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Exploring NS3/4A, NS5A 
and NS5B proteins to design 
conserved subunit multi-epitope 
vaccine against HCV utilizing 
immunoinformatics approaches
Aqsa Ikram1, Tahreem Zaheer1, Faryal Mehwish Awan1, Ayesha Obaid1, Anam Naz1, 
Rumeza Hanif2, Rehan Zafar Paracha3, Amjad Ali  1, Abdul Khaliq Naveed4 & 
Hussnain Ahmed Janjua1

Hepatitis C virus (HCV) vaccines, designed to augment specific T-cell responses, have been designated 
as an important aspect of effective antiviral treatment. However, despite the current satisfactory 
progress of these vaccines, extensive past efforts largely remained unsuccessful in mediating clinically 
relevant anti-HCV activity in humans. In this study, we used a series of immunoinformatics approaches 
to propose a multiepitope vaccine against HCV by prioritizing 16 conserved epitopes from three viral 
proteins (i.e., NS34A, NS5A, and NS5B). The prioritised epitopes were tested for their possible antigenic 
combinations with each other along with linker AAY using structural modelling and epitope–epitope 
interactions analysis. An adjuvant (β-defensin) at the N-terminal of the construct was added to enhance 
the immunogenicity of the vaccine construct. Molecular dynamics (MD) simulation revealed the most 
stable structure of the proposed vaccine. The designed vaccine is potentially antigenic in nature and can 
form stable and significant interactions with Toll-like receptor 3 and Toll-like receptor 8. The proposed 
vaccine was also subjected to an in silico cloning approach, which confirmed its expression efficiency. 
These analyses suggest that the proposed vaccine can elicit specific immune responses against HCV; 
however, experimental validation is required to confirm the safety and immunogenicity profile of the 
proposed vaccine construct.

Hepatitis C virus (HCV) infected patients are currently estimated to number ~130 million worldwide1. Chronic 
HCV infection leads to 0.88 million deaths annually due to infection-induced liver cirrhosis and hepatocellular 
carcinoma. Despite decades of research, there is still no effective vaccine available for HCV due to the high genetic 
heterogenicity of the HCV ribonucleic acid (RNA)1. Currently available standard treatments of HCV infection 
include peginterferon alpha/ribavirin (PegIfn-α-/RBV) and recently introduced direct-acting antiviral (DAA) 
agents such as sofosbuvir, ombitasvir, paritaprevir ritonavir, and boceprevir2. Although the efficacy of DAAs is 
quite high in comparison with that of PegIfn α/RBV, still, there are limitations with use of the former including 
high costs, emerging resistant mutants, and the inability to protect patients from relapse3. Therefore, the develop-
ment of an effective and safe vaccine is needed to better control the ongoing worldwide HCV pandemic.

It is believed that 30% of HCV infected patients spontaneously clear HCV infection due to specific and robust 
host immune responses4. This phenomenon occurs in part due to the exposure of neutralizing antibodies and 
the production of specific T-cell responses (CD8+, CD4+) to HCV proteins. These activated T-cells secrete 
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proinflammatory cytokines (Th1-type) such as interferon-γ (IFN-γ), which is an important antiviral agent against 
HCV and is related with the decrease in viral load during acute infection5. Similarly, the delayed production of 
these specific antibodies and T-cell responses has been observed in patients with chronic HCV infection6. These 
observations are clearly evidenced in infected humans and chimpanzees that mount an early natural immunity, 
which ultimately clears the virus. This scenario gives hope for enhancing specific immune signatures and regard-
ing the development of at least a comparatively effective vaccine against HCV5.

However, multiple factors such as the high genetic variability of HCV genome and the potential risks of test-
ing killed or live-attenuated vaccine in clinical trials are major hindrances in the development of a successful 
vaccine against HCV7. To overcome such issues, immunoinformatic approaches represent a promising option 
to identify, design, and propose a conserved yet highly immunogenic multiepitope vaccine against HCV8. 
Immunoinformatics is an interface between experimental immunology and computer science that is used for 
investigating significant immunological information hidden in the immune system9. Previously, immunoinfor-
matic approaches have been successfully employed to develop vaccines that target rapidly mutating infectious 
diseases10. For example, multiepitope vaccines against influenza and human immunodeficiency virus-1 are cur-
rently at different stages of clinical trials11. In addition, a multiepitope vaccine (EMD640744) designed against 
advanced solid tumour has also entered phase I clinical trials12. In view of these successes, the importance of 
immunoinformatic approaches in vaccine design is enhanced and become more reliable. Moreover, multiepitope 
vaccines have significant advantages as compared with conventional vaccines in terms of their safety profile 
and immunogenic properties, including that they are composed of multiple major histocompatibility complex 
(MHC) I and II-restricted epitopes recognised by various clones of T-cells13. This property enhances their abil-
ity to induce strong cellular and humoral immune responses simultaneously. Furthermore, they are composed 
of some adjuvants that can improve the immunogenicity and immune responses associated with the designed 
vaccine12. Therefore, an increasing amount of research attention has now shifted toward the understanding of an 
immunoinformatic based multiepitope vaccine design against HCV.

