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Data-driven Classification of the 
3D Spinal Curve in Adolescent 
Idiopathic Scoliosis with an 
Applications in Surgical Outcome 
Prediction
Saba Pasha  1,2 & John Flynn1,2

Adolescent idiopathic scoliosis (AIS) is a three-dimensional (3D) deformity of the spinal column. For 
progressive deformities in AIS, the spinal fusion surgery aims to correct and stabilize the deformity; 
however, common surgical planning approaches based on the 2D X-rays and subjective surgical 
decision-making have been challenged by poor clinical outcomes. As the suboptimal surgical outcomes 
can significantly impact the cost, risk of revision surgery, and long-term rehabilitation of adolescent 
patients, objective patient-specific models that predict the outcome of different treatment scenarios 
are in high demand. 3D classification of the spinal curvature and identifying the key surgical parameters 
influencing the outcomes are required for such models. Here, we show that K-means clustering of 
the isotropically scaled 3D spinal curves provides an effective, data-driven method for classification 
of patients. We further propose, and evaluate in 67 right thoracic AIS patients, that by knowing 
the patients’ pre-operative and early post-operation clusters and the vertebral levels which were 
instrumented during the surgery, the two-year outcome cluster can be determined. This framework, 
once applied to a larger heterogeneous patient dataset, can further isolate the key surgeon-modifiable 
parameters and eventually lead to a patient-specific predictive model based on a limited number of 
factors determinable prior to surgery.

Adolescent idiopathic scoliosis (AIS) is a three-dimensional (3D) deformity of the spinal column with an onset 
around puberty1–3. The pathomechanisms associated with the development and progression of the AIS remain 
unclear1,3, yet non-surgical and surgical treatment options have been proved effective to prevent the spinal 
deformity progression2. The most common surgical procedure, posterior spinal fusion, realigns a part or the 
entire spine and secures it with a metal rod posteriorly, resulting in ossification of the vertebral bodies and sta-
bilization of the curve4. The success of the surgical treatment of AIS is evaluated with function and mobility, 
patient’s postural balance, primary or compensatory curve progression, patients’ satisfaction, and quality of life 
at long-term follow-ups5–11.

In order to guide the surgical planning, including selecting the fusion levels, de-rotation of the spine, and 
imparting the sagittal curvature of the spine (kyphosis, lordosis), several guidelines based on the shape of the 
spine before surgery have been developed12–14. As the two- dimensional (2D) spinal X-rays remain the mainstay 
in clinical diagnosis of the AIS patients, the surgical decision making guidelines are mainly based on the 2D shape 
of the spine, resulting in potentially erroneous assessment of the curve15,16. Furthermore, identifying the curve 
types remain largely subjective, influenced by the observer interpretation, and inter-observer variability17–20. As 
a result, the surgical decision-making and the treatment outcome prediction of the scoliotic curves, particularly 
in patients who cannot easily be assigned to a specific group through the current classification systems, have been 
challenged by suboptimal outcomes21–23. To this date, an objective method that can describe the 3D outcome of 
the scoliosis surgery at long-term follow-ups by taking into consideration the pre-operative shape of the spine and 
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the surgical intervention has not been fully developed9. The successful prediction of the outcome can improve the 
patient satisfaction and reduces the costs and risks associated with a need for revision surgery24.

As the 3D curvature of the spine can explain a large amount of variability in the spinal alignment among the 
patients, a 3D classification of the overall spinal curve, as opposed to the segmental uni-planar measurements of 
the curve, can specify the true curvature of the spinal deformity in AIS patients. Similarly, the 3D surgical out-
come evaluation of spine can assure that the harmony of the spinal configuration in the three anatomical planes 
is not overlooked9. Patient classification based on the 3D spinal curve, both pre- and post-operatively, can reduce 
the errors associated with the subjective 2D classification by an objective use of the 3D overall shape of the spine.

The current study aims to develop an objective, data-driven framework for classification-based outcome pre-
diction of the spinal surgery in AIS. More specifically, the study herein focuses on determining pathways, com-
prised of the variables that can be identified prior to the surgery or modified during the surgery, and statistically 
examine the association of these pathways to the 3D shape of the spine at two-year follow-ups. The underlying 
assumption of this approach is that the biomechanical changes induced during the surgery can be described using 
a combination of the 3D shape of the spine at early post-operative and the location of the vertebral levels that are 
immobilized via a metal rod and are fused within two-year post-operative thus changing the mechanical behav-
iour of the spine in the instrumented section.

