SCIENTIFIC REPORTS

Received: 25 July 2018 Accepted: 9 October 2018 Published online: 07 November 2018

OPEN Bio-inspired Z-scheme g-C₃N₄/ Ag₂CrO₄ for efficient visiblelight photocatalytic hydrogen generation

Yuping Che¹, Bingxin Lu¹, Qi Qi¹, Huaiqiu Chang³, Jin Zhai¹, Kefeng Wang² & Zhaoyue Liu¹

Due to low charge separation efficiency and poor stability, it is usually difficult for single-component photocatalysts such as graphitic carbon nitride $(q-C_3N_4)$ and silver chromate (Aq_2CrO_4) to fulfill photocatalytic hydrogen production efficiently. Z-scheme charge transport mechanism that mimics the photosynthesis in nature is an effective way to solve the above problems. Inspired by photosynthesis, we report Aq₂CrO₄ nanoparticles-decorated q-C₃N₄ nanosheet as an efficient photocatalyst for hydrogen evolution reaction (HER) with methanol as sacrificial agent. The formation of Z-scheme g-C₃N₄/Ag₂CrO₄ nanosheets photocatalysts could inhibit the recombination of photogenerated electron-hole pairs, promote the generation of hydrogen by photosplitting of water. The experiment results indicate that q-C₂N₄/Aq₂CrO₄ nanocomposites present enhanced photocatalytic activity and stability in the H₂ evolution of water splitting. And the nanocomposites $g-C_3N_4/Ag_2CrO_4(23.1\%)$ show the 14 times HER efficiency compared to that of bare $g-C_3N_4$.

With fossil fuel reserves dwindling every day, there is an urgent need for clean and sustainable alternative energy sources. Hydrogen energy is an attractive alternative resource to fossil fuels due to its high energy density and environmentally friendly characteristics¹⁻⁶. Many methods are used to produce hydrogen, which can be divided into two major categories based on the required raw materials and processes: reforming processes and splitting water processes. The former process is relatively mature and uses widely. However, it has some disadvantages such as high cost, large energy consumption, low efficiency, and complicated equipments and processes. Splitting water processes contains electrolytic water splitting, photocatalytic water splitting, bio-photocatalytic water splitting and thermochemical water splitting. Water electrolysis technology is relatively mature, with simple equipment, no pollution, and high product purity but large energy consumption; water biophotolysis process Bio-photocatalytic water splitting requires harsh reaction environments but has poor stability. There is no problem in the feasibility and high efficiency for thermochemical water splitting technology, but further research is needed to reduce costs and achieving efficient recycling. Among them, photocatalytic water splitting is a more efficient pathway to produce hydrogen gas and also does not generate any undesirable byproducts⁷⁻¹⁷. Since the discovery of the Honda-Fujishima effect in 1972¹⁸, photocatalytic hydrogen production through water splitting has become a promising technology for utilizing renewable solar energy¹⁹⁻²⁴. Development of efficient photocatalytic systems for hydrogen evolution via photoinduced water splitting is an active field of energy research. However, due to narrow absorption range, poor stability, low charge-separation efficiency and weak redox ability, it is often difficult for a single-component photocatalyst to fulfill this requirement. The heterostructure composed of two semiconductor catalysts can increase the catalytic efficiency²⁵⁻²⁹. Photosynthesis as a nature heterostructure system is widely studied due to its fast and efficient photocatalytic reaction.

In natural photosynthesis process, the Z-scheme photoreaction system is an important part of the plant photosynthesis, which involves two photochemical reactions and a series of intermediate enzymatic redox reactions.

¹Key Laboratory of Bio-inspired Smart Interfacial Science, Technology of Ministry of Education and Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China. ²Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, 476000, P. R. China. ³National Center for Nanoscience and Technology, Beijing, 100190, P. R. China. Correspondence and requests for materials should be addressed to J.Z. (email: zhaijin@buaa.edu.cn) or K.W. (email: wangkf2007@163.com)

.....

The electron transfer process is shown in Fig. 1a. After a series of reactions, the photogenerated electrons with high reducing ability and holes with high oxidizing ability are left in the LUMO of PS I and the HOMO of PS II, respectively. The transfer process of electrons in the figure constitutes a shape of letter Z, so it is called a Z-scheme³⁰⁻³². This system was first proposed by Bard in 1979 after studying the photosynthesis of plants³³. The Z-scheme photocatalytic system shows excellent redox ability in due to the different band gap of two semiconductor with broadening light absorption and the special charge transfer path ensuring high separation efficiency of photo-generated charges. Considering these unique advantages of the natural Z-scheme photocatalytic systems have been developed and used widely in photocatalytic field^{25,34-38}. The artificial heterogeneous Z-scheme photocatalytic systems, mimicking the natural photosynthesis process, overcome the drawbacks of single-component photocatalysts and satisfy those aforementioned requirements.

For the first time, Martin³⁹ reported that the robust organic semiconductor g-C₃N₄ can be integrated into a Z-scheme water splitting in a liquid system. While in this system, they used an electron acceptor/donor (NaI/ IO^{3-}) pair which they all absorb light to the different extent and occur back reactions. Therefore, the number of adsorbed photons by photocatalysts decreases and the effective number of photogenerated electrons and holes decrease sharply³⁰. Mimicking the natural photosynthesis process, some all solid-state Z-scheme photocatalyst system based on g-C₃N₄ with other semiconductors were obtained and used, such as WO₃, Ag₃PO₄, BiOX (X=Cl, Br, I), V₂O₅, etc⁴⁰⁻⁴⁴. A Z-scheme system of g-C₃N₄/WO₃ was used to generate hydrogen and its separation mechanisms were also studied deeply^{40,45,46}. He *et al.*⁴¹ reported that the Z-Scheme Ag₃PO₄/g-C₃N₄ composite was used to convert CO₂ to fuel such as CO, methanol, methane and ethanol. Liu *et al.*⁴⁴ synthetized a ternary composite photocatalyst g-C₃N₄/Ag₃PO₄/Ag₂MOO₄ for water splitting. BiOCl and BiOI were also compounded with g-C₃N₄ to form a Z-scheme catalytic system⁴⁸.

Silver chromate (Ag₂CrO₄) as a narrow band gap semiconductor with band gap of 1.80 eV has unique electronic structure, crystal structure⁴⁹, excellent light sensitivity and high photocatalytic activity^{50,51}. Hence, in recent years, some Ag₂CrO₄-based photocatalysts have been fabricated⁵¹⁻⁵³. However, similar to other silver-based

photocatalysts, the big aggregated particle size and easy photocorrosion properties seriously caused poor stability and restricted the photocatalytic performance of the Ag_2CrO_4 photocatalyst. The $g-C_3N_4/Ag_2CrO_4$ nanocomposites were synthesized and characterized, the dispersion and light stability of Ag_2CrO_4 were improved greatly. And their catalytic hydrogen evolution activity was evaluated when using methanol as the sacrificial electron donor under visible light. The as-obtained $g-C_3N_4/Ag_2CrO_4$ composites showed distinctly enhanced photo-catalytic activity than that of pure $g-C_3N_4$ nanosheets on the evolution of H_2 under visible light irradiation. Compared to the two individuals, the enhancement of HER efficiency was mainly ascribed to the synergetic effect between Ag_2CrO_4 and $g-C_3N_4$ (as shown in Fig. 1b), effectively improved photogenerated electron-hole pairs separation efficiency via the direct Z-scheme charge transfer mechanism. Notably, the photocorrosion of Ag_2CrO_4 was efficiently hindered due to this synergistic effect. Furthermore, a possible direct Z-scheme mechanism for the enhanced photocatalytic activity of the $g-C_3N_4/Ag_2CrO_4$ composite was also discussed based on the relative band gap positions of these two semiconductors. The existence of the Z-scheme mechanism means strong redox ability and high transfer efficiency of photogenerated electron-hole pairs. This research will broaden the studies of Ag_2CrO_4 and $g-C_3N_4$ photocatalysts with excellent photocorrosion inhibition ability and high photocatalytic activity under visible light.

