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Thermal pace-of-life strategies 
improve phenological predictions in 
ectotherms
Quentin Struelens  1,2, François Rebaudo3, Reinaldo Quispe4 & Olivier Dangles2,5

Phenological variability among populations is widespread in nature. A few predictive phenological 
models integrate intrapopulational variability, but none has ever explored the individual strategies 
potentially occurring within a population. The “pace-of-life” syndrome accounts for such individual 
strategies, but has yet to be explored under a phenological context. Here we integrated, for the first 
time, the slow-fast thermal strategies stemming from the “pace-of-life” into a mechanistic predictive 
framework. We obtained 4619 phenological observations of an important crop pest in the Bolivian 
Andes by individually following 840 individuals under five rearing temperatures and across nine life 
stages. The model calibrated with the observed individual “pace-of-life” strategies showed a higher 
accuracy in phenological predictions than when accounting for intrapopulational variability alone. 
We further explored our framework with generated data and suggest that ectotherm species with 
a high number of life stages and with slow and/or fast individuals should exhibit a greater variance 
of populational phenology, resulting in a potentially longer time window of interaction with other 
species. We believe that the “pace-of-life” framework is a promising approach to improve phenological 
prediction across a wide array of species.

Over the last decades, climate change has induced an advance in phenological events for many plant and ani-
mal species1–3. Accurately predicting phenological changes is challenging because of the interactions between 
numerous causal factors driving phenological events4–6. Among these factors, phenological responses between 
individuals can account for a significant amount of variation in phenology within populations, even though this 
variation has seldom been studied7. A non-exhaustive review of existing literature (Supplementary Table S1) 
reveals that phenological differences between individuals are a widespread phenomenon across taxa, and are 
in part explained by the mosaic nature of the environment, with each individual experiencing a unique set of 
environmental conditions8,9. Inter-individual differences in phenology also occur under controlled conditions, 
suggesting that physiological drivers are also involved. In particular, inter-individual differences in development 
affect phenology because the duration of a life stage at the population level depends on (i) the inter-individual 
differences in synchrony of the life stage, and (ii) the inter-individual differences in time needed to complete the 
stage4,10. Even though some phenological models integrate intrapopulational variation in development11,12, none 
has ever explored the individual strategies potentially occurring within a population.

The “pace-of-life” (POL) syndrome postulates that a population can be divided into subpopulations with “fast” 
and “slow” individuals reflecting their life-history strategies and adaptations to different environmental condi-
tions13. Each pace displays several correlated traits, such as energy expenditure, growth rate or lifespan14. Such 
individual strategies in performance rate occurs in natural population and has been reported for several species of 
trees15, birds16,17, mammals18–20 and invertebrates21,22. However, POL strategies have seldom been applied to devel-
opment studies (but see22) as this requires the individual following of several populations over their entire life 
cycle. Life cycles of most organisms include different periods (referred as life stages) throughout their ontogeny, 
with stage-specific form, lifestyle, reproductive capacity, or physiology10,23,24. Thus, differences in development 
rate not only occur between individuals, but also between life stages within an individual’s life cycle. The POL 
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syndrome could be divided across the several life stages, with faster and slower individuals for a specific life stage. 
However, it is unclear whether the development strategies are consistent across life stages22. Surprisingly, little 
attention has been paid to the incorporation of POL strategies in phenological predictions, despite a novel focus 
on POL strategies in other performances15–21.

Inter-individual differences in thermal performances have been suggested as a source of the POL syndrome, 
through their effects on metabolism25. Ectothermic organisms are ideal models to study this relationship as envi-
ronmental temperature constrains several physiological performances including development that acts as a major 
determinant of the individual’s phenology26,27. Moreover, each life stage exhibits different ranges of performance 
responses to temperature (usually characterized by thermal performance curves) that reflects its adaptation to 
a specific habitat28. Even when experiencing constant temperatures, ectotherms show variability in emergence 
dates, owing to differences in development rate across individuals and life stages. However, when submitted to 
fluctuating temperatures, complex interactions can arise between the physiological differences and the tempera-
tures experienced, with potential lags and accelerations in development time between individuals10. Lag between 
individuals implies that different temperatures can be experienced during a specific development event, which 
has long-lasting consequences on future development and metabolism29,30.