An ideal HCV multiepitope vaccine should include conserved immunogenic epitopes that can elicit effective 
CD4+, CD8+ T and B-cell responses14. Activation of these HCV-specific immune responses is critical for an 
ideal therapeutic vaccine to induce their recruitment to the liver, where they can deploy their antiviral activity by 
secreting various cytokines, including more specifically IFN-γ, or by directly killing infected hepatocytes2. Thus, 
safe and HCV-specific immune responses can be induced with improved effectiveness and extent by employing 
the conserved epitopes together.

Towards achieving this goal, the current study was designed to identify putative T-cell epitopes for multie-
pitope vaccine design. A comprehensive conservational analysis was carried out among selected viral proteins in 
HCV major genotypes. In order to design the multiepitope vaccine, T-cell epitopes were selected according to 
those with the highest probability of being presented by MHC I and MHC II molecules based on affinity predic-
tion score. Afterwards, these selected T-cell epitopes based on their shared sequences with conserved regions, 
B-cell epitopes, and IFN-γ-binding epitopes were filtered. Different combinations of selected epitopes were antic-
ipated using structural modelling and epitope–epitope interactions analysis to obtain the final effective vaccine 
construct. In order to enhance the immunogenic response of the vaccine, the amino acid sequence of β-defensin, 
an important adjuvant, was also added at the N-terminal end of the final vaccine construct. The structure of the 
proposed vaccine construct was predicted through I-TASSER15 and refined through the GalaxyRefine server16. 
The predicted model was further evaluated by PROSA17 analysis and Ramachandran plot18. Moreover, the pre-
dicted model was verified via checking the overall structure errors and molecular dynamics. Molecular docking 
of the vaccine construct with Toll-like receptor TLR-3 and TLR-8 was performed to inspect various interactions 
between TLR-3, TLR-8 and the vaccine construct.

Results
Conservation profile of hepatitis C virus NS3/4A, NS5A, and NS5B proteins. Conservation anal-
ysis is an extensively used method for the prediction of functionally important residues in protein sequences19. 
Using different software packages (section 4, Methods), 23 conserved regions were recognised among the selected 
(approximately 1,400) protein sequences of HCV NS3/4A segments (Table 1). Analysis showed that the NS5B 
sequences (1,100) possess 14 conserved regions across all the genotypes. Within high variable sequences of NS5A, 
only five regions were found to be conserved (Table 1). Using this analysis, a consensus sequence of all major 
genotypes against each viral protein was also obtained for further B-cell, T-cell and IFN-γ epitope prediction.

Prediction of novel T-cell (major histocompatibility complexes I and II), B-cell, and interferon-γ 
epitopes. Using the consensus sequence of each viral protein, nine-mer T-cell epitopes (MHC-I and II) 
were predicted. Only T-cell epitopes with high scores and high binding capacities to the maximum number of 
alleles more specifically, to the alleles involved in HCV clearance or protection including DRBl*ll04, DRB*5701, 
DRB*5703, DRB1*0701, DQBl*O301, HLA-A*03, DQA*0201, HLA-B*57, HLA-A*68, DRB1*0101, Cw*0102, 
and HLA-B*27 were screened20–22. Further, 20-mer B-cell and 15-mer IFN-γ epitopes were predicted against each 
viral protein. T-cell epitopes overlapping with predicted B-cell and IFN-γ epitopes and which were also present 
in the conserved region were separated, thus designating them as pan-genotypic epitopes. The predicted epitopes 
were evaluated by BLASTp to avoid epitopes homologous with human proteins. None of the screened epitopes 
were found to be homologues of human proteins. Antigenicity of the final epitopes was predicted to select only 
those epitopes that showed high antigenicity. It was observed that most of the selected epitopes exhibited high 
antigenicity, a finding which confers the importance of these epitopes. A few epitopes with low antigenicity were 
not considered for further analysis (Table S1). Based on the rigorous selection criteria, the prioritised T-cell 
epitopes possessed following characteristics: (1) T-cells having a high score and binding capacity to the maxi-
mum number of alleles (including alleles causing HCV protection); (2) overlap with B-cell and IFN-γ epitopes 
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and presentation in the conserved regions; and (3) high antigenicity and nonhuman homologues. Using these 
criteria, only 16 epitopes were prioritized for further consideration (Table 2). Among these epitopes, T1 to T8 
were present in NS34A, E1 and E2 were present in NS5A, while M1 to M5 existed in the NS5B region (Table 2).