Results and Discussion

Phase structure and morphology analysis. In order to analyze the crystal structure of the prepared $g-C_3N_4$, $g-C_3N_4/Ag_2CrO_4$ composites, and Ag_2CrO_4 , the XRD patterns were obtained (as shown in Fig. 2). Fig. 2a was the pattern of $g-C_3N_4$, two diffraction peaks at 27.6° and 13.0° were indexed to (002) and (100) planes of hexagonal $g-C_3N_4$ (JCPDS card No. 87–1526), corresponding to the graphite-like stacking and the in-plane structural repeating motifs of the conjugated aromatic units of $g-C_3N_4$. Form Fig. 2b–f, the patterns correspond to the samples with an increasing Ag_2CrO_4 mass ratio to $g-C_3N_4$. For the $g-C_3N_4/Ag_2CrO_4$ composites, orthorhombic phase Ag_2CrO_4 and hexagonal phase $g-C_3N_4$ were both observed and no other impurity peaks were found, implying that $g-C_3N_4$ and Ag_2CrO_4 keep pure phase and no impurities formed in $g-C_3N_4/Ag_2CrO_4$ composites. Moreover, the peaks of Ag_2CrO_4 in $g-C_3N_4/Ag_2CrO_4$ composites were becoming clearer with the increasing of Ag_2CrO_4 . And at the same time the peaks of $g-C_3N_4$ gradually decreased. Fig. 2g was the pattern of Ag_2CrO_4 . It was clear to see that all diffraction peaks of the as-prepared Ag_2CrO_4 coincided well with the orthorhombic phase of Ag_2CrO_4 (JCPDS No. 26-0952).

In order to observe the morphology of the bare g-C₃N₄, Ag₂CrO₄ and the as-prepared g-C₃N₄/Ag₂CrO₄ composite, TEM was performed (see Fig. 3). The pure $g-C_3N_4$ sample possessed a very thin 2D layer structure (shown as Fig. 3a), which meant that the $g-C_3N_4$ was prepared successfully. As to the pristine Ag_2CrO_4 sample (shown in Fig. 3b), besides the obvious aggregations there was no special morphological features, and the sizes of Ag_2CrO_4 particles were between 140-300 nm and asymmetrical. The TEM image of the g-C₃N₄/Ag₂CrO₄ composite with the mass weight ratio 23.1% was showed in Fig. 3c. From the TEM picture, we could see that the Ag₂CrO₄ particles (labeled by red circles) with the size below 10 nm were uniformly embedded on g-C₃N₄. The adding of graphene-like g-C₃N₄ nanosheets made the Ag₂CrO₄ particles composites in the g-C₃N₄/Ag₂CrO₄(23.1%) closely enwrapped by $g-C_3N_4$ and much smaller than pure Ag_2CrO_4 nanoparticles. These results indicate that $g-C_3N_4$ nanosheets could not only serve as a graphene-like substrate to attach Ag₂CrO₄ nanoparticles on their surface, but also inhibit Ag₂CrO₄ nanoparticles aggregating into the big particles. Therefore, g-C₃N₄/Ag₂CrO₄ composite photocatalyst with closely interconnections between g-C₃N₄ and Ag₂CrO₄ nanoparticles were successfully synthesized, which would be beneficial for the transfer of the photogenerated electron-hole pairs. In Fig. 3d, obviously, the clear fringes spacing was ca. 0.28 nm, corresponding to the (211) lattice plane of orthorhombic phase $Ag_2CrO_4^{55,56}$. The composites with other different weight ratios (9.1%, 16.7%, 28.6%, and 33.3%) were shown in Fig. S1. We could see that when the ratio of the Ag₂CrO₄ below 23.1%, small Ag₂CrO₄ nanoparticles (below 10 nm) were uniformly embedded on g-C₃N₄ (labeled by red circles in Figs 3b, S1a and S1b). While the theoretical

Figure 3. TEM images of (a) g- C_3N_4 , (b) Ag_2CrO_4 , (c) g- $C_3N_4/Ag_2CrO_4(23.1\%)$ (Ag_2CrO_4 were labeled by red circles), (d) HRTEM of g- $C_3N_4/Ag_2CrO_4(23.1\%)$.

weight ratio was increased to 28.6%, Ag_2CrO_4 began to aggregate, the size of Ag_2CrO_4 grow to above 20 nm. When the theoretical ratio was 33.3%, the aggregation was very serious just like the pure Ag_3CrO_4 .

Based on Figs 3 and S1, a possible formation mechanism of g-C₃N₄/Ag₂CrO₄ composites is proposed. Obviously, the structure of Ag₂CrO₄ ranged from nanoparticles (below 10 nm) to sub-microparticles (140-300 nm) with the decreasing of g-C₃N₄ mass fraction, which strongly confirmed that the g-C₃N₄ sheets played vital role in the formation of the nanojunction. Many investigations showed that large specific surface area and two-dimensional structure of g-C₃N₄ could provide a large scaffold for anchoring various substrates^{57,58}. In addition, the surface of urea-derived graphitic $g-C_{3}N_{4}$ possessed positive charge with abundant alamino groups (C-NH_x), which could provide a suitable environment for attracting negative charge particles via electrostatic attraction^{59,60}. Accordingly, in our study, the CrO_4^{2-} ions could adsorb onto $g-C_3N_4$ sheets via the electrostatic force in $g-C_3N_4$ suspension. The anchored CrO_4^{2-} ions would form Ag₂CrO₄ nanocrystals *in situ* on the surface of g-C₃N₄ sheets during the reaction, then the tiny nanocrystal nucleus grows into the nanoparticles through oriented growth on the surface of g-C₃N₄ support⁶¹. Eventually, the Ag₂CrO₄ nanoparticles uniformly and tightly distribute onto the surface of $g-C_3N_4$ sheets (As shown in Figs 3c and S1a,b). However, with the increase of Ag_2CrO_4 mass ratio, the capacity of electrostatic attraction between $g-C_3N_4$ and CrO_4^{2-} ions was decreased because the effective positive charge surface of $g-C_3N_4$ was decreasing. When the mass fraction of Ag_2CrO_4 was more than 28.6%, the excess of CrO_4^{2-} -ions could not tightly adsorb on the surface of g-C₃N₄ sheets and would grow into Ag₂CrO₄ nanoparticles freely during the reaction progress. However, these free Ag₂CrO₄ nanocrystals possessed high specific surface energy, which would assemble spontaneously and form hierarchical sub-microparticles for reducing the interfacial energy $\frac{52,62}{2}$. As a result, part of Ag₂CrO₄ nanoparticles uniformly grew on the surface of $g-C_3N_4$ due to the strong electrostatic attraction between CrO_4^2 ions and C-NH_x, whereas other Ag₂CrO₄ nanoparticles were densely self-assembled and formed 3D hierarchical structures which covered the g-C₃N₄ sheets (Fig. S1c). With the mass fraction of free Ag₂CrO₄ nanoparticles further increasing, the crystal growth of nanoparticles would cause the exfoliation of the g-C₃N₄ sheets (Fig. S1d)^{63,64}. The Ag₂CrO₄ sub-microparticles could directly contacted with g-C₃N₄ sheets, which were shown in Fig. S1d. The pure Ag2CrO4 3D hierarchical structures was obtained with the absence of g-C3N4. It revealed that when the particles of Ag_2CrO_4 nanoparticles were not restricted by the functional alamino groups on the surface of g-C₃N₄ sheets, they would assemble spontaneously in a random way to form 3D sub-microparticles (shown as Fig. 3c)⁴⁹. All in all, the results clearly confirmed that the mass ratio of g-C₃N₄ could be a key parameter for formation of g-C₃N₄/Ag₂CrO₄ nanocomposites. The positive charge and 2D structure of g-C₃N₄ sheets could provide a suitable environment for the growth of nanoparticles.