To identify these pathways and their relationships with the outcome of surgery, we hypothesize that the combi-
nation of the 3D curvature of the spine before surgery and the biomechanical impact of the surgery on the spinal 
alignment (the early post-operation 3D shape of the spine plus the fusion levels) can significantly determine the 
3D shape of the spine at two-year follow-ups in the AIS population (Fig. 1).

Methods
Patient population. A total number of 67 AIS with a main right thoracic curve (Lenke 1 and 2) age between 
10–18 years were selected consecutively and retrospectively. All patients were selected from one hospital center, 
the Children’s Hospital of Philadelphia, who underwent a posterior selective thoracic fusion with segmental dero-
tation of the vertebrae. All patients had biplanar spinal stereoradiography at three visits: the X-ray images were 
registered within one-week pre-operation (PO), early (within a month) post-operation (EP), and at two-year 
after surgery (2Y). The exclusion criteria were previous spinal surgery, vertebral supernumerary, neuromuscular 
conditions, and musculoskeletal conditions other than scoliosis. Twenty non-scoliotic adolescents verified by 

Figure 1. The framework for 3D classification, path assignment, and outcome determination: (A) the 3D 
reconstruction of the spine from bi-planar X-rays is generated. (B) The vertebral centroids are calculated. The 
spline is generated by linearly interpolating the T1 to L5 spinal vertebral centroids 3D positions and is scaled in all 
directions (i.e., isotropically) such that the unit height is achieved. (C) K-means clusters are used to group the pre-
operative (PO) 3D scaled spinal curves. Three clusters are identified in our cohort (see Methods). (D) I. Fusion 
levels (F) are specified based on the position of the upper and lower fused vertebrae (UIV and LIV). Six fusion 
levels are identified in our cohort. II. K-means clusters are used to group the early post-operative (EP) 3D scaled 
spinal curvatures. Two clusters are identified in our cohort. (E) K-means clusters are used to group the 3D scaled 
spinal curves at two-year follow-up (2Y). Three clusters are identified in our cohort. The assigned treatment path 
for one patient has been shown with solid lines, indicating that PO3-EP1-F6 path leads to 2Y1 cluster at two-year 
follow-up (see Methods). The sagittal, frontal, and axial views of the PO, EP, and 2Y clusters are shown in Fig. 3. 
The 3D shapes of these clusters are shown in Fig. 4.
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bi-planar spinal X-rays and clinical examinations retrospectively were included as the control group. The insti-
tutional review board (IRB) at the Children’s Hospital of Philadelphia approved the study procedures and the 
research was performed in accordance with the relevant guidelines and regulations. A waiver of consent/parental 
agreement was granted by the IRB.

Data collection and compilation. The 3D reconstruction of the spine was generated in a commercially 
available software, SterEOS 2D/3D (EOS imaging, Paris, France) for pre- and post-operative X-rays25,26. The 3D 
reconstruction of the vertebral bodies was used to calculate the 3D coordinates of the vertebral centroids (X, Y, Z)  
in the global coordinate system of the spine27. An isotropic scale factor, in three dimensions, was used to normal-
ize the spinal height [0–1] of each patient in the AIS cohort (Fig. 1). The same process, i.e., 3D reconstruction, 
center extraction, and scaling was performed for the control cohort. The Z levels of the average scaled spines in 
controls were used to interpolate the (X, Y) coordinate of the consecutive vertebral centroids in the AIS cohort, 
resulting in obtaining (X, Y) coordinates at equal Z levels for all the patients. This two-step normalization process 
was performed to scale all the spines in the Z-direction, eliminating to need to process the variabilities in the 
Z-direction and make comparison between the curves at the same Z-levels possible.

Patient classification. A K-means clustering method28 was used to cluster the 3D scaled scoliotic spines. 
Given that the Z coordinates of the T1-L5 spinal vertebrae for all patients are the same (as described above) the 
clustering is performed only on (X, Y) coordinates of the vertebrae of all patients. The number of clusters was 
determined by calculating the silhouette values using the Euclidian distances29. The K-means cluster analysis 
was performed on the scaled PO, EP, and 2Y spines resulting in determining clusters of patients at the three 
time-points.