Design of multiepitope vaccine. The epitopes mentioned in Table 2 were analysed for their binding 
compatibility with one another. For this, their structures were first predicted with a flexible linker AAY using 
I-TASSER. Epitopes in combinations of two were then subsequently explored to identify the most prom-
ising structure for an active and stable candidate (Fig. 1). The T7-E2 combination was found to be the best 
option, based on the HADDOCK refinement scores of all of the combinations tested (Supplementary File 1). 
The T7-E2 combination was explored with the remaining 14 epitopes to secure the three best epitope combi-
nations. In this analysis, the T7-E2-M3 combination was prioritized based on the determined scores (Fig. 1). 
The final vaccine construct obtained through this extensive combination analysis was T7-E2-M3-M1-M4-

Conserved regions (NS3/4A) Positions

APITAY 1–6

LLSPRP 126–131

FRAAVC 154–159

LHAPTGSGKSTKVP 202–215

VLVLNPSVAATLGFG 225–239

TYSTYGKFLADGGC 266–279

IICDECH 287–293

LGIGTVLDQAETAG 301–314

VLATATPPGS 319–328

GEIPFYG 345–351

KGGRHLIFCHSKKKCDE 360–376

TDALMTG 411–417

TGDFDSVIDCN 419–429

VDFSLDPTF 436–444

PQDAVSR 452–458

QRRGRTGRG 460–468

TPGLPVCQDHL 519–529

VFTGLT 535–540

LSQTKQ 547–552

AYQATVC 562–568

APPPSWD 572–579

GPTPLLYRLG 594–603

TSTWVL 631–636

Conserved Regions NS5/A Positions

GTFPIN 86–91

GSQLPC 185–190

RGSPPS 220–225

ASSSASQLSAPSL 227–239

SSMPPLEGEPGDP 421–433

Conserved Regions NS5B Positions

KKVTFDR 50–56

TTIMAKNEVF 136–145

PDLGVRVCEK 163–172

YGFQYSP 191–197

YDTRCFDSTVTE 219–230

CGYRRCRASGV 274–284

LVCGDDLV 314–321

FTEAMTRYSAPPGD 339–352

TSCSSNVSVA 364–373

YYLTRD 382–387

ARAAWET 393–399

PVNSWLGNII 404–413

MTHFFS 426–431

YLFNWAV 524–530

Table 1. Conserved regions in HCV NS3/4A, NS5A and NS5B.
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T8-M2-T1-E3-M6-T3-T6-M5-T2-T4-T5 (Table 3). Each possible combination prioritized for vaccine con-
struct along with their features is shown in Table 3. Also, adjuvant β-defensin of a 45-amino-acid-length 
(GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK) was added at the N-terminal of the vac-
cine construct with the help of another linker (EAAAK). With the addition of the adjuvant and linkers, the final 
length of the vaccine candidate was 239 amino acids.

Physiochemical properties of the vaccine candidate. Several physicochemical properties of the pre-
dicted vaccine candidate were calculated from the ProtParam server23. The molecular weight of the vaccine con-
struct was calculated to be 25802.95 g/mol, while the PI was 9.26, identifying it as basic in nature. Furthermore, 
the instability index (II) was computed to be 39.19, which signifies it is a stable protein complex. The estimated 
half-life of the vaccine candidate was determined to be 30 hours in mammalian reticulocytes (in vitro), while 
it is predicted to be >20 hours in yeast (in vivo) and >10 hours in Escherichia coli (in vivo). The aliphatic index 
was 72.09, pointing out the construct as thermostable. The grand average of hydropathicity (GRAVY) score was 
−0.1108, which shows that, overall, the protein is hydrophilic in nature and can yield better interaction with 
neighbouring water molecules.

Modelling of vaccine three-dimensional structure. The three-dimensional (3D) structure of the final 
vaccine construct was modelled by use of the I-TASSER server15. The model was predicted using PDB ID 1kj6 as 
the best template for modelling, and all 239 amino acids were modelled (Fig. 2). The confidence of the model pre-
dicted by iTASSER was quantitatively measured by C-score. It is intended based on the significance of threading 

Epitopes (MHCI) NS3/4A Name Position Antigenicity Epitopes (MHCII) NS3/4A Position Antigenicity

GSGKSTKVP T1 207 0.7 VLNPSVAAT T4 226 1.2

LNPSVAATL T2 228 0.9 LNPSVAATL T5 227 0.9

HSKKKCDEL T3 368 0.9 LGIGTVLDQ T6 300 0.6

IFCHSKKKC T7 365 1.5

FCHSKKKCD T8 366 1.3

Epitopes (MHCI) NS5A Name Position Antigenicity Epitopes (MHCII) NS5A Position Antigenicity

SSMPPLEGE E1 421 1

SMPPLEGEP E2 423 1

Epitopes (MHCI) NS5B Name Position Antigenicity Epitopes (MHCII) NS5B Position Antigenicity

TTIMAKNEV M1 136 0.8 TIMAKNEVF M4 137 0.6

DLGVRVCEK M2 164 0.9 LGVRVCEKM M5 164 0.6

YDTRCFDST M3 219 1.1 YRRCRASGV M6 275 1.2

Table 2. Selected 16 T-cell (MHCI and II) epitopes among HCV NS3/4A, NS5A and NS5B proteins.

