly independent columns, is given by

= .−T A A Ax y: ( ) (8)2
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j

ij and 
rij are assumed to be continuous functions of the perturbation parameters pj. For the 

following analysis, we refer to the difference

Δ = − ≠ = …r p r p r i j i j N( ) ( ) , , , 1, , (9)ij j ij j ij
true

as intrinsic bias which results from the approximations (5) and (8).
Our two considered test-bed models for the MAPK and the p53 signalling pathways (see Suppl. S1) signifi-

cantly differ in the courses of Δrij over a large range of perturbation strengths pj and thus can be considered as 
complementary examples concerning the approximation quality (8) and the validity of results in dependence of 
the perturbation strengths pj.

According to our statistical methodology, concentration measurements are described by random variables 
= …i j Nz , , 1, ,i

j0,  (see Fig. 1a,b), whose distribution is a function of the noise-free steady-state values xi
j0, . We 

consider a realistic error model consisting of a multiplicative and an independent additive part, similar to those 
suggested in15,

 η ε η σ ε σ= ⋅ + = … .η ε~ ~x i j Nz , log (0, ), (0, ), , 1, , (10)i
j

i
j0, 0, 2 2

The parameters ση and σε denote the standard deviations of the proportional (log η) and additive (ε) measure-
ment errors, respectively, xi

j0,  are the simulated noise-free steady-state concentrations in the control (0) and per-
turbed (j) conditions, and zi

j0,  the resulting random variables representing the noisy simulated data.
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We note here that due to the experimental procedure we often do not directly obtain concentrations but fold 
changes only. Thus, measurements zi

0 and zi
j are realizations of random variables which are proportional to the 

real concentrations. As shown in Fig. 1b (left), we assume that measurements refer to signals detected via Western 
Blotting which have been normalized to a loading control. Without loss of generality, we neglect the proportion-
ality factor specific for each blot. In fact, the GRCs calculated via equation (5) and hence the LRCs are independ-
ent of these factors, as long as the two samples zi

0 and zi
j have been quantified in the same blot.

Due to the two non-linear transformations (5) and (8), the GRCs and LRCs are also random variables, which 
we express as Rij and rij (see Fig. 1a,b). Given measurements of Rij, a solution of equation (7) is obtained by apply-
ing estimation methods. The simplest choice is to use Ordinary (Linear) Least Squares, whose solution has exactly 
the same form as equation (8). Changing the method corresponds to changing the operator T2, which remains a 
non-linear function of the GRCs in all cases.

Since it is impossible to derive the distributions of the LRCs directly from the error model (10) of the measure-
ments, we applied a Monte Carlo approach in which we used our error model to simulate experimental data and 
propagated these to respective LRCs via the transformations T1 and T2.

Throughout the manuscript, bold letters indicate random variables and simple letters refer to realizations, as 
listed in Table 1, which collects the notation of all model quantities. To help the readers, we also collected a list of 
all abbreviations in Table 3 at the end of the Supplementary Material.

Solving the MRA equations results in heavy-tailed distributions for the estimated LRCs. We 
started our study by investigating the propagation of noise from the concentration measurements to the estimated 
LRCs as a basis to deduce strategies for an optimal design of experiments and estimation methods.

Therefore, we simulated the MAPK model with noise parameters that are in a biologically plausible range for 
Western blot data16,17. Exemplary results are shown in Fig. 3a, where resulting distributions are illustrated by box 
blots. While the variability of the resulting distributions of the GRCs is comparable to those of the inputs (Fig. 3a 
centre), we observe a much higher variability in the distributions of the LRCs (Fig. 3a right), which is mainly 
manifested in the number of outliers and the range covered by them. The complete set of distributions is given in 
the Supplementary material (Suppl. Figs S2–S4) and shows that these results are representative.

Driven by our analysis, we decided at that point to consider, besides standard measures for statistical dis-
persion such as interquartile ranges, also the amount of spread of the outliers, which is a measure for the degree 
of heavy-tailedness of an underlying distribution. Normalization of a signal obtained from a Western blot to a 
signal of a respective control experiment indeed corresponds to a transformation that may result in heavy-tailed 
distributions18. Since the tails of such distributions usually follow a power-law decay, the probability mass in 
the tails exceeds that of a Gaussian distribution, whose tails decay exponentially. As a consequence, samples 
from heavy-tailed distributions will contain more outliers which are spread over a larger range. A characteristic 
feature of heavy-tailed distributions is the fact that some or all moments do not exist. This severely impedes 
network reconstruction in our framework, since empirical estimators of moments are unstable due to the high 
occurrence of outliers. Empirical moments like the sample mean, the sample variance, or skewness and kurtosis, 
which are standard measures of asymmetry and tail-heaviness, do not provide meaningful estimates under these 
circumstances.