The fusion levels i.e., the upper and lower instrumented vertebrae (UIV and LIV) were recorded. All fusion 
levels were determined and a group number was assigned to each distinct fusion level, i.e., same UIV and LIV. The 
treatment paths were then determined using the PO cluster number (POi), EP cluster number (EPj), and fusion 
level group (Fm), constructing a three-level path presented as POi-EPj-Fm (Fig. 1).

A multinomial regression30 model was used to predict the outcome cluster at two-year (2Yk) from the treat-
ment paths for the cohort as follows:

→( )f PO , EP, F 2Yi j m k

where i, j, k are the cluster number at each given time-point and m is the fusion group. The number of patients 
in each treatment path that had the same 2Yk was calculated to determine the occurrence of certain outcome for 
each of the identified treatment paths.

Figure 2. Visual presentation of the radiographic measurements of the spinal deformities that are being used 
for clinical evaluation of the patients. (A) In frontal view: proximal thoracic Cobb (PTC), main thoracic Cobb 
(MTC), lumbar Cobb (LC), and frontal balance (FB). (B) In sagittal view: T1-T4 and T1-T12 thoracic kyphosis 
(TK), lumbar lordosis (LL), pelvic incidence (PI), sacral slope (SS), pelvic tilt (PT), and sagittal balance (SB). 
(C) The 3D model of the spine is used for axial measurements of the curve: proximal thoracic rotation (apical) 
(PTR), main thoracic rotation (apical) (MTR), lumbar rotation (apical) (LR).
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Finally, to determine the differences between the clusters in terms of clinically measurable variables, the clin-
ical measurements of the patients at PO, EP, and 2Y were measured and compared between clusters at each 
time-point. These variables are the parameters that either can be directly measured on the spinal X-rays or via 
a commercial software (SterEOS 2D/3D, EOS imaging, Paris, France). The visual descriptions of each of these 
measurements are presented in Fig. 2. These clinical parameters are proximal thoracic Cobb (PTC), proximal tho-
racic rotation (apical) (PTR), main thoracic Cobb (MTC), main thoracic rotation (apical) (MTR), lumbar Cobb 
(LC), lumbar rotation (apical) (LR), thoracic kyphosis (TK both between T1-T12 and T4-T12), lumbar lordosis 
(LL), pelvic incidence (PI), sacral slope (SS), pelvic tilt (PT), frontal balance (FB), and sagittal balance (SB). Data 
normality was tested using the Shapiro-Wilk test and the sample size was determined for a test of comparison of 
the means between the clusters for a type I error of 0.05 and type II error of 90%.

Results
Three clusters are identified at POi, i = 1, 2, 3. The sagittal, frontal, and axial views of the spinal curvature in each 
cluster are shown in Fig. 3(A). The EPj spines are grouped in two clusters, j = 1, 2, Fig. 3(B). The spines at 2Yk 
follow-up are clustered into three groups, k = 1, 2, 3, shown in Fig. 3(C). Figure 4 shows an illustrative case in 3D 
for each of these curve types at different time-points.

Table 1 summarizes the average and standard deviation (SD) of the clinical parameters of the PO, EP, and 
2Y clusters. The statistical methods and the significant levels are shown in Table 1. Significant differences were 
observed between PO clusters in PTR, MTR, and TK, between EP clusters in MTC, LC, TK, and SB, and between 
2Y clusters in LC, LR, TK, and SB (Table 1).

The fusion levels and their assigned group number are listed in Table 2. A total number of 8 distinct fusion lev-
els are identified. Two patients were fused between T3-T11 vertebral levels and one between T2-T10 levels. Due 
to the small number of patients with these two fusion levels, these patients are removed from the analysis (total of 
3 patients). The remaining 64 patients and 6 fusion groups are included in the following analysis.