Figure 4. (a) EDS spectra for the $g-C_3N_4/Ag_2CrO_4(23.1\%)$, (b) SEM of $g-C_3N_4/Ag_2CrO_4(23.1\%)$, (c-g) EDS mapping for different elements of the $g-C_3N_4/Ag_2CrO_4(23.1\%)$ nanocomposite.

Component analysis. The elemental compositions of $g-C_3N_4/Ag_2CrO_4(23.1\%)$ nanocomposite were explored by EDS technique and the results were shown in Fig. 4. It could be seen that the $g-C_3N_4/Ag_2CrO_4(23.1\%)$ composite was composed of only C, N, Ag, Cr and O elements and no other element or impurity found, demonstrating that the existence of $g-C_3N_4$ and Ag_2CrO_4 in the as-fabricated $g-C_3N_4/Ag_2CrO_4(23.1\%)$ composite (shown as in Fig. 4a). Quantitative analysis of the $g-C_3N_4/Ag_2CrO_4(23.1\%)$ nanocomposite showed that weight percents of C, N, Ag, Cr and O elements were 29.4, 47.2, 15.0, 3.6, and 4.8\%, respectively, which they were close to the theoretical percents of 30.1, 46.8, 15.0, 3.6 and 4.5\%, respectively. To further investigate elemental composition and distribution uniformity, the elemental maps for $g-C_3N_4/Ag_2CrO_4(23.1\%)$ composite were displayed in Fig. 4c-g, which indicated that Ag, Cr and O elements were homogeneously distributed in the whole host of the $g-C_3N_4/Ag_2CrO_4(23.1\%)$ composite. Considering the Ag, Cr and O presented in the form of Ag_2CrO_4 , these analyses demonstrated Ag_2CrO_4 tended to integrate with $g-C_3N_4$ nanosheets firmly and then formed hybrid structures. Except that, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were also used to analyze the composition of nanomaterials (as shown in Figs S2 and S4).

Optical properties of the g-C₃N₄/Ag₂CrO₄ composites. It was believed that remarkable absorption enhancement in the visible-light region was beneficial for improving photocatalytic activity. Optical absorption spectra of the prepared samples were provided by UV-vis DRS and the results in the range of 200–800 nm were shown in Fig. 5A. As can be seen, the absorption edge of the pure g-C₃N₄ and Ag₂CrO₄ located at approximately 454 nm and 712 nm, respectively. It was noteworthy that the individual Ag₂CrO₄ showed the photo-absorption property in the entire waveband, which suggested that an effective utilization of the solar source over Ag₂CrO₄ could be acquired. Interestingly, the absorption of composites was gradually strengthened in the visible region with increasing of Ag₂CrO₄ content. This phenomenon could be attributed to the difference between the band gap energies of bare g-C₃N₄ and Ag₂CrO₄. With more and more Ag₂CrO₄ monoparticles with relative narrow band gap produced on the surface of g-C₃N₄, the band gap of the g-C₃N₄/Ag₂CrO₄ would decrease. Other groups also found the same trend when coupling the broader band gap semiconductors with other relatively narrow band gap semiconductors^{42,65}. Therefore, introducing Ag₂CrO₄ into g-C₃N₄ might be favorable for photocatalytic reaction due to the enhancing of light absorbance. These results implied that the g-C₃N₄/Ag₂CrO₄ nanocomposite had the potential to be efficient visible light-driven photocatalyst. The UV-vis DRS spectra were also applied to calculate band gap energy (*E_e*) using Tauc's equation:

$$\alpha h\nu = \mathbf{A}(h\nu - E_g)^{n/2} \tag{1}$$

In this equation, α , $h\nu$, and A were absorption coefficient, the photon energy, and proportionality constant, respectively⁶⁶. The value of n was determined by the type of optical transition of a semiconductor (n = 1 for direct transition, and n = 4 for indirect transition), and the n values of g-C₃N₄ and Ag₂CrO₄ were 1^{49,67}. So according to the calculation (($\alpha h\nu$)² = A²h\nu - A²E_g), the plot of ($\alpha h\nu$)² versus photon energy ($h\nu$) for g-C₃N₄, pure Ag₂CrO₄ and the as-prepared g-C₃N₄/Ag₂CrO₄(23.1%) composites were shown as Fig. 5B. The band gap

Figure 5. (A) UV-vis DRS (insert are the photos of samples) of (a) $g-C_3N_4$, (b) $g-C_3N_4/Ag_2CrO_4(9.1\%)$, (c) $g-C_3N_4/Ag_2CrO_4(16.7\%)$, (d) $g-C_3N_4/Ag_2CrO_4(23.1\%)$, (e) $g-C_3N_4/Ag_2CrO_4(28.6\%)$, (f) $g-C_3N_4/Ag_2CrO_4(33.\%)$ and (g) Ag_2CrO_4 ; (B) the band gap energies of (a) $g-C_3N_4$, (b) $g-C_3N_4/Ag_2CrO_4(23.1\%)$, and (c) Ag_2CrO_4 .

energies of $g-C_3N_4$ and Ag_2CrO_4 were 2.73 eV and 1.74 eV, respectively. And the wavelength thresholds of the $g-C_3N_4/Ag_2CrO_4(23.1\%)$ composite were estimated at 461 and 708 nm, corresponding to the band gaps at 2.69 and 1.75 eV, respectively ascribed to $g-C_3N_4$ and Ag_2CrO_4 . The reduced band gaps of the $g-C_3N_4/Ag_2CrO_4(23.1\%)$ composite and more response to the visible light were caused by the loaded Ag_2CrO_4 nanoparticles, thus more efficient utilization of solar energy could be achieved, and the improved photocatalytic activity of the $g-C_3N_4/Ag_2CrO_4$ composite could be anticipated.