Thus, we decided to evaluate left and right medcouples (LMC and RMC)19 as suitable measures of left and 
right tail weights. The medcouple function (see Methods) was proposed as an efficient measure of the asymmetry 
of a univariate continuous distribution alternative to the classical skewness estimator20. The medcouple applied 
to one single side of the distribution leads to LMC and RMC, which are monotonically increasing functions 
of tail-heaviness. They are robust to outliers, since they only depend on quantiles and hence are suitable for 
heavy-tailed distributions. LMC and RMC values are put into context by comparison with the respective values 
for a standard Gaussian and Cauchy distribution, which are 0.2 and 0.5, respectively.

LMC and RMC values for concentration measurements, GRCs and LRCs are depicted in Fig. 3b. LMCs and 
RMCs for the distributions of the measurement data and of the GRCs are comparable to those of a Gaussian 
distribution. Respective values for the distributions of the estimated LRCs are considerably larger, indicating that 
heavy-tailedness is mainly introduced by the transformation T2. This increase might have severe consequences 
for network reconstruction, since it distorts estimation of moments of the LRCs such as the mean and the vari-
ance from samples. Evaluation of LMC and RMC values for the p53 test-bed model reveals similar results (Suppl. 
Fig. S5). Interestingly, MRA does not markedly affect the interquartile range (IQR) over the two transformations, 
which is a frequently used bulk-measure of variability (Suppl. Fig. S6).

We conclude that MRA amplifies the variability of the measurement noise in terms of degree of 
heavy-tailedness, while the IQR is not as much affected. Since heavy-tailedness is directly related to the occur-
rence of samples in the tails, which appear as outliers in the box plots, this impedes network reconstruction, as 

True 
variable

Noise-free 
approximation

Random 
variable Realization

Probability 
density function

Steady states xi
j0, — zi

j0, zi
j0, p z( )

i
j i

j
z0,

0,

GRCs Rij
true

Rij Rij Rij p R( )
ij ijR

LRCs rij
true r̃ij rij rij p r( )

ij ijr

Table 1. Notation.
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illustrated with two sample points indicated with orange and grey crosses and respective wrongly inferred net-
work structures (Fig. 3c).

The question arises how we can optimize network reconstruction by influencing the distribution of the LRCs 
via experimental design and/or estimation procedures. In a first step we analyse how to best design the experi-
ments regarding the choice of the perturbation strengths and the control strategy and subsequently investigate 
how to best handle multiple replicates.

Large perturbations tend to improve the inference of pairwise node interactions. Since the 
GRCs and LRCs are defined as derivatives, a precise approximation via finite differences theoretically requires 
infinitesimal small perturbations, which is not feasible in practice. Moreover, noise deteriorates estimation of 
derivatives particularly from small differences. The question arises whether we are able to define perturbation 
strengths that constitute a good trade-off. For the MAPK test-bed model we observe that the noise-free approxi-
mated solution for the LRCs 

rij is robust over a large range of perturbation parameters pj and does not deviate 
much from the corresponding true value rij

true (see left of Fig. 3a and Suppl. Fig. S4). This is different for the p53 
test-bed model (Suppl. Fig. S9) and might also not be the case for other systems, which we usually don’t know a 
priori.

In order to answer our question, we compare the variability of the estimated LRCs resulting from different 
perturbation strengths. Therefore, we consider three knockdown experiments with downregulation of the 80%, 
50% and 25% of the total protein concentrations with respect to the control experiment, and one overexpression 
experiment with 150% of total protein concentrations, resulting in a set of values for the perturbation strengths 
pj ∈ {0.2, 0.5, 0.75, 1.5}.

Figure 3. Non-linear propagation of measurement error in the MAPK test-bed model. (a) The curves represent 
the dependencies of steady states (left), GRCs (centre) and LRCs (right) over the changing parameters pj. 
Exemplary, on the left we show the distributions (boxplots) obtained from sampled noisy realizations of the 
steady state z2 in the control experiment (p2 = 1) and in the 50% knockdown experiment of node 2 (p2 = 0.5). 
We generated n = 10,000 realizations via Monte Carlo simulations from the noise model (10) with parameters 
ση = 0.1 and σε = 0.2. The ODE model with numerical values used for simulations is given in Suppl. S1. The 
variability in the measured steady states (left) translates into variability of the calculated GRCs (centre), which 
then translates into variability of the LRCs (right). Two sample points have been indicated by an orange and a 
grey cross and tracked during the transformations to illustrate consequences for network inference from 
individual samples. (b) Propagation of LMC and RMC values during the two-step transformation process 
reveals that heavy-tailedness is mainly introduced by the transformation T2. Numerical values are given in 
Suppl. Table S1. (c) True network structure of the MAPK test-bed model as obtained via equation (4). As a 
comparison, also the two realizations of the LRCs r13 and r31 that result from the two tracked orange and grey 
sample points are shown.
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As can be seen in Fig. 4a and Suppl. Fig. S10, the distributions of the estimated coefficients differ significantly 
in the four scenarios. The spread of the estimated coefficients is smallest for pj = 0.2 and rapidly increases with 
decreasing perturbation strength, i.e. when pj approaches one. The spread of the overexpression experiment is 
comparable to the 25% knockdown experiment, which is probably a result of the fact that we are in the saturated 
regime. We also observe a small and perturbation-dependent bias in the empirical estimate of the medians of all 
distributions.