Classifying the 3D spinal curves into a limited number of PO and EP clusters, along with identifying a handful 
of distinct fusion levels provide the opportunity for identifying a limited number of treatment paths. Figure 1 
shows the framework for determining these treatment paths. A patient example is shown in Figure 1; the patient 

Figure 3. Groups identified using the K-means clustering analysis of the 3D spinal curvatures at three different 
time-points. The projections of the cluster centers of the spinal curves are shown in the sagittal, frontal, and 
axial planes for cluster 1 (red), cluster 2 (blue), and cluster 3 (green) at three different time-points (A) The pre-
operative (PO), (B) early post-operative (EP), and (C) two-year outcome (2Y). The PO 3D curve patterns are 
characterized as follows. These characteristics were in the sagittal view cluster 1: hypokyphotic range with no 
proximal kyphosis, cluster 2: normal-hypokyphotic range with no proximal kyphosis and a high inflection point 
(T11), cluster 3: normal-hypokyphotic range with proximal kyphosis and a lower level inflection point (L1). In 
frontal view cluster 1: balanced, cluster 2: unbalanced, and cluster 3: balanced. In the axial view cluster 1: closed 
V shape, cluster 2: V shaped, and cluster 3: S shaped. The two EP clusters in the three views are shown in (B). 
The sagittal characteristics of cluster 1 are flat, and of cluster 2 are normal-hypo kyphotic range with proximal 
kyphosis and a low-level inflection point (L1). The Frontal characteristics are as follows. Cluster 1: lateral 
shift and cluster 2: balanced. The axial characteristics are cluster 1: closed loop, cluster 2: S shape. The sagittal 
characteristics are: cluster 1: hyperkyphosis backward shift, for cluster 2: normal-hypo kyphotic, and for cluster 
3: flat. The frontal characteristics are cluster 1: unbalance, cluster 2: balance, and cluster 3: unbalance. The axial 
characteristics are cluster 1: S shaped, cluster 2: S shaped, cluster 3: S shaped-closed.
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belonged to cluster 3 at PO, was fused from T4 to L1 (Group 6, Table 2) and belonged to the cluster 1 at EP, thus 
was assigned to the treatment path PO3-FE1-F6. The two-year outcome cluster as determined by the 3D spinal 
curve belongs to cluster 2Y1. The number of patients in each 2Y outcome cluster for all the existing treatment 
paths are reported in Table 3.

In order to address whether the treatment paths can significantly predict the 2Y clusters, a multinomial logis-
tic regression was performed. The details of the multinomial logistic regression for association between the 
assigned treatment path (predictors) and the 2Y outcomes (predicted) are described in the Online Supplementary 
Information. Likelihood ratio tests of the regression model show significant association between the predicted 
and predictor variables, i.e., treatment paths and 2Y outcomes, χ2 = 132.52, p = 8.3825e-11.

The number of patients who belonged to the same treatment path and 2Y cluster are calculated in Fig. 5. In 
instances where different fusion groups resulted in the same 2Y outcomes, the fusion groups are merged. Out of 
the total number of 17 existing treatment paths, a total number of 10 paths had more than two patients (Fig. 5). 
These 10 treatment paths include 56 patients. At least 70% of the patients who belonged to each of these 10 treat-
ment paths had the same two-year outcome (Fig. 5). As an example, a total number of 6 patients belonged to the 
P3-FE1-F6 path (path 17), out of which 5 (83%) were clustered in 2Y1. The treatment path of these patients is also 
shown in Fig. 1.

Discussion
Spinal fusion in AIS aims to realign the vertebrae in order to reduce the frontal deformity and curve rotation 
while imparting adequate sagittal profile31. New surgical maneuvers and instrumentation techniques allow for 
greater deformity correction of the curve in the three anatomical planes32. While much emphasis has been put on 
the pre-operative shape of the spine to guide the surgical decision-making, it has not been quantitatively deter-
mined whether a pathway which incorporates both the objectively identified pre-operative shape of the spine and 
the biomechanical changes in the spinal curve during the surgery can determine the long-term outcomes of the 
operation in AIS patients.