Figure 1. Schematic illustration of vaccine construct consists of epitopes joined together by linkers and an 
adjuvant. Epitopes combinations were obtained after checking their binding compatibility with each other 
through schematic HADDOCK refinement score.
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template alignments and convergence parameters of the structure assembly simulations. The C-score of the pre-
dicted model was higher (−2.20), which represents a model with higher stability and confidence.

Refinement and validation of the vaccine three-dimensional structure. The predicted 3D struc-
ture was then processed to obtain a refined model. From use of the GalaxyRefine server24, the best model was 
chosen for further analysis. The RAMPAGE server18 was used for the validation of the refined tertiary structure. 
This analysis showed that 84.6% of the structure was under favoured region, 13.3% was under the allowed region, 
and 2.1% was observed under the disallowed region, signalling a high quality of the predicted vaccine structure 
(Fig. 2). Additionally, ProSA-web showed a Z-score of −3.85, which lies inside the range of acceptable scores.

Secondary structure prediction. The secondary structure of the vaccine construct showed that the vac-
cine construct contained 11 helices, 22 helix–helix interactions, 28 beta turns, 11 gamma turns, and one disul-
phide bond (Fig. 3, Supplementary File 2). Helix–helix interaction provides information about interacting pairs 
of helices in the protein. Beta turn is defined for four consecutive residues (denoted by i, i + 1, i + 2, and i + 3) if 
the distance between the Calpha atom of residue i and the Calpha atom of residue i + 3 is less than 7 Å and if the 
central two residues are not helical. A gamma turn is defined for three residues i, i + 1, and i + 2 if a hydrogen 
bond exists between residues i and i + 2 and the phi and psi angles of residue i + 1 fall within 40 degrees of one of 
the following two classes: (1) classic [phi i + 1(75), psi i + 1(−64)] or (2) inverse [phi i + 1(−79), psi i + 1(−69)]. 
While disulphide bridges are recognised between two cysteine residues whose sulphur atoms are less than 3 Å 
apart. The topology of the vaccine construct was generated and analysed, as shown in Fig. 3, Supplementary 
File 2.

Molecular dynamics simulation of vaccine construct. Energy minimization, pressure, temperature, 
density, radius of gyration (Rg), and potential energy calculation were also performed or calculated for the final 
vaccine construct. The overall structure of the protein remained stable during the MD simulation, which can 
also be seen in the radius of the gyration graph (Fig. 4). OPLSA force-field was applied and protein was sol-
vated in water using the spectro built-in tool of the Groningen Machine for Chemical Simulations (GROMACS). 
The charge on the protein was +17, so 17 chlorides ions were added by replacing water molecules at atoms 
10091, 21623, 17804, 62648, 63926, 13871, 25058, 6428, 16841, 60002, 14495, 66812, 36452, 39041, 50618, 
34997, and 40580. The energy minimization was performed at 50,000 steps, whereas it was performed at 1,612 
steps where steepest descents were converged and the force reached <1,000 KJ/mol−1. The potential energy was 
−1.2015219e + 6 and the average potential energy of the system was found to be −1.6503e + 06, with a drift of 
−124,408. The overall pressure was maintained at an average of 4.58503 with a drift of 8.03 bar, while the tem-
perature was maintained at 299.7 °K (Fig. 4). The overall average density of the system after equilibration was 
1,014.58 with drift of 0.98 (kg/m3). An analysis of trajectory that was generated after 10 ns simulation generated a 
radius of gyration for RMSD and RMSF. A plot of RMSD showed that RMSD levels go up to ~0.4 nm and remain 
between 0.4 nm and 0.45 nm throughout the simulation time, indicating that the structure is very stable (Fig. 4). 
RMSF also explains that the overall structure of the protein remained stable during the MD simulation (Fig. 4).

Molecular docking of vaccine construct with Toll-like receptor 3 and Toll-like receptor 8. The 
HADDOCK server25 was used to perform docking analysis of the vaccine construct with TLR3 and TLR8. 
HADDOCK output was composed of multiple models, out of which the highest 10 clusters were selected. 
According to HADDOCK, the top cluster is the most reliable, though this ranking is also dependent on its 
Z-score. A more negative Z-score value represents a better cluster. This analysis also includes fractions of common 
contacts (FCCs), which are intermolecular contacts and are based on the best HADDOCK model with a cutoff of 