To investigate the influence of the perturbation strength on accuracy and precision of the estimation more 
comprehensively, we collected values of the bias of the median and of the LMCs and RMCs for the 80% and the 
25% knockdown experiments. Results are shown in Fig. 4b, where we have also visualized different noise levels 
ση and σε with different colours and corresponding different shades. We observe a bias-spread trade-off between 
large and small perturbations. A low bias and a low LMC can only be obtained with large perturbations (large 
dots), while small perturbations lead to higher LMC values.

Increasing noise levels affect the bias markedly only for the small perturbation (small dots), which is true for 
all coefficients (Suppl. Fig. S11). The influence of increasing noise levels on LMC and RMC values is visible but 
moderate in the 80% knockdown experiment, while in case of 25% knockdown a marked effect can only be seen 
for very small multiplicative noise ση (Suppl. Fig. S12). Intriguingly, in most of the cases these quantities behave 
non-monotonically with respect to noise. Increasing noise does not necessarily imply larger bias or medcouples, 
which is probably due to the non-linear transformations T1 and T2. For the p53 test-bed model we observe similar 
trends (Suppl. Figs S13–S16), even though we observe a large bias of the median also for the large perturbation 
experiments here. From this analysis we conclude that larger perturbations are generally preferable, since they 
reduce the risk to infer erroneous network interactions.

A simple control strategy is sufficient for the estimation of the LRCs. The second component of 
the experiment design under investigation is the control strategy. Here we compare a single control for a node for 
all three perturbations (Fig. 5a left) versus individual controls for each perturbation (Fig. 5a right). The 
steady-state variable xi

0 of the control experiment appears in the GRCs Rij of all perturbation experiments j = 1, 
…, N (equation (5)). Simulating the first control strategy thus translates into using the same realization of the 
random variable zi

0 to calculate the realizations Rij, j = 1, …, N, for fixed i, and results in block-wise positive cor-
relations between the GRCs, as can be seen in the Rij scatter plot matrix in Fig. 5a (left). These correlations disap-
pear when performing multiple independent controls zi

0 for each perturbation experiment j (Fig. 5a right).
The choice of the control strategy determines the correlation among the coefficients Rij with the same index 

i, but it is unclear whether it also has a marked effect on the LRCs rij and thus on network inference. In order to 
resolve this issue, we used the bias of the medians, the interquartile range (IQR), LMCs and RMCs as statistical 
measures of the distributions of the LRCs to compare the two control strategies. Since large perturbations have 
already turned out to be advantageous for MRA analysis, we simulated an 80% knockdown experiment and 

Figure 4. Effects of different perturbation strengths on network reconstruction. (a) Boxplots of the estimated 
LRC r13 of the MAPK test-bed model, describing the negative feedback from ERK to Raf, for different 
perturbation strengths: 80%, 50%, 25% knockdowns (KD) and 150% overexpression (OE) of the total protein 
concentrations. (b) Absolute values of the bias of the median versus LMC values for the entire set of of LRC 
values obtained with large (80%) or small (25%) knockdown strengths of the total protein concentrations. These 
statistics are given for different noise levels ση ∈ {0.05 (green), 0.1 (yellow), 0.2 (red)} and σε ∈ {0.1, 0.2, 0.5} 
(indicated by increasing darkness).
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additionally also analysed the effect of increasing noise levels. As can be seen in Fig. 5b,c, we do not detect sig-
nificant differences between the two control strategies with respect to the bias-spread trade-off. In fact, bias and 
RMCs behave similarly in the two cases. As before, we do not see a marked effect of increasing noise levels on 
the LRC distribution measures. These observations also generalize to the IQRs and the LMCs (Suppl. Fig. S18).

The horizontal lines shown in Fig. 5b represent the absolute values of the differences between the true LRCs 
and the LRCs resulting from the noise-free approximation, defined as Δrij (equation (9)). For realistic noise levels, 
as used here, the bias of the medians is centred around this corresponding intrinsic bias, showing that the main 
contribution to the bias is caused by the approximation (5) rather than by the measurement noise. As before, there 
is no clear monotonic relation visible between the considered statistics and the levels of additive and multiplica-
tive noise, respectively. The p53 test-bed model behaves very similar in this analysis (Suppl. Figs S19 and S20).

Taken together, since we could not observe marked differences of the LRC statistics between the two control 
strategies in both models, we advice experimenters to use the first control strategy of taking a single control meas-
urement for a node for all corresponding perturbations, since this requires less samples.

Using MRA with replicate mean values tends to outperform linear regression tech-
niques. Generally, perturbation data contain several replicates of the same experiment. This raises the ques-
tion of how to best handle these replicates during the MRA workflow. One solution is to calculate the mean over 
the replicates. Another, is the use of linear regression, for which several techniques have been suggested. The most 
common choice is to solve equation (7) by applying a least squares method, like Ordinary Least Squares (OLS) 
and Total Least Squares (TLS)8 (see Methods). But whether regression, and if so which, is better than using the 
mean over all replicates remains unclear.