We hypothesize that taking into account thermal POL strategies in development rate models would improve 
phenological predictions in ectotherms. To address this issue our objectives are to: (i) determine the occurrence 
of thermal POL strategies in development, (ii) develop and assess a new framework accounting for thermal POL 
strategies in phenological models, and (iii) explore the effect of population slow-fast strategies composition on 
phenological predictions.

We developed three individual-based models following a growing complexity, and compared them using real 
development data from Copitarsia incommoda. Model 1 employs the commonly-used thermal performance curve 
that estimates a continuous mean performance rate for the whole population31, resulting in identical phenology 
across individuals (Fig. 1A2). Model 2A overcomes this issue by capturing a range of development rates naturally 
occurring within a population (Fig. 1B). Finally, Model 2B accounts for individual slow-fast thermal strategies 
(Fig. 1C; see Methods for details about the models).

Results
Models’ predictions comparison: predicting the phenology of the quinoa moth. The proportion 
of individuals with slow and fast strategies within each population of C. incommoda was similar, and accounted 
for 37 to 59% of the population (18 to 29% for slow strategies and from 17 to 30% for fast strategies; Fig. 2). By 
accounting for these strategies, the predictive ability of Model 2B outperformed Model 2A in 89% of cases (Fig. 3, 
Supplementary Fig. S2), with an overlap varying between 0.09 and 0.89, whereas Model 2A outperformed Model 
2B in 15% of the cases with an overlap ranging from 0.36 to 0.79. The overall model performance increase was 
consistent across life stages, with a slight decrease in prediction for the first two life stages. Both models per-
formed similarly across rearing temperatures with the exception of the 30 °C population showing a lower mean 
overlap (0.5). Contrastingly, Model 1 outputs showed inaccurate predictions with a roots mean square error of 
phenological time reaching up to 25 days (Supplementary Table S3).

Phenological variance and windows of interaction. We found that the phenological variance (i.e. the 
distribution of emergence dates) for the last life stage increased with the proportion of slow and fast strategies 
occurring within the populations, and with the number of total life stages (Fig. 4). A population from a species 
with four life stages composed of 10% of fast and 10% of slow individual strategies showed a normalized phe-
nological variance of 0.1, whereas the normalized variance widened up to threefold when half of the individuals 
follows a fast strategy and the other half a slow strategy. A species with eight life stages experienced a similar 
threefold increase between 10–10% and 50–50% slow-fast strategies but with a wider overall variance (Fig. 4, 
Supplementary Fig. S3).

Discussion
By independently following the individuals of C. incommoda during their whole life cycle, our study revealed 
the occurrence of pace-of-life (POL) strategies in the development of an ectothermic species. The slow and fast 
individuals accounted for a large part of the population (between 59 and 36%), with a roughly equal repartition 
between slow and fast (Fig. 2). As reported in other studies32,33, our population was not composed solely of strict 
slow and fast individuals but also included individuals showing an intermediate strategy with a phenotype close 
to the average of the population. This was due to individuals shifting between slow and fast strategies between life 
stages (Fig. 2). The lack of repeatability for performances (e.g. metabolism, behavior) across life stages has been 
observed in species of mammals34, birds35, reptiles36, amphibians37 and arthropods38. The individual POL strat-
egies are more likely to switch between life stages with strong physiological differences, such as life stages before 
and after metamorphosis in amphibians or arthropods37,38. However, in the case of C. incommoda, we could not 
find any consistent patterns across individuals (Fig. 2). This result could be linked to the fact that the individ-
ual life-history has a strong impact on development compared to other performances that happen at a shorter 
timespan (e.g. locomotion). Moreover, because the life stage progress is linear, the inter-individual differences 
occurring at one life stage affect the outcome of the next life stage10. As the rearing temperatures were slightly 
fluctuating, differences in the temperatures experienced during early-life may have further affected the develop-
ment during subsequent life stages. These peculiarities of development compared to other performances further 
support the development of thermal performance probability models in phenology studies.