Best epitopes combinations
HADDOCK 
refinement score

T7-E1 −81.8 +/− 1.7

T7-E1-M3 −93.1 +/− 5.9

T7-E1-M3-M1 −116.7 +/− 1.8

T7-E1-M3-M1-M4 −107.3 +/− 1.1

T7-E1-M3-M1-M4-T8 −105.1 +/− 2.5

T7-E1-M3-M1-M4-T8-M2 −124.9 +/− 0.9

T7-E1-M3-M1-M4-T8-M2-T1 −91.9 +/− 1.1

T7-E1-M3-M1-M4-T8-M2-T1-E2 −109.8 +/− 2.5

T7-E1-M3-M1-M4-T8-M2-T1-E2-M6 −96.3 +/− 0.9

T7-E1-M3-M1-M4-T8-M2-T1-E2-M6-T3 −93.1 +/− 4.2

T7-E1-M3-M1-M4-T8-M2-T1-E2-M6-T3-T6 −90.0 +/− 2.8

T7-E1-M3-M1-M4-T8-M2-T1-E2-M6-T3-T6-M5 −91.7 +/− 1.3

T7-E1-M3-M1-M4-T8-M2-T1-E2-M6-T3-T6-M5-T2 −90.9 +/− 2.1

T7-E1-M3-M1-M4-T8-M2-T1-E2-M6-T3-T6-M5-T2-T4 −100.8 +/− 2.7

T7-E1-M3-M1-M4-T8-M2-T1-E2-M6-T3-T6-M5-T2-T4-T5 −90.9 +/− 1.3

Table 3. Best epitopes combinations based on structural modeling and epitope-epitope interactions analysis.
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5 Å, with interface-RMSD (i-RMSD), which is calculated on the basis of backbone (CA, C, N, O, P) atoms of all 
amino acid residues, involved in intermolecular contact using a 10 Å cutoff. Finally, ligand-RMSD was calculated 
on the backbone atoms (CA, C, N, O, P) of all (n > 1) molecules after fitting on the backbone atoms of the first 
(n = 1) molecule. The docking analysis showed good interaction between the vaccine construct and TLR3/TLR8. 
TLR3 is shown in the blue colour, while the vaccine construct is shown in the yellow colour, respectively, in Fig. 5. 
Additionally, TLR8 is shown in the magenta colour and the vaccine construct is shown in the yellow colour in 
Fig. 6. Furthermore, to obtain the schematic illustration of interaction between the docked complex, the online 
database PDBsum26 was employed. It generated a schematic depiction of nonbonded and hydrogen bond inter-
actions between the docked proteins complex. It was observed that our vaccine construct developed 11 hydrogen 
bond interactions [Chain A(TLR3)-B(vaccine construct); 33-57, 54-56, 175-12, 175-12, 299-198, 325-84, 380-
138, 460-29, 462-29, 484-39, and 484-30] with TLR3. Structural analysis also revealed that Glu33 and Lyc 57 
formed a hydrogen bond at a distance of 2.71 Å, while Thr54-Lys56 formed bond at 2.71 Å. Glu175-Arg12 forms 
two hydrogen bonds at distances of 2.67 Å and 3.32 Å, respectively. Similarly, Gln299-Glu198 develops hydrogen 
bonds at a distance of 2.89 Å, Arg325-Thr84 at 2.85 Å, Asn138-380Lys at 3.02 Å, Glu460-Gln29 at 2.82 Å, and 
Tyr29-Gln462 at 2.83 Å, whereas Arg484-Ile39 and Arg484-Ile30 develop hydrogen bonds at distances of 3.08 Å, 
and 2.99 Å, respectively (Fig. 5, Table S2). In the case of TLR8, it was found that the vaccine construct develops 
14 hydrogen bond interactions [Chain A(TLR8)-B(vaccine construct); 460-10, 259-12, 270-14, 293-14, 300-14, 
285-17, 292-17, 280-19, 269-50, 261-66, 299-76, 289-131, and 289-231] with immune receptors (Fig. 6, Table S3). 

Figure 2. Predicted 3D structure and validation of multiepitope vaccine construct. (A) 3D structure of vaccine 
construct. (B) Ramachandran plot showed that 84.6% of the proposed vaccine construct residues were present 
in favoured regions, 13.3% in allowed regions while only 2.1% in disallowed regions. (C) PROSA validation of 
3D structure showing Z-score (−3.85). The z-score indicates overall model quality.
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It was observed that most of the distances of the hydrogen bonds between the vaccine and immune receptors lie 
in the range of 2 Å to 3 Å, representing strong interactions27. These data also support the evidence that the binding 
of epitopes to MHC I and MHC II proteins requires multiple hydrogen bond interactions between the epitope 
and MHC complex28 (Figs 5 and 6).

In silico codon optimisation of the vaccine construct. The online server Codon Usage Wrangler 
was used for reverse translation and to provide a complementary deoxyribonucleic acid (cDNA) sequence. This 
sequence was further considered for codon optimization analysis, including with respect to codon adaptive index 
(CAI) and GC content of the cDNA sequence. The GC content of the construct was calculated to be 58.63%, with 
the ideal range being between 30% and 70%. The CAI value was 1, which signifies high expression of the protein, 
suggesting the vaccine construct as a reliable protein.