Figure 5. Effects of two alternative control strategies. (a) The first strategy (CS1) considers one single control 
realization for the calculation of all samples Rij with j = 1, 2, 3, while the second strategy (CS2) performs 
independent control experiments for each perturbation experiment. Corresponding correlations can be seen 
in the Rij scatter plot matrices. (b) Absolute values of the bias of the medians of the resulting LRCs rij for both 
control strategies CS1 (left) and CS1 (right) in dependence of different noise levels ση ∈ {0.05, 0.1, 0.2} and 
σε ∈ {0.1, 0.2, 0.5}. For every value of ση, i.e. for each specific column, the three shades of the LRCs correspond 
to the three (increasing) values of the standard deviation of the additive noise σε. Lines indicate intrinsic bias 
values for each LRC. (c) Same illustration for the RMC values.
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Therefore we aim to solve the question about which estimation method, combined with the proper experi-
mental design and data normalization, allows the best results in the terms of accuracy, precision and robustness 
of the LRCs estimates.

We compare results obtained with three replicates, which is the typically required number in many biological 
studies. In our simulations we mimic replicates by drawing independent realizations zi

j0, , providing different 
realizations of the GRCs Rij. We considered the methods of taking the mean over the three obtained GRCs repli-
cates and solving the linear regression problem (7); or determining GRC values for individual replicates and then 
applying either OLS or TLS from noisy values Rij, delivering one estimate of the LRCs rij, i, j = 1, …, N. Moreover, 
we consider yet another experimental approach, in which we take multiple sample data not by repeating the same 
perturbation experiment but by varying the perturbation strengths pj, j = 1, 2, 3. Our choice is to mix three real-
izations obtained using three different knockdown strengths: 80%, 50% and 25% KD of the total protein concen-
trations. The results of our analysis are summarized in Fig. 6.

These results confirm that the experiment design with the large perturbation is superior compared to small 
perturbations or a combination of different perturbation strengths (see also Suppl. Figs S21 and S22). The con-
sidered measures for dispersion (LMC, RMC and IQR) are low and robust to noise for all three estimation 
approaches.

Interestingly, the mixture approach also delivers good results in terms of bias-spread trade-off (right part of 
Fig. 6, Suppl. Figs S21 and S22). As before, the OLS method results in a larger bias, but the dispersion measures 
are more sensitive to increasing noise if using TLS.

We can confirm that the experimental approach with the small perturbation strength delivers unsatisfac-
tory results, leading to a high risk to reconstruct an erroneous network structure. Compared to the other two 
experimental designs, the bias is much larger and sensitive to noise with all three estimation methods: This holds 
especially true for the three non-zero coefficients r21, r32 and r13 (central part of Fig. 6b and Suppl. Fig. S22). The 
measures for dispersion are low for all coefficients only for very low noise and if using OLS.

Summarizing our results, we obtained the best estimation results in terms of accuracy, precision and robust-
ness to noise by performing large perturbations and a simple control strategy. In terms of efficiency we recom-
mend to use the simplest estimation method, which means to solve the regression problem (7) with the GRC 
means. In comparison, the mixture approach seems to be suboptimal in terms of bias-spread trade-off, but it 
might be beneficial for systems with higher non-linearities, as discussed in a later Subsection.

Replicates increase precision, but not accuracy. The choice of the number of replicates is another 
important question for experimental design because of the trade-off between the experimental effort and cost, 
and the quality of the inferred results21. We address this issue by investigating how much the estimation of the 
LRCs is improved by increasing the number of replicates. We compare results obtained with one, three and six 
replicates. For each Monte Carlo run, we proceed by taking the mean value of these GRCs to further calculate one 

Figure 6. Effects of different estimation methods for the linear regression problem with multiple replicates. (a) 
Boxplots of the estimated LRC r13 of the MAPK model for two different perturbation strengths and different 
strategies to handle three replicates. First, the LRC are calculated by taking the mean values of the GRCs. 
Second, GRC replicates are taken individually into account and LRCs are obtained by solving OLS or TLS, 
respectively. The third column illustrates results from a mixture of measurements from three knockdown 
experiments with different perturbation strengths. (b) Absolute bias values of the estimated medians and RMC 
values for all LRCs and increasing levels of multiplicative and additive noise, ση ∈ {0.05, 0.1, 0.2} and σε ∈ {0.1, 
0.2, 0.5}. For every value of ση, i.e. for a specific column, the three shades of the LRCs correspond to three 
(increasing) values of the standard deviation of the additive noise σε.
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realization rij of the LRCs, which we have seen to be the most efficient estimation method, combined with large 
perturbations and the simple control strategy.