A high predictive ability under several thermal contexts was shown in Models 2A and 2B (Fig. 3). 
Nevertheless, Model 2B performed better by integrating the slow-fast strategies stemming from the POL than 
Model 2A that accounted for intra-populational variability in development rates alone (Fig. 3). Few phenological 
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models account for inter-individual differences in development to predict the range of phenological responses 
observed in nature12,39,40. To the best of our knowledge, this study is the first published to integrate the POL 
into an individual-based phenological modelling framework. The POL syndrome has been widely used to link 
an organism’s behavior with its metabolism20,41,42. Recently, is has been argued that this syndrome arises from 
lower level processes such as thermal physiology25 and that it is relevant at the individual level14. We showed 
that the inter-individual differences and the POL strategies are also relevant to predict phenology. The accurate 
quantitative predictions generated by our model strongly supports the importance of POL strategies as a driver 
of phenology43.

Our simulations suggest that the proportion of slow and fast individuals within a population of virtual ecto-
therms affects the phenology (c.f. distribution of individual emergence dates) of the population (Fig. 4). Larger 
proportions of slow or fast individuals increase the phenological variance, and the combination of slow and 
fast individuals further widen the variance (Fig. 4). The overall pattern arising from the simulation highlights a 
complementarity effect between the slow and fast strategies, which may have important ecological consequences. 
Indeed, the variance of a populational phenology delineates the potential interaction window with another spe-
cies, which often change in strength and type across ontogeny4. Therefore, a phenological mismatch between 
ontogenies can result in weaker or shorter interactions44, or even change the type of interactions between species 
(e.g. predation to competition)45. In this context, we suggest that populations with a higher proportion of slow 
and fast individuals are expected to be more resilient to temporal mismatches between species, as their phenolog-
ical window is wider. Our results also suggest that, for a given proportion of slow-fast individual, the number of 
life stages increases phenological variance (Fig. 4). As the number of life stages in ectothermic organisms shows 
a high variability across taxa23, temporal mismatch between species is likely to be stronger for species with fewer 

Figure 1. Model construction and theoretical predictions of the phenology of an ectotherm species (e.g., 
lizard, frog or moth) at different life stages (e.g., egg, pre-larva, larva and pupa) based on simulated thermal 
performance data and temperature time-series experienced over the life cycle. Model 1 fits a mean thermal 
performance curve (TPC) between temperature and species’ development rates for the four life stages (A), 
and then applies the TPC over a temperature time series (A1; circles, squares and triangles illustrate the 
correspondence between the TPC and the temperature time-series) to obtain the phenology of the four life 
stages (A2). Model 2A constructs a thermal performance probability (TPP) surface for the four life stages (B) 
and then applies the TPP over the same temperature time-series (B1) to obtain the population distribution of 
the phenology over time (B2), resulting in overlapping life stages over time (B1,B2). Model 2B applies the same 
TPP than Model 2A (B) over the temperature time series (B1) but takes into account slow-fast strategies in 
development among individuals (see text for details) to obtain population distribution of the phenology over 
time (B3). Note that species are represented for illustrative purpose and do not depict realistic development 
rates.
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life stages. Overall, a population with a high proportion of slow or fast individuals are likely to offer a wider inter-
action window, especially for a species with a high number of life stages.

Even though the proposed model captures a large part of the observed variation across individuals and show 
a high predictive ability, it should be assessed under natural conditions as discrepancies may occur between phe-
nology under controlled constant temperatures and natural fluctuating conditions46–48. Temperature fluctuations 
have different temporal scales, from diel changes up to climate change49. Spatial thermal heterogeneity due to 
biotic and abiotic factors also acts as a driver of thermal fluctuations experienced by small ectotherms moving 
across a mosaic of microclimates50. Therefore ectothermic animals can buffer thermal fluctuations by remaining 
in microhabitats near their optimal temperature51,52, or through behavioural thermoregulation53. A step further 
into the understanding and prediction of the inter-individual variations in phenology in natural habitat should 
integrate both these behavioural and spatial fluctuations in temperature.