The 3D analysis of the spine has shown promising results in terms of determining subgroups of patients 
pre-operatively33,34. Given the importance of the 3D spinal curvature in postural assessment of the AIS patient35,36, 
a low-dimensional model that facilitates comparison between the 3D spinal shapes can improve the curve 

Figure 4. 3D illustration of the clusters at pre-operative, early post-operative, and two-year follow-up.
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classification in AIS patients. The spinal evaluation in the three anatomical planes has underlined the parame-
ters associated with the surgical outcome in AIS, which were not evident via the 2D evaluation of the spine9,37. 
Moreover, considering the interconnection of the pre- and post-operative 3D shape of the spine and the surgical 
outcomes, in the current study, we developed a quantitative pathway (patent pending) that can determine the 
outcome of the spinal surgery in AIS as a function of the 3D pre-operative spinal curve patterns as well as the 
modifiable factors during the surgery.

Here, to explore such pathways: (1) an objective classification of the 3D spinal curve was developed, and (2) 
the minimum key surgical parameters were identified. Regarding (1), the advantage of the clustering method 
based on the 3D shape of the isotropically scaled spines as opposed to defining the curves, based on a number 
of geometrical variables is reduced computational time and error. This allows recognizing the 3D patterns of the 
spinal curvature as opposed to the previous methods that extracted 3D variables of the curve for classification 
purposes33. Regarding (2), the 3D shape of the spine early after surgery in addition to the fusion level was used for 
characterizing the surgically induced changes in the spine. Using (1) and (2) in conjunction, a low-dimensional 
framework for assigning the most plausible outcome in terms of the 3D spinal curvature was introduced and 
evaluated in a group of 64 AIS patients with a thoracic curve. This approach determined the 3D shape of the spine 
in two-year follow-ups in 88% of the patients with an accuracy of at least 70%.

Selecting the fusion level is an ongoing debate in the surgical treatment of AIS38–40. The current clinical clas-
sification system and its modified versions attempt to address this issue13,41,42, yet complications and negative 
outcomes have challenged the surgical decision-making based on this guidelines24,43,44. Because the fusion level 
impacts the cost and time of the surgery45,46, patient’s balance and posture after operation39,47, spinal flexibility, 
and disc degeneration41,48 a quantifiable standardized tool for choosing the fusion levels is of critical need. Our 
proposed method lays out a pathway for outcome determination based on the shape of the spine before and 
after the surgery as the fusion levels changes (Fig. 1). As the clustering of the 2Y outcomes clearly distinguishes 
poor outcomes in term of the sagittal and frontal imbalances and residual curve at two-year post-operative, 

PO PTC PTR MTC MTR LC LR TK T1-T12 TK T4-T12 LL L1-S1 PI SS PT FB SB

1 n = 24 6.6 ± 16.0 0.8 ± 0.5 57.6 ± 7.5 −8.4 ± 6.6 37.6 ± 6.5 8.1 ± 5.2 19.6 ± 10.6§ 7.6 ± 10.6§ 52.3 ± 11.4 54.7 ± 13.1 47.1 ± 9.1 7.6 ± 7.8 0.8 ± 22.1 0 ± 16.4§

2 n = 21 10.4 ± 16.8 0.0 ± 0.7 60.3 ± 10.3 −14.0 ± 7.0 42.1 ± 9.1 11.7 ± 5.3 32.6 ± 11.6* 19.2 ± 11.6 59.9 ± 9.9 51.0 ± 14.4 45.8 ± 11.0 5.2 ± 8.5 4.3 ± 19.8† −18 ± 18.4*

3 n = 19 16.5 ± 16.3 −4.0 ± 2.0*§ 58.9 ± 7.6 −4.6 ± 5.7§ 40.9 ± 6.7 6.4 ± 5.7 24.4 ± 11.5 18.5 ± 11.5 46.5 ± 9.2 45.0 ± 12.5 35.7 ± 9.0 9.3 ± 7.7 0.5 ± 20.2 −7 ± 18.8

P values — 0.034 — 0.046 — — 0.030 0.035 — — — — — —

EP PTC PTR MTC MTR LC LR TK T1-T12 TK T4-T12 LL L1-S1 PI SS PT FB SB

1 n = 41 1.6 ± 4.9 0 ± 0.1 13.5 ± 13.2§ 2.3 ± 6.9 14.3 ± 14.8§ 4.4 ± 5.6 27.1 ± 13.7 16.6 ± 9.3 45.3 ± 18.4 48.7 ± 20.3 37.5 ± 14.6 11.2 ± 8.4 6 ± 15.4 −8 ± 13.3§

