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Modelling brain-wide neuronal 
morphology via rooted Cayley trees
Congping Lin1,2, Yuanfei Huang1, Tingwei Quan3,4 & Yiwei Zhang1,2

Neuronal morphology is an essential element for brain activity and function. We take advantage of 
current availability of brain-wide neuron digital reconstructions of the Pyramidal cells from a mouse 
brain, and analyze several emergent features of brain-wide neuronal morphology. We observe that 
axonal trees are self-affine while dendritic trees are self-similar. We also show that tree size appear 
to be random, independent of the number of dendrites within single neurons. Moreover, we consider 
inhomogeneous branching model which stochastically generates rooted 3-Cayley trees for the brain-
wide neuron topology. Based on estimated order-dependent branching probability from actual axonal 
and dendritic trees, our inhomogeneous model quantitatively captures a number of topological features 
including size and shape of both axons and dendrites. This sheds lights on a universal mechanism behind 
the topological formation of brain-wide axonal and dendritic trees.

Neurons, the primary components of central nervous system are electrically excitable cells that receive, process, 
and transmit information through electrical and chemical signals between each other. Digital reconstructions of 
neurons provide information for quantitative measurements of neuronal morphology. With digital reconstruc-
tions, many studies have highlighted the importance of neuronal morphology in its biological function. Mainen 
and Sejnowski1 have shown a causal relationship between dendritic structures and intrinsic firing patterns 
observed from in vitro electrical recordings for a wide variety of cell types. Vetter et al. have shown that branching 
pattern strongly affected the propagation of action potentials which links information processing at different 
regions of the dendritic tree2. Ferrante et al. have shown that even subtle membrane readjustments at branch 
points could drastically alter the ability of synaptic input to generate and propagate the action potentials3. It has 
also been shown that the input-output response function of neuron’s dendritic arbor grows with the tree size4,5. 
More recently, Yi et al. have demonstrated a crucial role of neuronal morphology in determining field-induced 
neural response6. These results, among others, have contributed to a now widespread acceptance that neuronal 
morphology plays a critical role in its activity and function.

The formation of neurons through branching is driven by complex interactions of intracellular and extra-
cellular signaling cascades which are proving difficult to be completely understood by molecular biology alone. 
Mathematical or computational modelling instead provides an alternative and complementary approach to 
uncover mechanism underlying neuronal morphology. Simulators L-Neuron7,8 and NeuGen9 were developed to 
create virtual neuronal structures in silico by means of iteratively sampling experimental statistical distributions 
of shape parameters (including e.g. branch diameter, length, ect). In contrast to L-Neuron or NeuGen simu-
lators which require a large number of experimental neuron samples to obtain reliable distributions of shape 
parameters, Van Ooyen et al. used models in which the morphology of a single dendritic tree was represented 
in a highly abstract manner10–13 where growing neurons were modeled as expanding, circular neuritic fields. 
Based on such phenomenological dendritic growth models, NETMORPH was developed to simulate 3D neu-
ronal networks from the perspective of individual growth cone14, using simple rules for neurite branching at 
each terminal segment. Other modelling approaches with simple rules to account for the spatial embedding of 
tree structures, include optimal rewiring and particle-based diffusion limited aggregation approach: the opti-
mal rewiring approach generates branching geometry by minimizing the wiring length and the path-length to 
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root between branch points and synapses in dendrite trees15,16; the particle-based diffusion limited aggregation 
approach provides model-based measures to estimate “diffusive” shape of neuronal tree-like structures17,18.

However, analysis and modelling of neuron morphology to the best of our knowledge so far are largely based 
on neuron digital reconstructions from certain regions or layers of a brain (e.g.7,14). Moreover, a majority of these 
neuronal morphology analysis and modelling concentrate on neuron dendrites, with only a few studies of axonal 
branching structure in certain layers recently (e.g.19,20). Knowledge about how dendrites and axons branch in an 
entire brain is still limited. Recently, breakthroughs in imaging21,22 and molecular labeling23,24 techniques have 
provided tools to trace and digital reconstruct the almost complete morphology of neuronal populations at a 
single-axon resolution through a whole brain25,26; this offers the opportunity to quantify brain-wide dendritic 
and axonal branching morphology. In this manuscript, we take advantage of current availability of brain-wide 
neuron digital reconstructions of pyramidal cells from a mouse brain25 and analyze the complete axonal and 
dendritic branching morphology. In particular we show that axons are topologically self-affine whereas dendrites 
are topologically self-similar, and topological structures of both axon and dendrites are far away from symmetry 
and appear to be random. We also develop a self-organized probabilistic model for the entire axonal and den-
dritic branching structures. In contrast to the growth models13 which require a simulation/growth time to create 
virtual trees of finite size, we use the generation of rooted 3-Cayley trees (where non-terminal nodes are linked to 
3 neighbors; in neuron trees, 3 linkages of a node represent one mother branch and two daughter branches) via a 
stochastic branching process. Using estimated branching probability from brain-wide axonal and dendritic trees, 
we show that this simple probabilistic model is sufficient to quantitatively recapture several statistical properties 
of neuronal morphology including distributions of neuron size and topological width/length.