Methods
Phenological models. Phenological predictions for a population of ectotherms (such as reptiles, amphib-
ians or arthropods; Fig. 1) can be modelled by (i) determining the development response of the population to 
temperature, and (ii) accumulating the development rate over a temperature time-series54. A standard approach 
to studying the relationship between development and temperature is carried out by measuring the development 
rate across a range of environmental temperatures under controlled conditions (i.e. rearing experiments). The 

Figure 2. Shifts in pace-of-life development strategies observed within the population of C. incommoda across 
life stages, for five populations reared at 13 °C, 18 °C, 20 °C, 25 °C and 30 °C. Each row represents an individual 
followed separately across all life stages (in column, E = eggs, and L1 to L6 = larval instars). A red square means 
that the individual development rate stands in the upper half (fast strategy) for the considered life stage, while 
the blue square stands in the lower half (slow strategy). We defined the slow individuals (29%, 19%, 18%, 24% 
and 22% of the populations reared at 13, 18, 21, 25, and 30 °C, respectively) and fast individuals (30%, 17%, 
19%, 20% and 22% of the populations reared at 13, 18, 21, 25, and 30 °C, respectively) as individuals that stayed 
within the same category at least five out seven life stages (separated by white spaces).
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performance rate typically rises slowly with increasing temperatures until it reaches a maximum performance 
and then drops more or less abruptly (Fig. 1A). The accumulation process for each individual consists of (i) 
following a temperature time series with a specific time step (Fig. 1A1,B1), (ii) retrieving the development rate 

Figure 3. Best overlap scores between predicted and observed phenology distributions of C. incommoda life 
stages at five temperatures. White circles indicate situations where Model 2A outperformed Model 2B, blue 
circles the opposite situation. Overlap score varies between 0 (no overlap) and 1 (complete overlap) and is 
proportional to the circles radius. L1-L6 = larval instars. P = pupa. NA = situation where the evaluation data 
consisted of a unique mean value, impeding the computation of an overlap score.

Figure 4. Predicted phenological variance (colours) for populations with different compositions of pace-of-
life strategies (slow-fast developmental rates). Simulations were performed using Model 2B, with a virtual 
ectotherm species showing four (A), and eight (B) life stages. Development rates were generated under constant 
temperatures. Each value for the combination of slow and fast strategies represent the mean of 30 runs with 100 
individuals.



www.nature.com/scientificreports/

6SCIENtIFIC REPORTS |         (2018) 8:15891  | DOI:10.1038/s41598-018-34274-1

corresponding to the temperature at one discrete-time frame (triangles, squares and circles in Fig. 1A,A1), (iii) 
multiplying the development rate by the time step, (iv) accumulating the development rate until the next life stage 
is reached (e.g. juvenile lizard, tadpole and insect larva in Fig. 1A2), and (v) recording the time elapsed during the 
whole accumulation process (Fig. 1A2,B2,B3). The modelling steps are then repeated along the life stages (colours 
in Fig. 1) and individuals (to obtain the distributions of phenology in Fig. 1A2,B2,B3). Starting with this general 
framework, we propose increasingly complex models by deepening the underlying hypotheses behind the ther-
mal characterization and the development accumulation processes. Our models account for phenological events 
during growth, but set aside the seasonal timing of such events.

Model 1 – The commonly used thermal performance curve. Model 1 employs the commonly-used 
thermal performance curve (TPC) that allows estimating a continuous mean performance rate for the whole 
population31. The fitting process can be achieved by using simple or more complex models31. Once the TPC 
for development has been characterized, a development rate can be determined at any temperature within the 
thermal limits of the species (Fig. 1A1,A2). However, because the TPC offers a mean development rate response 
(Fig. 1A1), the dates of emergence for every life stages are identical across individuals (Fig. 1A2).

Model 2A – Thermal performance probability. Model 2A is motivated by the fact that development 
occurs at longer time scales than other performances (e.g. locomotion). Indeed, for a given life stage, development 
rate cannot be measured at different temperatures on the same individual, which impedes the application of mod-
els quantifying within versus between individuals variances55,56. We chose a modelling approach easily integrated 
into the well-established performance accumulation models from TPC27. Instead of fitting a curve close to the 
mean of population measurements at various discrete temperatures, we propose to fit a mixture distribution of 
development responses at each discrete temperature11 (Supplementary Fig. S1). Finite mixture distributions are 
commonly used to identify sub-populations within a population57. These models assume that the sample obser-
vations randomly arise from two or more distributions with certain probabilities. Suppose that = ...X X X( , , )n1  
is a random sample of size n from the mixed population, with a density function of Xi given by f(Xi). In a generic 
case, X is assumed to have arisen from a mixture distribution with two components (K = 2) following normal 
distributions. Therefore, the density of Xi is given by:
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Where λk is the weight, μk is the mean, and σk
2 the variance of normal component k. We used an expectation–