2 n = 23 0 ± 1.8 0 ± 0.8 23.5 ± 14.3* 6.6 ± 7.0 23.2 ± 14.5* 9.0 ± 6.4 34.4 ± 13.0 26.0 ± 8.2* 54.8 ± 18.9 49.7 ± 17.2 40.1 ± 14.4 9.6 ± 7.2 2 ± 12.5 4 ± 14.0*

P values — — 0.038 — 0.040 — — 0.022 — — — — — 0.019

2Y PTC PTR MTC MTR LC LR TK T1-T12 TK T4-T12 LL L1-S1 PI SS PT FB SB

1 n = 24 1.6 ± 5.7 0.0 ± 1.3 18.4 ± 12.1 −1.1 ± 5.1 13.2 ± 11.3 0.6 ± 1.2 37.6 ± 10.1 23.3 ± 6.5 57.4 ± 9.5 49.3 ± 13.8 43.2 ± 8.5 6.1 ± 9.4 0 ± 14.5 −10 ± 10.4

2 n = 17 0.1 ± 6.8 0.1 ± 1.8 17.1 ± 11.9 −1.0 ± 4.1 18.5 ± 11.9 2.8 ± 1.8* 39.8 ± 8.5† 23.9 ± 5.6 50.2 ± 8.8 50.0 ± 12.0 44.8 ± 10.2 7.8 ± 10.1 8 ± 12.1 −14 ± 8.1

3 n = 23 4.3 ± 5.8 0.3 ± 0.0 18.1 ± 15.4 −1.5 ± 2.4 21.3 ± 14.4* 2.3 ± 1.3* 29.4 ± 9.5 27.3 ± 8.7 58.1 ± 8.6 48.2 ± 12.5 41.9 ± 11.3 5.3 ± 7.8 5 ± 16.6 1 ± 12.8§

P values — — — — 0.042 (1,2)0.038 
(1,3)0.034 0.038 — — — — — — 0.010

Table 1. Clinical measurements of the clusters at pre-operative (PO), early post-operative (EP), and two-year 
follow-up (2Y). Type I error is set to 0.05. PTC: proximal thoracic Cobb, PTR: proximal thoracic rotation 
(apical), MTC: Main thoracic Cobb, MTR: Main thoracic rotation (apical), LC: lumbar Cobb, LR: lumbar 
rotation (apical), TK: thoracic kyphosis, LL: lumbar lordosis, PI: pelvic incidence, SS: sacral slope, PT: pelvic 
tilt, FB: frontal balance, SB: sagittal balance. The variables marked by ■ normally distributed and were tested by 
ANOVA –posthoc Tukey’s. The reset of variables were tested using Kruskal-Wallis- Dunn test. *Significantly 
different from cluster 1, §Significantly different from cluster 2, †Significantly different from cluster 3.

Group # patients UIV LIV

G1 8 T2 T12

G2 10 T3 T12

G3 14 T4 T12

G4 12 T2 L1

G5 8 T3 L1

G6 12 T4 L1

G7* 2 T3 T11

G8* 1 T2 T10

Table 2. Indication of the upper and lower instrumented vertebrae (UIV, LIV) position. *Eliminated fusion 
levels due to small number of patients in these groups.
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considering the treatment paths that results in a more favorable 2Y outcome can be achieved by selecting specific 
fusion levels (F). Comparing the clinical outcomes (2Y clusters) shows that achieving 2Y2 at two-year follow-up is 
advantageous over clusters 1 and 3 due to the smaller change in the proximal junctional kyphosis, smaller residual 
lumbar curve, and both frontal and sagittal balances closer to the normative values49 (Fig. 3), thus favoring the 
treatment paths ending to the 2Y2. As it is seen the fusion level can affect this outcome; for example, patients in 
clusters PO3 and EP1 can have 2Y2 if they were to have fusion levels G3 (T4-T12) (Fig. 5), while other fusion levels 
(G6 (T4-L1) and G4(T2-L1)) resulted in a different 2Y outcome.