Results
Brain-wide axonal and dendritic morphology quantifications. In this section, we analyse neuron 
morphology from 35 brain-wide digital reconstructions of pyramidal neurons in a mouse brain25. A typical neu-
ron consists of a cell body (soma), dendrites, and an axon. Here we analyze axon and dendrite tree morphology in 
aspects of size, asymmetry, and shape of trees as well as correlations among axons and dendrites in single neurons.

Topological structure of axonal and dendritic arbors. We first focus on the topological structure of dendritic and 
axonal branching from soma to neuron terminals, despite the spatial position of each branch. Figure 1 illustrates 
an example of a single brain-wide neuronal morphology and its topological branching structure. We seperate 
individual neurons into one axon and several dendrites for analysis; see Fig. 1 as an example. From 35 actual neu-
ron reconstructions, we find that on average there are 6.8 ± 0.56 number of dendrites besides one axon. Neurons 
have been widely viewed as binary trees (e.g.27), here we first examine this by looking into the degree (i.e. the 
number of branches each node links to) of each node. Clearly, each terminal is connected to one branching node 
(i.e. degree 1) and branching nodes are mainly linked with three branches in both axons and dendrites - with only 
<1% of branching nodes in axons and 2% in dendrites linking to more than 3 branches; those could be due to 
limited spatial resolution in imaging which leads to possible errors in digital reconstructions. Overall, this sug-
gests that brain-wide neurons are well approximated as binary trees.

We quantify the number of branching nodes (which is equivalent to the number of terminals minus one) 
for both axonal and dendritic trees, and refer as the topological size. On average, we find that axons are of size 
224.1 ± 20.89(n = 35), whereas dendrites are significantly smaller, of size 8.29 ± 0.72(n = 239), i.e. about 1/27 
of the axonal tree size. We also classify the branching nodes into three types28: B-type if both child branches 
themselves bifurcate; M-type if only one child branch bifurcate; S-type if branching with two terminals. By such 

Figure 1. Illustration of one single brain-wide neuron digital reconstruction. (a) shows an example of neuronal 
digital reconstruction; data is from25. (b) shows the corresponding Dendrogram of the neuron shown in (a) 
based on its the topological branching structure. The axon part is colored in gray while dendrite part colored in 
black in both panels (a) and (b). (c) shows the dendrogram based on one dendrite. The number of nodes jk and 
branching frequency pk at each order k is illustrated in this example. kmax and jmax are the maximum values of k’s 
and j’s and are referred as tree length and width respectively. In this example, the maximal order equals to 10 
(i.e, kmax = 10) and maximal number of nodes at different orders is 7 which appears at order k = 5 (i.e., 

= =j j: max { } 7k kmax ). Note that the total number of nodes at order k equals to −j2 k 1.
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classification, we find that axons have smaller proportion of S-type nodes whereas dendrite trees have larger pro-
portion of S-type branching nodes; see Fig. 2(a).

We characterize the topological shape of neuron trees by measuring its topological width and length as illus-
trated in Fig. 1(c). To do this, we first give an order (denoted as k) for each node as its topological distance to the 
soma, i.e. the number of branches in its path to the soma. The topological length (denoted as kmax) of a tree is then 
defined as the maximal order among nodes. For the topological width, we calculate the number of branching 
nodes (denoted as jk) for each order k and define the topological width (denoted as jmax) of a tree as the maximum 
among all jk, k = 1, …, kmax

29. This is similar to Sholl analysis30 when topological distance is applied. In the popu-
lation of our 35 actual brain-wide neuron reconstructions, we observe that on average jmax ∝ Nτ, kmax ∝ Nλ and the 
scaling exponents are different between axons (τ = 0.775 ± 0.114, λ = 0.424 ± 0.079) and dendrites 
(τ = 0.530 ± 0.035, λ = 0.533 ± 0.036); see Fig. 2(b). Note that in axons, exponents τ and λ are significantly differ-
ent (F test; p = 0.012) where in dendrites there is no significant difference between the exponents (F-test p = 0.97); 
this suggests that in aspects of topological shape, dendrites are approximately self-similar (i.e. τ ~ λ) whereas 
axons are self-affine (i.e. τ λ ).