Discussion
Despite the efficient progress that has been made in the development of antiviral therapies against HCV infection 
to date, there remains an utmost need to design vaccines in order to halt the inexorable spread of HCV. However, 
the formation of an HCV vaccine generally represents an unprecedented scientific challenge2. Many HCV stud-
ies have recognised that a strong T-cell response, categorised by the effective production of cytokines including 
IFN-γ, is associated with the resolution of acute HCV infection29. Reliable induction of robust CD4 and CD8 
T-cell responses, similar to what is observed in acute HCV infection, are nowadays under consideration, lead-
ing to the recent introduction of studies on advanced vaccine development against HCV5. Modern vaccinology 
based on T-cell epitopes has been successful against some diseases like malaria and cancer and has shown the 
strongest immunogenicity with regard to eliciting T-cell responses so far11. The prevention of HCV chronicity 
and inhibition of reinfection are the major aims of the present multiepitope T-cell vaccine, which can induce 
large repertoires of immune specificities; also, notably, it deals with genetic variations effectively, both in patho-
gens and humans (HLA-specific). Thus, the current research was focused on the designing of a multiple-epitope 
vaccine that can provide a robust level of protective immunity against HCV. Multiepitope vaccines are known to 
be more effective than monovalent vacines, as they can induce both cellular and humoral immunities30. During 
acute HCV infection, specific T-cell responses are produced against HCV nonstructural proteins, whereas, during 
chronic infection, this response drifts toward HCV structural proteins31. Therefore, in our study, only nonstruc-
tural proteins (i.e., NS3/4A, NS5A, and NS5B) were included in the multiepitope vaccine design to focus on the 
T-cell reactivity that is related with the acute resolution of HCV. These proteins are also being used in different 

Figure 3. Schematic illustration of secondary structure prediction of vaccine construct.
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immunological studies, showing their important status of producing an effective T-cell response, thus making 
them ideal for multiepitope vaccine design32.

Selected T-cell epitopes were found to be conserved among all genotypes and to have high antigenic values, 
thus defining them as ideal candidates for a pangenotypic vaccine. The conserved and nonhost homologous 
epitopes have the potential to overcome barriers for epitope-based vaccines and can generate more specific, effec-
tive, strong, and long-lasting immune responses while being devoid of all the undesired effects5. Previous studies 
have also confirmed that HCV immune elusion could be circumvented by selecting conserved HCV-specific 
T-cell epitopes that could target broadly neutralizing antibodies33. Predicted T-cell epitopes also overlap B and 
IFN-γ epitopes and thus can induce both T- and B-cell responses simultaneously. IFN-γ is an important proin-
flammatory cytokine with known antiviral activity34, and vaccine candidates able to activate IFN-γ, inducing 
T-helper cells, can make them more effective for prompting strong immune responses35. Adjuvant was also added 
in the designed multiepitope vaccines to increase the immunogenicity of the construct and to activate different 

Figure 4. Molecular dynamics simulation of the vaccine candidate (A) Temperature; system temperature 
reached to 300 K and stay constant around 300 K (100 ps) (B) Pressure; Ligand pressure plot at equilibration 
phase of 100 ps. (C) Rg plot; vaccine construct is stable in its compact form during the simulation time (D) 
RMSD; RMSD levels off to ~0.45 which represents the stability of vaccine construct (E) RMSF; RMSF-Root 
Mean Square Fluctuation plot, peaks shows the regions with high flexibility.
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mediators of innate and adaptive immunity36. The physiochemical properties of the designed multiepitope pro-
tein predicted it to be stable, hydrophilic, and basic in nature. Various validation studies including Ramachandran 
plot and ProSA-web indicated that the model is stable in nature.

In order to analyse the immune response of TLR-3 and TLR-8 against our predicted vaccine construct, we 
performed docking analysis. TLR7 and TLR8 have been found to play critical roles in antiviral immune responses 
against HCV. Also, recent studies have confirmed that robust TLR3 and TLR8 agonists reduce the level of HCV 
RNA in HCV-positive patients37,38. The predicted RMSD of our refined vaccine construct showed the stable 
docked complex. In addition, some of the epitopes used in our study for multiepitope vaccine construction were 
also validated experimentally. In one study, 16 conserved epitopes were reported, of which only 12 epitopes in 
different combinations reached a population protection coverage level of ≥95%39. Among the epitopes predicted 
by Ibraham et al., the epitope HSKKKCDEL in NS3/4A and the epitope TIMAKNEVF in NS5B were similarly 
predicted in our analysis, conferring the authenticity of the methodology adopted in our study. Furthermore, in 
another study, CD4+ T-cell epitope LNPSVAATL, predicted as T2 in our study, revealed a high binding affinity 
for common HLA-DR alleles among patients afflicted with acute HCV infection40.

Conclusion
In summary, we have integrated novel immunoinformatics tools to design a safe and potential immunogenic 
multiepitope vaccine that could stimulate three types of immune responses—specifically, humoral, innate, and 
cellular immune responses—and thus may have the ability to control HCV infection. However, this study war-
rants further experimental validation to prove this work. We expect that our proposed vaccine construct will 
show promising results against HCV in practice.