Results are depicted in Fig. 7. As expected, the precision of the estimation increases with the number of repli-
cates, for both test-bed models. This manifests in a decrease of the considered measures for statistical dispersion, 
which are RMC and LMC values and the IQR, for all coefficients and noise levels and both test-bed models 
(Fig. 7a top, Suppl. Figs S26 and S28). In particular, RMC and LMC values converge to the value 0.2 of the stand-
ard Gaussian distribution. This effect is robust against increased multiplicative noise levels η.

In contrast, the biases in the medians are neither much affected by the number of replicates nor by the level of 
multiplicative noise, as can be seen in Fig. 7a (bottom) and Suppl. Fig. S28. In some cases increased additive noise 
ε (indicated by a darker shade of the coloured dots) leads to a larger bias, but not in a monotonic manner. As 
before, the medians rather coincide with the noise-free approximated values 

rij (see also Suppl. Figs S25 and S27), 
whose deviations from the true values result from the choice of a large perturbation, showing that the bias in the 
medians is again dominated by the error of the approximation (5).

Summarizing, increasing the number of replicates reduces the dispersion of the distribution and therefore 
increases precision, but the bias cannot be eliminated, which restricts the accuracy of the estimates. We consider 
three replicates to be a good bias-spread trade-off, since all RMC values decrease below 0.3 when going from a 
single measurement to three replicates, while the decrease is much less pronounced when going from three to 
six replicates. Thus we recommend to use at least three replicates, and to include more depending on how much 
experimental effort is acceptable.

Non-linearity induces bias, but large perturbations are still required for precision. In the MAPK 
model, the steady states show an approximately linear behaviour in dependence of the perturbation strengths in 
all cases (see Suppl. Fig. S1a), suggesting that the linear approximations (5) and (8) do not induce unduly large 
errors even for large perturbations. This was confirmed by our simulation results. When applying the MRA in 
practice, however, the course of the steady states of the system for varying perturbation strengths is not known, 
and it could also be highly non-linear. Do our recommendations and guidelines for an optimal performance of 
network reconstruction via MRA still hold true for such cases? In order to address this question, we used the p53 
test-bed model as an example of a system whose steady states are non-linear functions of perturbation strengths 
(see Suppl. Fig. S1b). In this case the approximated LRCs 

rij are sensitive to the choice of the perturbation strength 
and it is not clear a priori whether they are a good approximation of the true values rij

true (compare Suppl. Figs S4 
and S9).

Figure 7. Effects of different numbers of replicates on network reconstruction. (a) RMCs and absolute bias 
values of the medians of the estimated distributions for the LRCs of the MAPK model for one, three and six 
replicates and different noise levels in the 80% KD perturbation experiments. Noise levels have been set to ση 
= {0.05, 0.1, 0.2} (different columns) and σε = {0.1, 0.2, 0.5} (coded in different shades). The black line and 
the coloured lines indicate the RMC value for a normal distribution and the intrinsic bias values for each LRC, 
respectively. (b) Exemplary box plots of the LRC r13 for different numbers of replicates.
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We applied our MRA workflow to this test-bed model and performed the same analysis as before with the 
MAPK model. Summarizing, the results show that the most critical part is indeed the appearance of a large bias in 
the median of the distributions of the estimated rij if applying large perturbation experiments (see Suppl. Figs S23 
(left parts) and S24a). This effect is related to the intrinsic bias Δrij(pj) and cannot be reduced by an increase in the 
number of replicates (see Suppl. Fig. S28a).

Nevertheless, the goal is to estimate the correct network structure, and therefore it is important to minimize 
the dispersion of the distributions of the estimated rij. This holds especially if the intrinsic bias is significant for 
some of the LRCs, which is the case in the p53 example (Suppl. Fig. S23). In such cases it is necessary that the 
approximated LRCs 

rij have the same sign as the true values, leading to qualitatively correctly estimated interac-
tions. The trend of the spread of the estimated distributions shows that in general the lowest dispersion is still 
obtained with the largest perturbation experiment, in a similar way for all three computational approaches (see 
Suppl. Fig. S24b–d). In all these cases this behaviour is robust to increasing noise levels.

From these results we conclude that, due to the noise sensitivity, larger perturbations are generally still pref-
erable, even for highly non-linear systems, since they reduce the risk to infer erroneous network interactions.

Performance evaluation on the level of discrete network interactions corroborates our quanti-
tative results. So far, we have investigated the influence of different experiment designs, estimation methods 
and noise levels on the statistical properties of the estimated LRCs. We have in particular focused on the bias of 
the median and on LMC and RMC values as measures for accuracy and precision of the individual estimates. In 
a final analysis step we transfer these results onto network inference, where the set of inferred LRCs is used to 
decide upon the network structure. The simplest way to do this is to arrange all LRCs according to their abso-
lute value and to define a threshold for an interaction to be present or not. Sensitivity and specificity can then 
be calculated for an inferred network by a comparison with the true or a reference network. Doing this with 
varying threshold values, the Area Under the Curve (AUC) value is then an aggregated measure for the overall 
performance of the inference method independent of the threshold parameter. For such an analysis, it is not 
sufficient to look at each LRC separately. Here we applied an assessment method proposed in9, which is similar to 
a receiver-operator analysis, but also takes the signs of the inferred interactions into account. Depending on the 
percentage of correctly identified interactions, a normalized measure for the fit quality is assigned to an inferred 
network structure (see Fig. 1c), which is 0 in the worst and 1 in the best case. This overall measure for fit quality 
was determined for the different scenarios considered before and the distribution of this measure was investigated 
by sampling n = 10,000 network structures for each setting.