maximization (EM) algorithm to identify the mixture distribution parameters at the discrete known tempera-
tures. The EM algorithm is decomposed in two steps, the expectation (E) step based on Baye’s theorem and the 
maximization (M) step (normalmixEM function from the mixtools R package)57. Several studies suggested that 
the distribution of development rates within a population follows a Weibull40 or a log-normal distribution11. 
However, following our pace-of-life hypothesis, we decided to fit a mixture of two normal distributions (i.e. slow 
and fast individuals). We found higher log likelihood scores for mixture distributions (i.e. bimodal distributions) 
than for Weibull and lognormal distributions in 42 out of 45 cases (Supplementary Table S2), therefore support-
ing our hypothesis.

To determine development rate distributions between the measured temperatures, we interpolated the normal 
distributions’ parameters (mean, standard deviation, and weight) to obtain a continuous response over the whole 
range of temperatures (Supplementary Fig. S1). Each parameter (p) from the mixture distributions was interpo-
lated between two known development distributions at consecutive temperatures with the following expression:
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Where T1 is the lower temperature at which parameter pT1
 is known, T2 the higher temperature limit for the inter-

polation at which parameter pT1
 is known, and Tx corresponds to the temperature at which the parameter (p(Tx)) 

has to be determined. The parameters interpolation is then repeated for every parameter (λk, μk, and σk
2) and for 

the two normal components of the mixture distribution. We assumed that a linear interpolation would offer a 
sufficient fit if the number of rearing temperatures is high and evenly distributed across the thermal range. 
However, if the number of temperatures is low or does not incorporate the thermal limits, we advise using a 
non-linear interpolation based on one of the TPC models available, allowing to determine the thermal limits.

We named the resulting probability surface the Thermal Performance Probability (TPP), which is depicted 
graphically as a heat map with its area delimiting the response space, and the colour density representing the 
probability of the response (Fig. 1B, Supplementary Fig. S1). During the development accumulation process, 
more than one development response is possible at a given temperature, and the determination of this develop-
ment rate is performed by drawing one value from the mixture distribution. This approach allows capturing a 
range of theoretical responses naturally occurring within a population (Fig. 1B). It results in a distribution of phe-
nology for each life stage overlapping each other, with potential accelerations or buffering effects (Fig. 1B1,B2,B3).

Model 2B – Thermal performance probability with pace-of-life strategies. A limitation of Model 
2A is that one individual can exhibit development rates that vary from one extreme to another at two consecutive 
time frames within the same life stage, which may be unrealistic in natural populations, as suggested by the POL 
syndrome. To address this limitation, we implemented individual slow-fast strategies in Model 2B by dividing 
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the population in three subpopulations with slow, fast and intermediate individuals. Development rate for the 
intermediate individual was drawn from the whole mixture distribution (identical as Model 2A), while the devel-
opment rate for the slow and fast individuals was drawn from the first or second component distributions of the 
mixture distribution, respectively.

Study case. To compare and illustrate the three models, we used development data from the quinoa moth 
(Copitarsia incommoda), and predicted its phenology distributions for each life stage. C. incommoda is an impor-
tant pest of the quinoa crop (Chenopodium quinoa) and shows several characteristics representative of many spe-
cies across the world. First, it thrives in a thermal environment with strong daily fluctuations (pers. obs.). Because 
a trade-off exists between adaptations at high and low temperatures, a high variability in performance responses 
to temperature is expected within and among the populations27. Second, the quinoa moth has numerous life 
stages (egg, six larval instars, pupa and adult) and each life stage has a particular thermal environment, which may 
trigger variable development rates across life stages58. Third, the quinoa moth lives in an environment with virtu-
ally unlimited food supply, which lowers the importance of this confounding factor on development. We reared 
each C. incommoda individual from each population in separate containers with identical thermal conditions to 
daily follow its development. By doing so, we were able to identify potential slow-fast strategies occurring among 
individuals and calibrated the models accordingly. We then compared models’ predictions with the observed 
phenology using a cross-validation approach.