Figure 5. (A) Vaccine construct-TLR3 docked complex: Figure obtained after molecular docking between 
Vaccine and TLR-3, Yellow color showed the vaccine construct while blue color is representing TLR-3. (B) 
Interacting residues illustration between docked vaccine (chain B) and TLR3 (chain A) complex (C) Few 
hydrogen bond interactions between TLR3-vaccine construct are shown in a focused view.
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Materials and Methods
The present study was categorised into four main parts: (1) the prediction of T-cell epitopes against selected viral 
proteins (NS3/4A, NS5A, and NS5B); (2) the screening of T-cell epitopes overlapped with predicted B and IFN-γ 
epitopes and conserved regions; (3) the fusion of selected epitopes by proper linker and adjuvant to propose 
a multiepitope vaccine construct against HCV by using structural modelling and epitope–epitope interactions 
based on epitope combinations; and (4) characterising the vaccine construct through molecular dynamics and 
molecular docking with TLR-3 and TLR-8. An overview of the methods followed in the present study is presented 
in Figs 1 and 7, and each step is explained below.

Collection of data. The available protein sequences of NS3/4A (1810), NS5A (1700), NS5B (1350) were 
retrieved in FASTA format from Genbank41. These sequences were selected against all major HCV genotypes 
(i.e. 1–7). Duplicates were removed by analysing the annotation information of each sequence available from the 
National Center for Biotechnology Information42. Protein sequences having more than two ambiguous amino 
acids or clones from the same patient were discarded from the dataset.

Sequence conservation analysis. For sequence conservation analysis, sequences were subjected to mul-
tiple sequence alignment (MSA) and position-wise diversity using ClustalW43, CLC v3.6 Workbench43, BioEdit 
v. 7.2.344, Datamonkey45, and Protein Variability Server (PVS)46. The sequences from each genotype were first 
aligned to obtain the consensus sequence and, subsequently, the achieved consensus sequences were aligned with 
each other to secure a global consensus sequence and conserved regions among all genotypes (1–7).

Figure 6. (A) Vaccine construct-TLR8 docked complex: Figure obtained after molecular docking between 
Vaccine and TLR-8, Yellow color showed the vaccine construct while magenta color is representing TLR-8. 
(B) Interacting residues illustration between docked vaccine (chain A) and TLR8 (chain B) complex (C) Few 
hydrogen bond interactions between TLR3-vaccine construct are shown in a focused view.
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Epitope mapping. By using the consensus sequence of all major genotypes 1 to 7, T-cell (MHC I and II), 
B-cell, and IFN-γ inducing epitopes were predicted.

Major histocompatibility complexes I and II T-cell epitope prediction. Propred I47 and Propred48 servers were used 
to predict nine-mer MHC class I and class II epitopes for all of the selected viral proteins. Epitopes that bind to the 
maximum number of alleles and, in particular, with alleles known to be involved in HCV clearance or protection 
were selected.

Prediction of B-cell epitopes. The prediction of 20-mer linear B-cell epitopes for NS3/4A, NS5A, and NS5B of 
HCV was achieved using the online immune epitope database and analysis resource available at http://tools.iedb.
org/bcell/ 49. This computational tool is known for its reliable prediction of linear B-cell epitopes in a given protein 
sequences.

Interferon-γ inducing epitope prediction. IFN-γ is involved in both adaptive and innate immune responses. It 
also upregulate. opes of HCV, NS3/4A, NS5A, and NS5B against IFN-γ were predicted using the IFNepitope 
server50. This server allows for users to predict and design IFN-γ-inducing peptides having the capacity to induce 
IFN-γ.

Comparative analysis with human proteins. Preferably, vaccine candidates should not be human 
homologues, in order to circumvent autoimmunity. To screen out only nonhuman homologues epitopes, 
BLASTp51 of selected epitopes was performed against human proteome. Epitopes sequences having <30% iden-
tity with human proteome were considered to be nonhuman homologues. This analysis was performed to con-
firm that these epitopes will not activate autoimmunity. Only nonhomologous epitopes were selected for further 
consideration.

Screening of antigenic epitopes. T-cell epitopes overlapped with the predicted B-cell and IFN-γ-inducing 
epitopes and were screened out. Further epitopes present in the conserved regions of all HCV major genotypes 
were selected. This screening analysis was carried out individually for all selected viral proteins (NS3/4A, NS5A, 

Figure 7. Schematic illustration of methodology adopted in the study.

http://tools.iedb.org/bcell/
http://tools.iedb.org/bcell/
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and NS5B). Antigenicity prediction of selected epitopes was also performed by using the online tool Vaxijen52 
with the cutoff of a score of ≥0.5. Epitopes having an antigenicity greater than this value were to be considered 
as antigenic in nature. Antigen prediction by this software is solely based on the physicochemical properties of 
epitopes using auto cross covariance transformation approach52.

Construction of the multiepitope vaccine. All of the selected epitopes were subsequently analysed for 
their compatibility to bind effectively with every other epitope in order to determine the order of epitopes in the 
final vaccine. For this, the following steps were completed:

 1. First, a flexible linker AAY53 was added in each epitope sequence and their structure was predicted by 
I-TASSER15.

 2. Next, each single epitope was analysed for its compatibility with every other epitope using the Guru inter-
face of the HADDOCK server54. Clusters with two-epitope combinations having the maximum compat-
ibility of interaction were refined and then evaluated regarding their compatibility with a third epitope. 
Similarly, clusters with three-epitope combinations showing a maximum compatibility of interaction were 
then evaluated regarding their compatibility with fourth epitope. The same criteria were carried out in this 
manner until the final vaccine construct was obtained.