Results are shown in Fig. 8. Here, colour-coded empirical probability distributions of the discrete set of 
fit-quality values are shown for different settings. The first and second row depict results for intermediate and 
high noise levels, respectively. Different computational strategies and different perturbation strengths are com-
pared. It can be seen that network inference works quite well in the 80% KD experiments for both noise levels and 
almost independent from the number of replicates and from the strategy to handle replicates. For intermediate 
noise levels, also the mixture method and the 50% KD perform very well, but are more sensitive to increasing 
noise levels. Both 25% KD and 150% OE perform worse in all scenarios. It can also be seen that results when 
considering replicates are not markedly different across almost all scenarios if averaging over the GRCs or when 
using OLS or TLS. We also compared these statistics across the two control strategies CS1 and CS2 (e.g. com-
pare Suppl. Fig. S29a–d), which shows that the simple control strategy (CS1) is sufficient and there is no need to 
evaluate multiple independent control samples for each perturbation experiment. Similar results were obtained 
for the p53 model (Suppl. Fig. S30). Taken together, these results further confirm the conclusions drawn from 
the quantitative analyses in the previous sections: Firstly, due to noise, large perturbation are preferable, even for 
systems with a high degree of non-linearity. Secondly, it suffices to use a simple experimental strategy with one 
unperturbed control as reference for all perturbed conditions.

Discussion
In this paper, we went through a comprehensive analysis of the effects of different experimental and estimation 
approaches for MRA on the goodness of network inference from noisy data, in terms of accuracy, precision and 
robustness. Our results led to some interesting findings. First, Monte Carlo simulations of concentration meas-
urements with a realistic noise model for Western blot data clearly show a strong increase of heavy-tailedness, 
quantified in terms of LMC and RMC values, in the transformation from the GRCs to the LRCs, while respective 
values for concentration measurements and GRCs are quite similar (Fig. 3). This is a very relevant result, since 
heavy-tailedness deteriorates estimation of moments from samples, inducing as consequence a high risk of wrong 
outcomes for the network inference problem. In extreme cases, i.e. when certain moments are not defined, a sta-
ble estimation is not possible, even for large sample sizes. At least, this implies that concentrations and GRCs can 
be estimated more accurately from concentration measurements than LRCs. Second, for both test-bed models 
large perturbations are more favourable than smaller ones. Estimation of LRCs and hence network inference is 
much more accurate when using large perturbations. This is a non-trivial result, since estimation of the LRCs is 
done via a finite difference approximation of the GRCs in the MRA workflow, for which small differences would 
be beneficial in the absence of noise, since large differences imply an intrinsic bias. In particular, Fig. 4 shows a 
clear clustering of inferred LRCs according to the perturbation strengths: Results from 80% knockdown simula-
tions show small biases and small LMC values, while 25% knockdowns show a much higher spread of bias values 
and consistently high LMC values. This leads to the clear advice to use large perturbations in the MRA workflow, 
even when the underlying model system features a considerable amount of non-linearity. Furthermore, regarding 
experiment design in the number of controls, our results indicate that a single control for different perturbation 
experiments, as often applied in practice, is sufficient (Fig. 5). While a single control causes correlations between 
GRCs, GRC marginals are not much affected. In particular, there is not much difference in the bias and RMC 
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values of inferred LRC values among the two control strategies. The bias values are dominated by the intrinsic 
bias, and this is true for all tested noise levels. Regarding the required number of measurements and the estima-
tion method, we advice to use the mean of at least three replicates. The spread of inferred LRCs decreases mono-
tonically with the number of replicates, while the bias of the median is dominated by the intrinsic bias (Figs 6 and 
7). Finally, our conclusions also hold true for the overall network inference problem, as evaluated in this study 
by a normalized quality measure for a classification problem (Fig. 8). Our results in particular show that learning 
the network topology is possible with very high accuracy also for high noise levels in our setting with the 80% 
knockdown experiments and few replicates.

As pointed out in the introduction, the effect of noise and variability in the data used for MRA network infer-
ence had already been an issue in earlier studies1,8. In a later work22, the authors developed an advanced version of 
MRA, combining it with a Bayesian model selection algorithm, relaxing also the restriction of required number 
of perturbation experiments to equal the number of nodes of the network. However, none of these are comparable 
in considering propagation of noise from concentration measurements via GRCs and LRCs to network topology 
inference in a consistent stochastic framework with realistic noise assumptions. These studies also use Monte 
Carlo techniques, but start with i.i.d. normal distributions directly on the GRC values, and also completely neglect 
the effects of heavy-tailedness. They are also lacking concrete recommendations for experimental design and 
computational methodology regarding MRA based network inference.