Visible light photocatalytic activities and evaluation of stability. The photocatalytic activity of all samples was evaluated by monitoring the hydrogen evolution in the presence of a sacrificial reagent (methanol) under visible light illumination ($\lambda \ge 420$ nm). Control experiments indicated that there was no appreciable H₂ production in the absence of photocatalysts, light irradiation or H₂O. According to the standard curve: y = 165550x, $R^2 = 0.9997$ (as shown in Fig. S5), time-dependent (Fig. 6A) and average (Fig. 6B) photoinduced H₂ evolution for different photocatalysts were observed and corresponding results were listed in Table S1. As illustrated, H₂ production was not detected if pure Ag₂CrO₄ was used as a photocatalyst for the whole visible-light irradiation for 5 h; this suggested that Ag_2CrO_4 alone was not active for photocatalytic H_2 generation. Pure g- C_3N_4 showed a poor photocatalytic activity under visible light (64.3 μ mol g⁻¹ h⁻¹), owing to its limited light-harvesting efficiency and fast recombination of photogenerated electron-hole pairs. However, after the two semiconductors were combined, the evolution rate of g-C₃N₄/Ag₂CrO₄ was greatly enhanced and the largest rate as high as 902.1 $\mu mol \ g^{-1} \ h^{-1} \ was \ attained \ by \ using \ g-C_3N_4/Ag_2CrO_4(23.1\%) \ as \ photocatalyst, \ which \ was \ 14 \ times \ that \ of \ g-C_3N_4.$ Compared with other $g-C_3N_4$ based composite photocatalysts, the H₂ production rate of $g-C_3N_4/Ag_2CrO_4$ was enhanced to a great extent, which could be ascribed to the effect of Ag_2CrO_4 (Table 1). In the scope of our literature survey, our efficiency of hydrogen production is very high. It is just lower compared to that of literature ref.⁶ and ref.¹⁵. Furthermore, it could also be clearly observed that the content of Ag₂CrO₄ exhibited a great influence on the H_2 production rate. With its increasing, the H_2 production rate rose firstly and then decreased. For bare $g-C_3N4$, the H_2 production rate was extremely low because of the deeply trapped electrons and fast recombination of electron-hole pairs; the photogenerated electrons were not transferred to catalytic sites and were unable to participate in H₂ production⁶⁸. As a compare, the pure $g-C_3N_4$ and $g-C_3N_4/Ag_2CrO_4(23.1\%)$ was conducted photogenerated hydrogen without Pt co-catalyst or methanol as electro donors. From Fig. 6D (the corresponding results were listed in Table S3), we could see that with methanol but not Pt, there was no observable hydrogen generation be detected using pure g-C₃N₄ as photocatalyst under visible light irradiation. And the hydrogen production efficiency of g-C₃N₄/Ag₂CrO₄(23.1%) was reduced. While without any electron donors such as methanol, no H₂ is produced either using pure $g-C_3N_4$ or $g-C_3N_4/Ag_2CrO_4(23.1\%)$ as a catalyst.

To evaluate the stability and reusability of the $g-C_3N_4/Ag_2CrO_4$ nanocomposites, a recycling test of the $g-C_3N_4/Ag_2CrO_4(23.1\%)$ (5 h) was performed and the corresponding results were displayed in Fig. 6C and the corresponding results were listed in Table S2. The amount of H_2 produced increased steadily with an extension in the reaction time and no significant deactivation was observed after 5 cycles, indicating that the $g-C_3N_4/Ag_2CrO_4$ nanocomposites had high stability in the photocatalytic H_2 evolution. Furthermore, the XRD of $g-C_3N_4/Ag_2CrO_4(23.1\%)$ before and after H_2 production were shown as Fig. S6. It was seen that the peaks of the catalyst were similar, and the morphology was steady. Furthermore, there were no new peaks according to Pt appeared due to its low content. And the TEM of $g-C_3N_4/Ag_2CrO_4(23.1\%)$ after five cycles also indicated that Ag_2CrO_4 nanoparticless were still anchored on the surface of $g-C_3N_4$ (Fig. S7), suggesting a good stability of inherent structure for $g-C_3N_4$ and Ag_2CrO_4 nanoparticles. Such high stability might result from the formation of the heterostructure between $g-C_3N_4$ and Ag_2CrO_4 .

Charge transfer properties. As shown in Fig. 6, the Z-scheme nanocomposite formed between $g-C_3N_4$ and Ag_2CrO_4 dramatically enhanced the photocatalytic performance under visible-light irradiation. To explore

Figure 6. (A) Time courses of photocatalytic H_2 (B) the average rate of H_2 of (a) $g-C_3N_4$, (b) $g-C_3N_4/Ag_2CrO_4(9.1\%)$, (c) $g-C_3N_4/Ag_2CrO_4(16.7\%)$, (d) $g-C_3N_4/Ag_2CrO_4(23.1\%)$, (e) $g-C_3N_4/Ag_2CrO_4(28.6\%)$, (f) $g-C_3N_4/Ag_2CrO_4(33.3\%)$ and (g) Ag_2CrO_4 under visible light irradiation; (C) Recyclability of the $g-C_3N_4/Ag_2CrO_4(23.1\%)$ in five successive experiments for the H_2 evolution under visible light irradiation; (D) Time courses of photocatalytic H_2 (insert: the average rate of H_2) of (a) $g-C_3N_4$ with methanol without Pt, (b) $g-C_3N_4/Ag_2CrO_4(23.1\%)$ with methanol without Pt, (c) $g-C_3N_4$ without methanol with Pt, and (d) $g-C_3N_4/Ag_2CrO_4(23.1\%)$ without methanol with Pt.

Sample	Efficiency (µmol $h^{-1} g^{-1}$)	Co-catalyst (Pt)	Light source	Refrence
g-C ₃ N ₄ /InVO ₄	212	0.6%	>420 nm	ref. ⁵
g-C ₃ N ₄ /NiFe-LDH	24800	No	$\geq \! 420nm$	ref. ⁶
GCN/NT NFs	8931.3	A certain amount	simulated solar light	ref. ¹⁵
CdS/Au/g-C ₃ N ₄	19	No	>420 nm	ref. ¹⁶
Fe ₂ (MoO ₄) ₃ /g-C ₃ N ₄	0.18	No	>420 nm	ref. ¹⁷
Au/SnO ₂ /g-C ₃ N ₄	770	No	>400 nm	ref. ²¹
Au/PtO/g-C ₃ N ₄	16.9	No	>400 nm	182 ²²
TiO ₂ /g-C ₃ N ₄	74.7	0.5%	>400 nm	ref. ²³
$MoS_2/g-C_3N_4$	231	1%	>400 nm	ref. ²⁴
g-C ₃ N ₄ /Au/P25	259	No	simulated solar light	ref. ²⁵
Fe/P-g-C ₃ N ₄	150.6	No	>400 nm	ref. ²⁶
g-C ₃ N ₄ /WS ₂	101	No	$\geq \! 420nm$	ref. ²⁷
Ag ₂ S/g-C ₃ N ₄	200	No	=420 nm	ref. ²⁸
g-C ₃ N ₄ /TiO ₂	559.7	No	Full light	ref. ²⁹
g-C ₃ N ₄ /Ag ₂ CrO ₄	902.1	0.6%	$\geq \! 420nm$	Our work

 $\label{eq:comparison} \begin{array}{l} \textbf{Table 1.} & \text{Comparison of the photocatalytic } H_2 \ \text{production rate reported in the literatures with Z-scheme } g-C_3N_4/Ag_2CrO_4 \ \text{in our work with methanol as sacrificial agent under visible light irradiation.} \end{array}$

the effect of silver chromate on separation efficiency of the photogenerated electron-hole pairs on the $g-C_3N_4$, PL spectra for the $g-C_3N_4$, $g-C_3N_4/Ag_2CrO_4$ and Ag_2CrO_4 samples were provided in the range of 400–600 nm and the results were displayed in Fig. 7A. Since PL emission spectra derived from the recombination of free carriers,

Figure 7. (A) Photoluminescence spectra of (a) $g-C_3N_4$, (b) $g-C_3N_4/Ag_2CrO_4(9.1\%)$, (c) $g-C_3N_4/Ag_2CrO_4(16.7\%)$, (d) $g-C_3N_4/Ag_2CrO_4(23.1\%)$, (e) $g-C_3N_4/Ag_2CrO_4(28.6\%)$, (f) $g-C_3N_4/Ag_2CrO_4(33.3\%)$ and (g) Ag_2CrO_4 ; (B) Time-resolved photoluminescence spectra for (a) $g-C_3N_4$, (b) $g-C_3N_4/Ag_2CrO_4(23.1\%)$; (C) it of (a) $g-C_3N_4$, (b) $g-C_3N_4/Ag_2CrO_4(9.1\%)$, (c) $g-C_3N_4/Ag_2CrO_4(16.7\%)$, (d) $g-C_3N_4/Ag_2CrO_4(23.1\%)$; (e) $g-C_3N_4/Ag_2CrO_4(28.6\%)$, (f) $g-C_3N_4/Ag_2CrO_4(28.6\%)$, (f) $g-C_3N_4/Ag_2CrO_4(28.6\%)$, (g) $g-C_3N_4/Ag_2CrO_4(28.6\%)$, (h) $g-C_3N_4/Ag_2CrO_4(33.3\%)$ and (h) gAg_2CrO_4 .