The addition of linkers between two epitopes was completed, as such is helpful in the efficient separation that 
is required to occur for the effective working of each epitope. Also, the amino acid sequence of β-defensin (which 
helps in the recruitment of immature dendritic cells and naïve T-cells at the site of infection) was added as an 
adjuvant. β-defensin was added to the final vaccine construct at its N-terminal with the help of the EAAAK linker.

Evaluating physicochemical parameters of muti epitope vaccine. To evaluate the physicochemical 
parameters of multiepitope vaccine construct, including aliphatic index, grand average of hydropathicity, theo-
retical pI (isoelectrical point), amino acid composition, molecular weight, half-life, instability index, and GRAVY 
were computed with the ProtParam server23 available at http://web.expasy.org/protparam.

Prediction of secondary structure. For the prediction of the secondary structure and for the purpose of 
further defining the structural characteristics of the designed vaccine construct, PDBsum26 was used. PDBsum 
is a unique database that shows the molecule(s) that make up the structure of DNA, ligands, proteins, and metal 
ions as well as the schematic diagrams of their interactions.

Prediction of tertiary structure of multiepitope vaccine. The tertiary structure of the multiepitope 
vaccine candidate was predicted from I-TASSER15. Such is based on a hierarchical approach to predict protein 
structure and function. Further refinement of the predicted 3D structure was performed by using the freely 
available online server GalaxyRefine (http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE)16. This pro-
cess used both mild and aggressive relaxation methods for refining proteins. It generates many models with 
more structural deviations from the given structure. For the validation of the vaccine candidate structure, a 
Ramachandran plot was also created by the use of an online web server called RAMPAGE (http://mordred.bioc.
cam.ac.uk/~rapper/rampage.php)18. PROSA analysis was performed for further protein structure validation. This 
resulted in the calculation of an overall quality score for the provided structure. Notably, if this score is outside a 
specific range for native proteins, then the structure probably contains errors.

Molecular dynamic simulation of the multiepitope vaccine. To stabilize the structure of the vaccine 
construct, GROMACS, an MD simulation program, was used. GROMACS is another reliable tool for the study 
of different biological models within realistic cellular environments55. Optimized Potential for Liquid Simulation 
force-field was selected and the protein was controlled in a rhombic dodecahedron cubic box to accommodate 
solvent molecules. The protein was placed in the centre of the cube, with the periodic image of the protein being 
2 nm apart. The solvent water (spc216.gro) was used to simulate protein, having a force constant (kpr) of 1,000 kJ/
mol−1/nm−2. At the place of the solvent molecule, 17 chloride ions were added. Genion (a tool for adding ions 
within GROMACS) was used to neutralize the overall charges of protein, with a cutoff scheme used (Verlet); 
also, electrostatic forces were applied. To get the final energy minimized structure, energy minimization was 
carried out at the 1612 step and the final energy minimised (EM) structure was obtained. The graphs of the stages 
of energy minimization were analyzsd using Xmgrace56. To stabilize the temperature of protein up to a certain 
value, NVT isothermal-isochoric ensemble equilibration was used at 100 ps. Velocity was generated during NVT 
equilibration, so that a number of simulations could run at a variety of initial speeds. Using an NPT ensemble 
consisting of 50,000 steps for the whole process, temperature, pressure, and densities of the stabilized vaccine 
construct were investigated. MD simulation at 10 ns with 500,000 steps was run for equilibrated construct. The 
RMSD of backbone of energy minimized were predicted and the results were generated in the form of graphs.

Docking analysis of the vaccine candidate with immune receptors TLR3 and TLR8. To analyse 
vaccine molecule interaction with the immune receptors, molecular docking was performed between immune 
receptors (TLR-3: PDBID 2A0Z and TLR-8: PDBID 4Q0Z) and the multiepitope vaccine candidate. For this high 
ambiguity-driven, protein–protein docking, the HAADOCK server was used25. It is an information-driven flex-
ible docking approach for biomolecular complex modelling. Furthermore, in order to get the schematic illustra-
tion of the interactions between docked proteins, the online database PDBsum was utilised26. Its analysis includes 
schematic diagrams of protein–protein interactions.

http://web.expasy.org/protparam
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
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In silico cloning. The codon usage wrangler server (http://www.mrc-lmb.cam.ac.uk/ms/methods/codon.
html) was used for reverse translational analysis. It provides cDNA sequence as an output, which was further 
analysed for codon optimization, GC content, and CAI by using another online tool called GeneScript57. The 
GC content of a sequence should ideally be present between 30% to 70%, while the ideal CAI score is 1.0, though 
more than 0.8 can be considered as a good score57.

Data Availability statement
All data generated or analysed during this study are included in this article (and its Supplementary Information 
files).
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