As with all inference methods, our methodology has some limitations. The MRA framework itself assumes 
a continuous functional dependence between perturbation parameters and steady states of the system. This 
excludes for instance systems which exhibit bifurcations, as they appear for example in positive feedback systems 
which exhibit multi-stability. For those systems, the theory only holds as long as the perturbation does not induce 
a switch of the system to a different fixed point branch. It might be difficult to decide whether this is indeed the 
case in real settings, where the underlying dynamical system is not known. Furthermore, there might be potential 
for improvement regarding methodology to solve the regression problem to calculate the LRCs from the GRCs. 
Methods like feasible generalized least squares or Maximum Likelihood estimation might be beneficial in this 
respect. Finally, evaluation of our findings and recommendations in a setting with real experimental data is an 
open issue for the future.

Figure 8. Performance evaluation of all MRA settings for network inference obtained with the MAPK test-bed 
model. Empirical distributions of fit quality of the inferred networks for different experimental designs and 
computational strategies for intermediate (top row) and high (bottom row) noise levels.
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Methods
Medcouple. Given a set of n independent samples {x1, ..., xn} from a continuous univariate distribution, with 
median mn, the medcouple is defined as
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The kernel function h(xi, xj) measures the (normalized) difference between the distances of xi and xj to the 
median. The medcouple represents a robust measure of the asymmetry of a distribution, which can be computed 
also for distributions without finite moments, which is not the case for the classical skewness coefficient20. As 
robust measure of tail weight, the authors propose to apply the medcouple only to one single side of the distribu-
tion, leading to Left Medcouple (LMC) and Right Medcouple (RMC)19:

= − < = > .x m x mLMC MC( ) and RMC MC( )n n

The calculation of such quantities for all datasets in our study was performed with the MATLAB toolbox 
LIBRA23, developed by the same authors, which can be downloaded from https://wis.kuleuven.be/stat/robust/
LIBRA/LIBRA-home.

MRA estimation methods. For the estimation problem, we have to solve equation (7), y = A⋅x, which is 
a linear regression model, in the unknown variable x. Assuming no error in the regression variables, i.e. in the 
entries of the matrix A, and i.i.d. normal errors in the variable y, we obtain the well known ordinary least squares 
(OLS) solution, given in equation (8). However, this assumption is wrong, since the entries in the matrix A are 
also affected by noise, being samples of GRCs. One option is to consider error-in-variables models, such as total 
least squares (TLS), whose computation requires singular value decomposition and is presented in8.

Data Availability
The datasets generated during and/or analysed in this study, as well as the Matlab code and functions and the 
SBML versions of the models, can be downloaded from https://zenodo.org/record/1434792#.W6pBmC-B2MI; 
or using the https://doi.org/10.5281/zenodo.1434792. The MAPK and p53 models are available in standard SBML 
format from the EMBL-EBI BioModels repository under accession numbers MODEL1809260001 and MOD-
EL1809260002, respectively.

References
 1. Santos, S. D. M., Verveer, P. J. & Bastiaens, P. I. H. Growth factor-induced MAPK network topology shapes Erk response determining 

PC-12 cell fate. Nat. Cell Biol. 9, 324–330 (2007).
 2. Stelniec-Klotz, I. et al. Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS. Mol. Syst. Biol. 8, 601 

(2012).
 3. Gong, C., Zhang, Y., Shankaran, H. & Resat, H. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB 

receptor signaling pathways in human mammary epithelial cells. Mol. Biosyst. 11, 146–158 (2015).
 4. Speth, Z., Islam, T., Banerjee, K. & Resat, H. EGFR signaling pathways are wired differently in normal 184a1l5 human mammary 

epithelial and MDA-MB-231 breast cancel cells. J. Cell Commun. Signal. 11, 341–356 (2017).
 5. Kholodenko, B. N. et al. Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. Proc. Natl. 

Acad. Sci. 99, 12841–12846 (2002).
 6. Santra, T., Rukhlenko, O., Zhernovkov, V. & Kholodenko, B. N. Reconstructing static and dynamic models of signaling pathways 

using Modular Response Analysis. Curr. Opin. Syst. Biol. 9, 11–21 (2018).
 7. Kang, T., Moore, R., Li, Y., Sontag, E. & Bleris, L. Discriminating direct and indirect connectivities in biological networks. Proc. Natl. 