it was generally accepted that the PL spectrum with low intensity indicated efficiently separation of the charge carriers, leading to participation of more electrons and holes in the oxidation and reduction reactions. It could be observed that all of the samples had similar spectra in this range. It was clear to see that the bare $g-C_3N_4$ had a wide and strong peak around 450 nm. However, there was a considerable decrease in the intensity of the PL spectrum for the g-C₃N₄/Ag₂CrO₄ nanocomposites compared to that of the pure g-C₃N₄. Hence, the photogenerated electron-hole pairs could migrate easily between g-C₃N₄ and Ag₂CrO₄, due to the matching band potentials^{30,69}. It was noted that the $g-C_3N_4/Ag_2CrO_4(23.1\%)$ sample showed the weakest emission intensity, meaning that it had the lowest recombination rate of the photogenerated charge carriers and the highest photocatalytic activity compared with other composites. Additionally, it was worth noting that the peaks density of PL first declined, then increased along with the further increasing content of Ag_2CrO_4 . That was excess Ag_2CrO_4 species increased the recombination rate of photogenerated charge carriers, leading to inferior photocatalytic efficiency, arising from the excess Ag₂CrO₄ species might agglomerate seriously leading to decrease of the combinations between counterparts of the nanocomposite and acted as a recombination center and thereby reducing the efficiency of charge separation⁷⁰⁻⁷². The time-resolved photoluminescence spectra for $g-C_3N_4$ and $g-C_3N_4/Ag_2CrO_4(23.1\%)$ were tested and shown in Fig. 7B. It could be clearly observed that $g-C_3N_4/Ag_2CrO_4(23.1\%)$ showed longer decay time value compared to pure $g-C_3N_4$ which could be ascribed to the effective charge transfer across the interface of $g-C_3N_4$ and $Ag_2CrO_4^{73}$.

Consequently, we recorded the transient photocurrent responses of the pure g-C₃N₄, g-C₃N₄/Ag₂CrO₄ nanocomposite and Ag₂CrO₄ under dark conditions and visible light irradiation. Fig. 7C showed a comparison of the photocurrent-time curves for photocatalysts, with three on-off intermittent irradiation cycles. It was widely considered as the most efficient evidence for explaining the electrons and holes separation in the composite photocatalysts^{38,74,75}. Generally, the corresponding relationship was recognized as follows: the higher photocurrent implied the higher electrons-holes separation efficiency, thus leading to the higher photocatalytic activity. It was clear that the photocurrent densities rapidly decreased to zero as soon as the lamp was turned off, and that the photocurrent densities maintained stable values when the lamp was turned on, indicating a rapid photocurrent response to the on-off intermittent irradiation. It could be obviously seen that the photocurrent responses of the $g-C_3N_4/Ag_2CrO_4$ nanocomposites were increased significantly in comparison with that of pure $g-C_3N_4$, indicating a higher separation and transfer efficiency of the photogenerated electron-hole pairs under visible light irradiation, and hence higher photocatalytic activity. Additionally, it was worth noting that the photocurrent density first increased, then declined along with the increasing content of Ag₂CrO₄, which was in well accordance with the above PL results. This provided further evidence to support the above PL results. Hence, the abovementioned results obviously confirmed the superior charge transfer and recombination inhibition in the g-C₃N₄/Ag₂CrO₄ composites in comparison with only g-C₃N₄, demonstrating that the introduction of Ag₂CrO₄ could effectively enhance the separation and transfer efficiency of photogenerated electron-hole pairs of $g-C_3N_4$, which could improve the photocatalytic performance.

Mechanism of enhanced photoactivity. As far as bare $g-C_3N_4$ was concerned, normally, the photogenerated electron-hole pairs quickly recombined and only a fraction of them participated in water splitting reaction, resulting in low photocatalytic activity^{5,6,15,21}. Based on the above analysis of the experiment and characterization results, the possible photocatalytic reaction mechanism and electron transfer processes of the $g-C_3N_4/Ag_2CrO_4$ nanocomposites were proposed (Fig. 8). The conduction band potential (E_{CB}) and valence band potential (E_{VB}) of the semiconductors could be calculated by the following empirical equations⁷⁶:

$$E_{CB} = X - E^{e} - \frac{1}{2}E_{g}$$
(2)

$$E_{VB} = E_{CB} + E_g \tag{3}$$

where X was the absolute electronegativity of the semiconductor, which is the geometric mean of the electronegativity of the constituent atoms, and the values of the X for $g-C_3N_4$ and Ag_2CrO_4 are 4.72 eV and 5.83 eV,

1

 $\label{eq:Figure 8. Schematic representation of the charge generation, migration and hydrogen production mechanism of Z-scheme g-C_3N_4/Ag_2CrO_4 nanocomposites.$

respectively^{52,77}. E^e was the energy of free electrons on the hydrogen scale (~4.50 eV vs NHE). Therefore, the E_{CB} potentials of g-C₃N₄ and Ag₂CrO₄ were -1.15 eV and +0.46 eV, and corresponding E_{VB} potentials could be estimated to be +1.58 eV and +2.20 eV, respectively. The values of VB for g-C₃N₄ and Ag₂CrO₄ were also obtained by XPS and the results for them were 1.60 eV and 2.20 eV respectively (shown as Fig. S3), which were similar with the results of calculation ones. Under visible light irradiation, Ag₂CrO₄ and g-C₃N₄ were both excited and yield electron-hole pairs. According to the double-charge transfer theory (as shown in Fig. 8a)⁷⁸⁻⁸⁰, the photo-generated electrons of g-C₃N₄ would migrate to the conduction band (CB) of Ag₂CrO₄ and focused on the Pt nanoparticales, then the holes of Ag_2CrO_4 would transfer to the valence band (VB) of g- C_3N_4 , because the VB and CB potentials of Ag_2CrO_4 were both lower than those of $g-C_3N_4$. However, if the composites followed the double charge transfer theory, the electrons in the CB of Ag₂CrO₄ could not reduce H⁺ to generate H• due to the CB potential of Ag_2CrO_4 (0.46 eV/vs. NHE) was higher than E_0 (H⁺/H₂) (0 eV/vs. NHE). Therefore, a Z-scheme mechanism was proposed based on the above analysis. As illustrated in Fig. 8b, the photo-generated electrons on the CB of Ag_2CrO_4 could easily transfer to the VB of $g_2C_3N_4$ and reacted with the holes of $g_2C_3N_4$, effectively inhibiting the electron-hole pairs recombination in both Ag₂CrO₄ and g-C₃N₄, prolonging the lifetime of the photogenerated electrons on the CB of $g-C_3N_4$ and the photogenerated holes on the VB of Ag₂CrO₄, so enhancing the interfacial charge transfer. Furthermore, Pt as co-catalyst could accept and transfer electrons and functioning as an effective hydrogen evolution promoter for g-C₃N₄. In such a way, the photogenerated electrons and holes were efficiently separated by the Z-scheme charge transfer; it could be further confirmed by the PL spectra and photocurrent analysis. Subsequently, the photogenerated electrons left at the CB of g-C₃N₄ which have more negative potential than the standard redox potential of H⁺/H₂ (0 eV vs. NHE) could reduce H⁺ to yield H• which was the source to produce hydrogen. Holes stored in the VB of Ag₂CrO₄ could directly react with sacrificial agent (methanol).