To obtain data about the relationship between temperature and development, 960 eggs of C. incommoda were 
distributed among 8 rearing units with different temperatures spanning the range of temperatures in natural 
conditions (mean temperatures of 5.1, 12.6, 18.1, 20.2, 24.8, 30.0, 33.2, and 34.6 °C and standard deviations of 1.5, 
1.3, 1.8, 2.2, 1.6, 1.0, 0.9, respectively, with 60 ± 5% relative humidity). We chose to create temperatures slightly 
fluctuating around a mean with low amplitude instead of strictly constant temperatures in order to stimulate the 
differences in development accumulation between individuals, without facing the issues of highly fluctuating 
temperatures48. Each rearing unit was checked once a day following a regular schedule, in which process life 
stage of each individual was individually followed (total of 4619 phenological measurements). Temperature in 
each rearing unit was measured every 30 minutes using temperature loggers (HOBO TidbiT v2 UTBI-001 from 
Onset) in order to feed the model with actual temperature time-series. Detailed information about the rearing 
experiments can be found in Rebaudo et al.58. The experiments complied with the Association for the Study of 
Animal Behaviour guidelines for the use of animals in research59.

To construct the models and evaluate their predictions, the development rate dataset for each temperature was 
split into two datasets following the cross-validation approach7: a calibration dataset (70% of the observations) 
and an evaluation dataset (30%). The three models were fitted on the development rates of the eight populations 
from the rearing units at eight mean temperatures. However, we used only the five temperatures where egg mor-
tality was lower than 50% in the subsequent modelling steps (12.6, 18.1, 20.2, 24.8, 30.0 °C). We fitted Model 1 
for each life stage using the Lactin-1 model60 to obtain the predicted phenologies for each life stage and to com-
pare it to the observed one. All TPCs were computed using the devRate R package61,62. To construct Model 2B, 
we determined the empirical contribution of fast, slow, and intermediate individuals within each population by 
splitting the development range in two considering the median development value. We then followed each indi-
vidual from egg until the sixth (last) larval instar, and recorded in which category (i.e. slow, or fast or intermediate 
relative to the median) it fell at each life stage. We decided to attribute a slow or fast strategy to an individual 
considering its strategy consistency across life stages. To do so, we determined the proportion of fast and slow 
individuals in each population by separating i) the fast individuals that stayed in the upper category for at least 5 
out of 7 life stages (population reared at 13 °C = 30%, 18 °C = 17%, 21 °C = 19%, 26 °C = 20% and 30 °C = 22%) 
and ii) the slow individuals that stayed in the lower category for at least 5 out of 7 life stages (population reared at 
13 °C = 29%, 18 °C = 19%, 21 °C = 18%, 26 °C = 24% and 30 °C = 22%). We focused on the larval stages because of 
the high mortality during the subsequent life stages. The three models were run along five independent tempera-
ture time-series (time-step of 24 h). The goodness-of-fit between predicted and observed phenology distributions 
were evaluated differently for Model 1 and Models 2 according to their outputs. Model 1 was evaluated by com-
puting the Root Mean Squared Error between predicted and observed data as it does not account for variance in 
phenological outputs. Model 2A and 2B were evaluated by computing the overlap that accounts for the variance in 
the output. Measuring the overlap goes beyond comparing means and variances. An overlap of 1 means complete 
overlap between two distributions (i.e. perfect prediction), while an overlap value of 0 indicates an absence of 
overlap. The overlap estimator Dhat1 was used because most of our sample sizes were lower than 5063. The overlap 
were estimated for Model 2A and 2B using the overlapEst() function from the overlap R package64. All analyses 
were compiled with R 3.3.3.

Exploring the thermal performance probability framework. To explore how Model 2B parameters 
affect phenology patterns, we generated development data for a virtual species with a varying number of life 
stages (4 and 8) and slow and fast proportion in the population (0, 10, 20, 30, 40, and 50% for each strategy). The 
generated population of 100 individuals had an inter-individual variability in development rate with an identi-
cal TPP across life stages. The model was performed on generated constant temperature time-series. We then 
assessed the combined consequences of these parameter values on the variance of the phenology distribution 
for the last life stage of the whole population, based on 30 runs for each combination of slow and fast strategies.

Data Availability
All data and computer source code used to calibrate and run the models are accessible with the https://doi.
org/10.5281/zenodo.1421887.

http://dx.doi.org/10.5281/zenodo.1421887
http://dx.doi.org/10.5281/zenodo.1421887
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