Acad. Sci. 112, 12893–12898 (2015).
 8. Andrec, M., Kholodenko, B. N., Levy, R. M. & Sontag, E. Inference of signaling and gene regulatory networks by steady-state 

perturbation experiments: structure and accuracy. J. Theor. Biol. 232, 427–441 (2005).
 9. Bansal, M., Della Gatta, G. & Di Bernardo, D. Inference of gene regulatory networks and compound mode of action from time 

course gene expression profiles. Bioinforma. 22, 815–822 (2006).
 10. Kholodenko, B. N., Hancock, J. F. & Kolch, W. Signalling ballet in space and time. Nat. Rev. Mol. Cell Biol. 11, 414 (2010).
 11. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165 (2006).
 12. Purvis, J. E. et al. p53 dynamics control cell fate. Sci. 336, 1440–1444 (2012).
 13. Fey, D., Kuehn, A. & Kholodenko, B. N. On the personalised modelling of cancer signalling. IFAC-PapersOnLine 49, 312–317 

(2016).
 14. Kholodenko, B. N. & Sontag, E. Determination of functional network structure from local parameter dependence data. Web Arch. 

arXiv:physics/0205003 (2002).
 15. Kreutz, C. et al. An error model for protein quantification. Bioinforma. 23, 2747–2753 (2007).
 16. Schilling, M. et al. Computational processing and error reduction strategies for standardized quantitative data in biological 

networks. FEBS J. 272, 6400–6411 (2005).
 17. Taylor, S. & Posch, A. The design of a quantitative western blot experiment. BioMed Res. Int. 2014, 361590 (2014).
 18. Thomaseth, C. & Radde, N. Normalization of western blot data affects the statistics of estimators. IFAC-PapersOnLine. 49, 56–62 

(2016).
 19. Brys, G., Hubert, M. & Struyf, A. Robust measures of tail weight. Comp. Stat. & Data Anal. 50, 733–759 (2006).
 20. Brys, G., Hubert, M. & Struyf, A. A robust measure of skewness. Comp. & Graph. Stat. 13, 996–1017 (2004).
 21. Blainey, P., Krzywinsky, M. & Altman, N. Replication. Nat. Methods 11, 879–880 (2014).
 22. Santra, T., Kolch, W. & Kholodenko, B. N. Integrating Bayesian variable selection with Modular Response Analysis to infer 

biochemical network topology. BMC Syst. Biol. 7, 57 (2013).
 23. Verboven, S. & Hubert, M. Matlab library LIBRA. Wiley Interdisciplinary Rev. Comput. Stat. 2, 509–515 (2010).

https://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home
https://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home
https://zenodo.org/record/1434792#.W6pBmC-B2MI
http://dx.doi.org/10.5281/zenodo.1434792


www.nature.com/scientificreports/

1 4SCIENTIFIC REPORTS |         (2018) 8:16217  | DOI:10.1038/s41598-018-34353-3

Acknowledgements
C.T. and N.E.R. acknowledge funding from German Research Foundation via the Cluster of Excellence in 
Simulation Technology (EXC310/2). B.N.K. acknowledges support from the EU H2020 SmartNanoTox (Grant 
agreement No. 686098) and EU H2020 NanoCommons (Grant Agreement No. 731032). D.F. acknowledges 
support from EU H2020 COLOSSUS (Grant Agreement No. 754923). O.S.R. acknowledges support from the EU 
H2020 MSCA-IF SAMNets (Grant agreement No. 750688).

Author Contributions
N.E.R. and B.N.K. designed the study together with C.T. and D.F. Simulations and implementation of 
computational methodology was done by C.T. with input from D.F. T.S. and O.S.R. provided additional support 
in the development of the methodology. Results were discussed and put into context among all authors. N.E.R. 
and B.N.K. supervised the project. The manuscript was mainly written by C.T., D.F., N.E.R. and B.N.K., with input 
from all authors. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-34353-3.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-34353-3
http://creativecommons.org/licenses/by/4.0/

	Impact of measurement noise, experimental design, and estimation methods on Modular Response Analysis based network reconst ...
	Results
	MAPK and p53 test-bed models with complementary dynamic behaviours. 
	Problem formulation. 
	Solving the MRA equations results in heavy-tailed distributions for the estimated LRCs. 
	Large perturbations tend to improve the inference of pairwise node interactions. 
	A simple control strategy is sufficient for the estimation of the LRCs. 
	Using MRA with replicate mean values tends to outperform linear regression techniques. 
	Replicates increase precision, but not accuracy. 
	Non-linearity induces bias, but large perturbations are still required for precision. 
	Performance evaluation on the level of discrete network interactions corroborates our quantitative results. 

	Discussion
	Methods
	Medcouple. 
	MRA estimation methods. 

	Acknowledgements
	Figure 1 Variability and noise in measurements affect network reconstruction via Modular Response Analysis.
	Figure 2 Two test-bed models.
	Figure 3 Non-linear propagation of measurement error in the MAPK test-bed model.
	Figure 4 Effects of different perturbation strengths on network reconstruction.
	Figure 5 Effects of two alternative control strategies.
	Figure 6 Effects of different estimation methods for the linear regression problem with multiple replicates.
	Figure 7 Effects of different numbers of replicates on network reconstruction.
	Figure 8 Performance evaluation of all MRA settings for network inference obtained with the MAPK test-bed model.
	Table 1 Notation.