Conclusion

In summary, an efficient visible-light-driven bio-inspired Z-scheme g-C₃N₄/Ag₂CrO₄ heterostructure nanocomposite had been successfully fabricated via a facile chemical precipitation method and was applied in the photocatalytic H₂ generation. The obtained g-C₃N₄/Ag₂CrO₄ photocatalysts exhibited excellent hydrogen evolution efficiency in comparing with the individual Ag₂CrO₄ and g-C₃N₄ under visible light irradiation ($\lambda \ge 420$ nm). The composite with the optimal mass ratio of 23.1% exhibited the highest photocatalytic activity, which could be achieved 902.1 µmol g⁻¹ h⁻¹. The enhanced photocatalytic activity ascribed to the formation of the Z-scheme g-C₃N₄/Ag₂CrO₄ heterostructures which possessed higher separation and transfer efficiencies of the photogenerated electron-hole pairs. Moreover, owing to the firmly combination between Ag₂CrO₄ and g-C₃N₄ in heterostructures, the photocorrosion of Ag₂CrO₄ nanoparticles was strongly suppressed. This study might help to understand the mechanism of the g-C₃N₄/silver composites and provided a new insight to the design of the Z-scheme heterostructures.

Experimental Section

Preparation. All reagents (except the urea was chemical grade) were analytical grade and used without further purification. The product of bulk $g-C_3N_4$ was obtained by a simple calcination method⁸¹. Typically, the precursor urea (10 g) was calcined at 600 °C for 4 h with a ramp rate of 5 °C/min in a covered alumina crucible in order to prevent sublimation of urea and kept the calcinations took place in a static air atmosphere. The obtained light-yellow powder was washed and dried at 50 °C in a vacuum oven. After that the light-yellow products were milled into powder in an agate mortar for further experiments.

The g- C_3N_4/Ag_2CrO_4 composites were prepared by an *in-situ* chemical precipitation method under room temperature. Typically, 100 mg as-prepared g- C_3N_4 samples were immersed into 40 mL ultra-pure water and ultrasonically dispersed for 15 min. After that, 17.6 mg of K₂CrO₄ was added to the suspension under stirring at room temperature for 1 h, and then was treated using ultrasonic treatment for 1 h to ensure that CrO_4^{2-} was fully adsorbed on the surface of g- C_3N_4 sheets. After wards, an aqueous solution of AgNO₃ (30.8 mg in 20 mL of water) was drop wise added to the suspension under stirring. After stirring for another 2 h, the precipitate was collected

by centrifugation and washed with ethanol and water for several times, and dried at 60 °C for 12 h under vacuum condition. Finally, the g- C_3N_4/Ag_2CrO_4 composite with a theoretical weight ratio of Ag_2CrO_4 to $g-C_3N_4$ at 30:100 was prepared and named as $g-C_3N_4/Ag_2CrO_4(23.1\%)$. The $g-C_3N_4/Ag_2CrO_4$ composites with different mass ratios were fabricated by changing the addition amount of $AgNO_3$ and K_2CrO_4 solution. The samples were marked as $g-C_3N_4/Ag_2CrO_4(9.1\%)$, $g-C_3N_4/Ag_2CrO_4(16.7\%)$, $g-C_3N_4/Ag_2CrO_4(28.6\%)$, and $g-C_3N_4/Ag_2CrO_4(33.3\%)$. The Ag_2CrO_4 was synthesized by the similar method but without $g-C_3N_4$.

Characterization. The phase structures were analyzed by X-ray diffraction (XRD) with a powder diffractometer (XRD-6000, Shimadzu, Japan). The topographies were observed by using transmission electron microscopy (TEM, Tecnai G² 20 S-TWIN, FEI, America). Energy dispersive spectroscopy (EDS) was obtained from a scanning electron microscopy (JSM 7500F, Japan Electron Optics Laboratory Co., Ltd., Japan) equipped with EDS attachment (INCA Energy 250, Oxford, America). Chemical compositions of the samples were also analyzed using X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher, America). Uv-visible diffuse reflectance spectra (UV-vis DRS) were collected on a spectrophotometer (UV-3600, Shimadzu, Japan). Fourier-transform infrared (FT-IR) spectra were obtained on a FT-IR spectrophotometer (Nicolet iS10 IR, Thermo Scientific, America). Photoluminescence (PL) spectra were recorded on a fluorescence spectrometer (F-4500, Hitachi, Japan) with photomultiplier tube voltage of 400 V and scanning speed of 240 nm/min. The photocurrent experiments were performed on an electrochemical workstation (CHI 660D, Shanghai Chen Hua Instrument Co., Ltd., China) in a standard three-electrode system with Pt plate and Ag/AgCl (saturated KCl) electrode as counter electrode and reference electrode, respectively. A solar simulator illumination (CXE-350, Beijing Aodite Photoelectronic Technology Co., Ltd., China) at intensity of 100 mW cm⁻² was used. The working electrode was prepared as follows: 10 mg powder was dispersed ultrasonically in 0.5 mL of mixture solution (water: ethanol: Nafion (5%) = 230:250:20). Then, $20\,\mu$ L of the resulting colloidal dispersion $(20\,\text{mg/mL})$ was drop-cast onto a piece of ITO with a fixed area of $1 \text{ cm} \times 1 \text{ cm}$, and the electrodes were dried under ambient for 4 h.

Photocatalytic activity of H₂ evolution. Photocatalytic H₂-evolution experiments were performed in a gas-closed circulation system (Labsolar-6A, Beijing Perfectlight Technology Co., Ltd., China) with a top-irradiation quartz vessel. In a typical experiment, 50 mg of the as-prepared photocatalyst was dispersed in 100 mL mixed solution containing 75 mL water and 25 mL methanol (with 10 mM NaHCO₃). 0.6% of co-catalyst Pt was deposited onto the surface of the photocatalyst by in-site photo-deposition when a certain amount of H₂PtCl₆ solution was added. Before irradiation, the air in the system was removed by a vacuum pump. A 300 W Xe lamp (light intensity: 200 mW cm⁻², Microsolar300, Beijing Perfectlight Technology Co., Ltd., China) with a 420 nm cut off filter was used as the visible light source. The produced hydrogen was *in situ* detected periodically using an online gas chromatograph (GC7900, Tech-comp Shanghai Co., Ltd., China) with argon as carried gas.