The framework introduced here promises a surgical decision-making tool that can be personalized for physi-
cians based on their preferred techniques. The rod length and curvature (using the EP clusters) can be determined 
prior to surgery to reduce the operation room time and number of staff which in turns reduces the surgical cost 
as well as blood loss and risk of infection44,50,51. Moreover, as the patients’ expectation plays an important role 

Path PO EP Fusion Group 2Y1 2Y2 2Y3

1 1 1 2,6 4 1 0

2 1 1 3,5 0 1 6

3 1 2 1 0 1 0

4 1 2 3,4 1 1 4

5 1 2 2 0 1 1

6 1 2 4,6 3 1 0

7 2 1 1,2 5 1 1

8 2 1 5,6 1 5 0

9 2 1 4 0 0 1

10 2 1 3 1 0 0

11 2 2 2 4 0 0

12 2 2 5 0 0 1

13 2 2 4 0 1 0

14 3 1 3 0 5 1

15 3 1 1 1 0 0

16 3 1 4 0 0 5

17 3 1 6 5 1 0

Table 3. Identification of treatment outcome paths and the number of patients in the outcome clusters for the 
patients included in the study analysis. PO: pre-operative, EP: early post-operative, and 2Y: two-year outcome.

Figure 5. The number of patients in each of the clusters at different time-points and the treatment paths. The 
total number of patients who had the same treatment path, i.e., same PO cluster, EP cluster, and fusion group is 
shown in the small circles. The percentage of patients in each treatment path who are classified in the same 2Y 
outcome is shown in the ovals. Only the treatment paths with three or more patients are shown. The complete 
path- assignment for all the patients is presented in Table 3.
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in their satisfaction, self-image, and quality of life after surgery52–54, by exploring the possible outcomes, a more 
comprehensive expectation of the surgical outcomes can be achieved by the patient, patient’s family, and their 
surgeon as they go through the process of surgery. This framework can be used as an assistive tool for the surgeons 
to modify several factors during the surgery in order to minimize the differences between the optimal and possible 
outcomes, similar to minimizing regret in decision theory55,56. Formulation of this decision-making problem 
with an embedded optimization approach will require additional factors that can possibly impact the outcomes.

The limitations of the current work include single-center and small patient dataset. This at some level limits 
incorporating various surgical technique, implant density, and variation in the implant including the material 
properties, rod diameter, and screw types. Additional surgical factors, which may vary between the surgeons and 
hospitals, remain to be evaluated via a larger multi-center study. While the impact of other surgical factors such 
as both magnitude and technique of the thoracic de-rotation, LIV alignment correction, number of osteotomies, 
and the reduction technique were not included, the early post-operative clustering of the spinal alignment in part 
accounts for these variables. A quantitative follow-up analysis of the spinal alignment as they relate to these surgi-
cal procedures is the subject of another study. Detailed analysis of the spinal curvature as considers the geometri-
cal differences in the 3D spinal curve will be investigated in a larger database. Only patients with a right thoracic 
curve, the most common AIS deformity49, were included in this study. Application of a similar framework for 
surgical prediction outcomes in other types of spinal deformities and adult spinal surgical planning should be 
explored. As for any classification technique, the patients with borderline characteristics can adversely impact the 
outcome prediction. Yet, the K-means clustering classification in our cohort identified the outcomes with an accu-
racy of 70% or higher for 88% of the patients. More detailed clustering methods and its impact on the oucome 
prediction accuracy will be investigated. For a more heterogeneous cohort, Fuzzy clustering offers solution by 
assigning membership grades and further developing a probabilistic path for determining the outcome groups57. 
Despite the significant relationship between the intraoperative radiographs and the surgical outcome of AIS spi-
nal fusion58, a study that associates the imparted intraoperative changes in the spine and the early post-operative 
alignment in a larger database can better guide surgical decision making.

The framework proposed here has an important implication in robotic surgery where a more quantifiable 
surgical goal can be established. Superimposition of both pre-operative and the aimed post-operative shape of 
the spine on the intraoperative images, not only can facilitate the screw placement but also guide imparting the 
required changes in the spinal profile in 3D. Furthermore, quantifying the trajectory of the changes in the spinal 
vertebrae position while quantifying the spinal flexibility through MRI59 can closely calculate the required forces 
during the correction surgery. Quantifying these components can lead to a promising future for robotic surgery 
in pediatric spinal surgery.
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