References

- 1. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 415, 353-358 (2001).
- 2. Zhu, Q. L. & Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. *Energ. Environ. Sci.* 8, 478–512 (2015).
- 3. Edwards, P. P., Kuznetsov, V. L., David, W. I. F. & Brandon, N. P. Hydrogen and fuel cells: towards a sustainable energy future. *Energ. Policy* 36, 4356–4362 (2008).
- Satyapal, S., Petrovic, J., Read, C., Thomas, G. & Ordaz, G. The U.S. department of energy's national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements. *Catal. Today* 120, 246–256 (2007).
- 5. Hu, B. *et al.* Hydrothermal synthesis g-C₃N₄/Nano-InVO₄ nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation. *ACS Appl. Mater. Inter.* **7**, 18247–1825 (2015).
- Nayak, S., Mohapatra, L. & Parida, K. Visible light-driven novel g-C₃N₄/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J. Mater. Chem. A 3, 18622–18635 (2015).
- 7. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).
- 8. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. PNAS 103, 15729–15735 (2006).
- 9. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 112-112 (2009).
- 10. Turner, J. A. Sustainable hydrogen production. Science 305, 972-974 (2004).
- 11. Hou, Y. D. *et al.* Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. *Nat. Mater.* **10**, 434–438 (2011).
- 12. Laursen, A. B., Kegnæs, S., Dahl, S. & Chorkendorff, I. Molybdenum sulfides-efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution. *Energ. Environ. Sci.* 5, 5577–5591 (2012).
- Morales-Guio, C. G., Stern, L. A. & Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. *Chem. Soc. Rev.* 43, 6555–6569 (2014).
- Faber, M. S. & Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. *Energ. Environ. Sci.* 7, 3519–3542 (2014).
- Han, C. et al. In situ synthesis of graphitic-C₃N₄ nanosheet hybridized N-doped TiO₂ nanofibers for efficient photocatalytic H₂ production and degradation. Nano Res. 8, 1199–1209 (2014).
- Ding, X. L. *et al.* Enhanced photocatalytic H₂ evolution over CdS/Au/g-C₃N₄ composite photocatalyst under visible-light irradiation. *APL Mater.* 3, 104410 (2015).
- Yu, J. X. *et al.* Novel Fe₂(MoO₄)₃/g-C₃N₄ heterojunction for efficient contaminant removal and hydrogen production under visible light irradiation. *Sol. Energy* 139, 355–364 (2016).
- 18. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. *Nature* 238, 37–38 (1972).
- 19. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511-518 (2012).
- 20. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. *Chem. Soc. Rev.* **43**, 7520–7535 (2014).
- Zada, A. et al. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C₃N₄ by well designed nanocomposites with plasmonic Au and SnO₂. Adv. Energy Mater. 6, 1601190 (2016).
- Jiang, J., Yu, J. G. & Cao, S. W. Au/PtO nanoparticle-modified g-C₃N₄ for plasmon-enhanced photocatalytic hydrogen evolution under visible light. J. Colloi Inter. Sci. 461, 56–63 (2016).
- Yan, H. J. & Yang, H. X. TiO₂-g-C₃N₄ composite materials for photocatalytic H₂ evolution under visible light irradiation. J. Alloy. Compd. 509, L26–L29 (2011).

- 24. Ge, L., Han, C. C., Xiao, X. L. & Guo, L. L. Synthesis and characterization of composite visible light active photocatalysts MoS₂-g-C₃N₄ with enhanced hydrogen evolution activity. *Int. J. Hydrogen Energ.* **38**, 6960–6969 (2013).
- Zhao, W. R. et al. Enhanced photocatalytic activity of all-solid-state g-C₃N₄/Au/P25 Z-scheme system for visible-light-driven H₂ evolution. Int. J. Hydrogen Energ. 41, 6277–6287 (2016).
- Hu, S. Z. et al. Enhanced visible light photocatalytic performance of g-C₃N₄ photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci. 311, 164–171 (2014).
- Akple, M. S. *et al.* Enhanced visible light photocatalytic H₂-production of g-C₃N₄/WS₂ composite heterostructures. *Appl. Surf. Sci.* 358, 196–203 (2015).
- Jiang, D. L., Chen, L. L., Xie, J. M. & Chen, M. Ag₂S/g-C₃N₄ composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag₂S formed by simultaneous photodeposition. *Dalton T.* 43, 4878–4885 (2014).
- Wang, J. X., Huang, J., Xie, H. L. & Qu, A. L. Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method. Int. J. Hydrogen Energ. 39, 6354–6363 (2014).
- 30. Zhou, P., Yu, J. G. & Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920-4935 (2014).
- 31. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Chem. Res. 28, 141–145 (1995).
- 32. Kothe, T. *et al.* Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. *Angew. Chem. Int. Edit.* **52**, 14233–14236 (2013).
- 33. Bard, A. J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J. Photochem. 10, 59-75 (1979).
- Hagiwara, H., Inoue, T., Ida, S. & Ishihara, T. Long-time charge separation in porphyrin/KTa(Zr)O₃ as water splitting photocatalyst. *Phys. Chem. Chem. Phys.* 13, 18031–18037 (2011).
- Sasaki, Y., Nemoto, H., Saito, K. & Kudo, A. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J. Phys. Chem. C 113, 17536–17542 (2009).
- Liu, C., Tang, J. Y., Chen, H. M., Liu, B. & Yang, P. D. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. *Nano Lett* 13, 2989–2992 (2013).
- Yu, J. G., Wang, S. H., Low, J. X. & Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C₃N₄-TiO₂ photocatalysts for the decomposition of formaldehyde in air. *Phys. Chem. Chem. Phys.* 15, 16883–16890 (2013).
- Ye, R. et al. Fabrication of CoTiO₃/g-C₃N₄ hybrid photocatalysts with enhanced H₂evolution: Z-scheme photocatalytic mechanism insight. ACS Appl. Mater. Inter. 8, 13879–13889 (2016).
- Martin, D. J., Reardon, P. J. T., Moniz, S. J. A. & Tang, J. W. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 136, 12568–12571 (2014).
- Katsumata, H., Tachi, Y., Suzuki, T. & Kaneco, S. Z-scheme photocatalytic hydrogen production over WO₃/g-C₃N₄ composite photocatalysts. RSC Adv. 4, 21405–21409 (2014).
- He, Y., Zhang, L., Teng, B. & Fan, M. New application of Z-Scheme Ag₃PO₄/g-C₃N₄ composite in converting CO₂ to fuel. *Environ. Sci. Technol.* 49, 649–656 (2015).
- Hong, Y. et al. In-situ synthesis of direct solid-state Z-scheme V₂O₅/g-C₃N₄ heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl. Catal. B-Environ. 180, 663–673 (2016).
- Bai, Y., Wang, P. Q., Liu, J. Y. & Liu, X. J. Enhanced photocatalytic performance of direct Z-scheme BiOCl-g-C₃N₄ photocatalysts. RSC Adv. 4, 19456 (2014).
- Liu, W., Shen, J., Yang, X., Liu, Q. & Tang, H. Dual Z-scheme g-C₃N₄/Ag₃PO₄/Ag₂MoO₄ ternary composite photocatalyst for solar oxygen evolution from water splitting. *Appl. Surf. Sci.* 456, 369–378 (2018).
- Chen, S., Hu, Y., Meng, S. & Fu, X. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C₃N₄-WO₃. Appl. Catal. B-Environ. 150-151, 564–573 (2014).
- Yu, W. et al. Direct Z-scheme g-C₃N₄/WO₃ photocatalyst with atomically defined junction for H₂ production. Appl. Catal. B-Environ. 219, 693–704 (2017).
- Wang, J. C. et al. Indirect Z-Scheme BiOI/g-C₃N₄ photocatalysts with enhanced photoreduction CO₂ activity under visible light irradiation. ACS Appl. Mater. Interfaces 8, 3765–3775 (2016).
- Li, M. et al. Highly selective CO₂ photoreduction to CO over g-C₃N₄/Bi₂WO₆ composites under visible light. J. Mater. Chem. A 3, 5189–5196 (2015).
- 49. Xu, D. F., Cao, S. W., Zhang, J. F., Cheng, B. & Yu, J. G. Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag₂CrO₄. *Beilstein J. Nanotech.* **5**, 658–666 (2014).
- 0. Xu, D. et al. Photocatalytic activity of Ag2Mo4 (M=Cr, Mo, W) photocatalysts. J. Mater. Chem. A 3, 20153-20166 (2015).
- Feizpoor, S., Habibi-Yangjeh, A. & Vadivel, S. Novel TiO₂/Ag₂CrO₄ nanocomposites: Efficient visible-light-driven photocatalysts with n-n heterojunctions. J. Photoch. and Photobio. A-Chem. 341, 57–68 (2017).
- Xu, D., Cheng, B., Cao, S. & Yu, J. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. *Appl. Cataly. B-Environ.* 164, 380–388 (2015).
- Pirhashemi, M. & Habibi-Yangjeh, A. Novel ZnO/Ag₂CrO₄ nanocomposites with n-n heterojunctions as excellent photocatalysts for degradation of different pollutants under visible light. J. Mater. Sci.-Mater. El. 27, 4098–4108 (2016).
- Dong, F. et al. In situ construction of g-C₃N₄/g-C₃N₄ metal-Free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Inter. 5, 11392–11401 (2013).
- 55. Luo, J. *et al.* Facile fabrication and enhanced visible-light photocatalytic activity of In₂O₃/Ag₂CrO₄ composites. *RSC Adv.* **6**, 52627–52635 (2016).
- Luo, J. et al. Enhanced photodegradation activity of methyl orange over Ag₂CrO₄/SnS₂ composites under visible light irradiation. Mater. Res. Bull. 77, 291–299 (2016).
- Sun, L. *et al.* Enhanced visible-light photocatalytic activity of g-C₃N₄–ZnWO₄ by fabricating a heterojunction: investigation based on experimental and theoretical studies. *J. Mater. Chem.* 22, 23428–23438 (2012).
- Li, H. et al. Synthesis and characterization of g-C₃N₄/Bi₂MoO₆ heterojunctions with enhanced visible light photocatalytic activity. Appl. Catal. B-Environ. 160-161, 89–97 (2014).
- Faisal, M. *et al.* Synthesis of highly dispersed silver doped g-C₃N₄ nanocomposites with enhanced visible-light photocatalytic activity. *Mater. Design* 98, 223–230 (2016).
- Yu, Q., Guo, S., Li, X. & Zhang, M. Template free fabrication of porous g-C₃N₄/graphene hybrid with enhanced photocatalytic capability under visible light. *Mater. Technol.* 29, 172–178 (2014).
- 61. Fu, Y. *et al.* Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. *Ind. Eng. Chem. Res.* **51**, 11700–11709 (2012).
- Ouyang, S. X. et al. Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of Ag-based oxides: AgAlO₂, AgCrO₂, and Ag₂CrO₄. J. Phys. Chem. C 112, 3134–3141 (2008).
- 63. Fu, Y. & Wang, X. Magnetically Separable ZnFe₂O₄-graphene catalyst and its high photocatalytic performance under visible light irradiation. *Ind. Eng. Chem. Res.* **50**, 7210–7218 (2011).
- Fu, Y., Xiong, P., Chen, H., Sun, X. & Wang, X. High photocatalytic activity of magnetically separable manganese ferrite-graphene heteroarchitectures. *Ind. Eng. Chem. Res.* 51, 725–731 (2012).
- 65. Ge, L. *et al.* Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C₃N₄ coupled with CdS quantum dots. *J. Phys. Chem. C* **116**, 13708–13714 (2012).

- Li, X. K. & Ye, J. H. Photocatalytic degradation of rhodamine B over Pb₃Nb₄O₁₃/fumed SiO₂ composite under visible light irradiation. J. Phys. Chem. C 111, 13109–13116 (2007).
- Liu, Y. et al. Novel visible light-induced g-C₃N₄-Sb₂S₃/Sb₄O₅Cl₂ composite photocatalysts for efficient degradation of methyl orange. Catal. Commun. 70, 17–20 (2015).
- Godin, R., Wang, Y., Zwijnenburg, M. A., Tang, J. W. & Durrant, J. R. Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 139, 5216–5224 (2017).
- Deng, Y. et al. Facile fabrication of a direct Z-scheme Ag₂CrO₄/g-C₃N₄ photocatalystwith enhanced visible light photocatalytic activity. J. Mol. Catal. A-Chem. 421, 209–221 (2016).
- Pirhashemi, M. & Habibi-Yangjeh, A. Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag₂WO₄ nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J. Colloid Interf. Sci. 491, 216–229 (2017).
- Akhundi, A. & Habibi-Yangjeh, A. High performance magnetically recoverable g-C₃N₄/Fe₃O₄/Ag/Ag₂SO₃ plasmonic photocatalyst for enhanced photocatalytic degradation of water pollutants. *Adv. Powder Technol.* 28, 565–574 (2017).
- Shekofteh-Gohari, M. & Habibi-Yangjeh, A. Fe₃O₄/ZnO/CoWO₄ nanocomposites: Novel magnetically separable visible light-driven photocatalysts with enhanced activity in degradation of different dye pollutants. *Ceram. Int.* 43, 3063–3071 (2017).
- 73. Padhi, D. K., Parida, K. & Singh, S. K. Facile fabrication Of RGO/N-GZ mixed oxide nanocomposite for efficient hydrogen production under visible Light. *J. Phys. Chem. C* **119**, 6634–6646 (2015).
- 74. Dai, K., Lu, L. H., Liang, C. H., Liu, Q. & Zhu, G. P. Heterojunction of facet coupled g-C₃N₄/surface-fluorinated TiO₂ nanosheets for organic pollutants degradation under visible LED lightirradiation. Appl. Catal. B-Environ. 156–157, 331–340 (2014).
- Dai, K. et al. Plasmonic TiO₂/AgBr/Ag ternary composite nanosphere with heterojunction structure for advanced visible light photocatalyst. Appl. Surf. Sci. 314, 864–871 (2014).
- Chen, F. et al. Enhanced visible light photocatalytic activity and mechanism of ZnSn(OH)(6) nanocubes modified with AgI nanoparticles. Catal. Commun. 73, 1-6 (2016).
- Huang, L. Y. et al. Synthesis and characterization of g-C₃N₄/MoO₃ photocatalyst withimproved visible-light photoactivity. Appl. Sur. Sci. 283, 25–32 (2013).
- Xu, H. et al. Novel visible-light-driven AgX/graphite-like C₃N₄ (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B-Environ. 129, 182–193 (2013).
- Yue, D. et al. Enhancement of visible photocatalytic performances of a Bi₂MoO₆-BiOCl nanocomposite with plate-on-plate heterojunction structure. Phys. Chem. Chem. Phys. 16, 26314–26321 (2014).
- Wang, X. X., Chen, J., Guan, X. J. & Guo, L. J. Enhanced efficiency and stability for visible light driven water splitting hydrogen production over Cd_{0.5}Zn_{0.5}S/g-C₃N₄ composite photocatalyst. *Int. J. Hydrogen Energ.* 40, 7546–7552 (2015).
- Hong, J. D., Zhang, W., Wang, Y. B., Zhou, T. H. & Xu, R. Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: the role of carbon dioxide enrichment. *ChemCatChem* 6, 2315–2321 (2014).

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 21641006], the International Science and Technology Cooperation Program of China [grant number 2014DFA52820], the National Key Research and Development Program of China [2017YFA0206902] and the National Basic Research Program [grant number 2012CB720904].

Author Contributions

Y.C. and J.Z. supervised the project. Y.C. designed and carried out all experiments. B.L. and Q.Q. helped with the experiments in electrochemical test, and with the SEM measurements. H.C. helped with the TEM measurements. K.W. and Z.L. helped with the analysis of the experimental results. Y.C. wrote the manuscript with important input from all authors.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-34287-w.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018