Next, we quantify morphological asymmetry of neuron trees. Following the definition in31, tree asymmetry A 
describes the average of local partition asymmetry =

| − |

+ −
A r s( , ):p j j
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r s 2
j j

j j
 for all branching nodes (here rj, sj are the 

number of terminals in two subtrees from a branching node) except for those with partition (1, 1) (i.e. branching 
to two terminals). This tree asymmetry reflects the relative balance of branching within a tree based on the distri-
bution of terminals between two subtrees birfucated from a node. This asymmetry index ranges from 0 (symme-
try) to 1 (asymmetry). The axon and dendrite from brain-wide neuron digital reconstructions show no significant 
difference (student t-test p = 0.274) on tree asymmetry with A = 0.791 ± 0.006(n = 35) for axonal trees and 
A = 0.743 ± 0.019(n = 211) for dendritic trees and both are far away to symmetry. These measured partition 
asymmetry values are close to reported values in http://neuromorpho.org/. Another asymmetry measurement - 
excess partition asymmetry introduced by Samsonovich and Ascoli32 considers the difference between partition 
asymmetry actually measured at one branch and the average of partition asymmetry computed for the same 
branch after all possible shuffling of the granddaughter branches. This excess partition asymmetry is useful to test 
the randomness in branching or the existence of control/regulation process within neurons. Interestingly, in con-
trast to ‘regulation mechanism’ suggested in32 based on systematically positive excess partition asymmetry Ep 
measured from pyramidal cells on some slice of a brain33, we show that our brain-wide axonal and dendritic trees 
appear to have almost no excess partition asymmetry with Ep = 0.012 ± 0.005(n = 35) (t-test to zero mean with 
p = 0.013) for axons and Ep = 0.004 ± 0.006(n = 151) (t-test p = 0.054) for dendrites. This suggests branching in 
both axonal and dendritic trees appears to be random.

Geometric size of axons and dendrites. Regarding geometric size of neuron trees, we measure the total 
branch length L of a tree (i.e. the sum of all branch length in a tree). On average, axons have a total branch 
length of 5.97 × 104 ± 0.55 × 104 μm (median 5.86 × 104 μm) and dendrites have a total branch length 
9.6 × 102 ± 0.99 × 102 μm (median 5.6 × 102 μm). Moreover, we observe that the total length L strongly corre-
lates with tree size N (Pearson r = 0.68, p < 0.0001 for axons and r = 0.91, p < 0.0001 for dendrites) and increases 
approximately linear as the tree size N for both axons and dendrites; see Fig. 3 top panels. The mean total length 
is expected to be the mean branch length (say m) multiplied by the number of branches 2N + 1 for a given tree 
size N. The data show a best linear fit to the function L = m(2N + 1) with a mean branch length m = 123.2 μm 
for axons and m = 59.9 μm for dendrites. Such strong correlations and similar linear slopes between axon length 
and its tree size were also observed in vitro axons of human neurons across all layers of medial temporal cortex, 
though total length of axons in human brains is much larger than that in mouse20; this suggests a potential univer-
sal mechanism controlling branch length cross species. We also note that in our brain-wide neurons, though the 
total branch length approximately grows linearly with the number of branches, the branch length is not uniform 

Figure 2. Tree branching nodes and topological shape. (a) shows proportion of each type of branching nodes in 
axons (n = 35) and dendrites (n = 239) from 35 actual brain-wide neuron reconstructions. (b) shows topological 
length and width and their scaling with tree size as λ~k Nmax  and τ~j Nmax ; each dot represent the kmax (black) 
or jmax(grey) averaged over trees with the same tree size N. Exponents λ and τ are indicated in each panel for 
both axons and dendrites. They show significant difference in axons (F-test; p = 0.012) and no significant 
difference in dendrites (F-test; p = 0.97).

http://neuromorpho.org/
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along orders; see Fig. 3 bottom panels for both axons and dendrites. In particular, the branch length of axons is 
larger at intermediate orders than those at smaller or larger branch orders.

Correlation among axons and dendrites in single neurons. It has been suggested that in one given portion of a 
neuron, dendritic morphology may be under intrinsic homeostatic control which regulates tree size fluctuations 
systematically by counterbalancing the remaining dendrites in the same cell32. We test such a control mechanism 
in axons and dendrites from our actual brain-wide neurons. If trees of a neuron were mainly up(down)-regulated 
by common factors, then neurons with larger axons in terms of tree size would have larger dendrites; if axons and 
dendrites were mutually regulated by competition, then neurons with larger axons would have smaller dendrites. 
Based on calculated tree size of axons, average tree size among dendrites and the number of dendrites for each of 
36 neurons, we perform Pearson correlation analysis among these quantities. Interestingly, we find no significant 
correlation between axon tree size and average dendrite tree size (p = 0.98), between axon tree size and number of 
dendrites (p = 0.23), or between average dendrite tree size and the number of trees (p = 0.061). These suggest that 
axon tree size, dendrite tree size and dendrite number in single neurons are likely to be independent. Moreover, if 
tree size is regulated within single neurons, then tree shuffling would lead to an increase in the variance of average 
tree size in the neuron population; if tree size is random among populations, then shuffling would not lead to 
significant change on the variance32. To further test such randomness, we consider neurons with the same number 
of dendrites. Then we randomly shuffle the dendrites in these neurons and calculate the standard deviation (std) 
of the average dendrite tree size among single neurons. Figure 4(c) show that 35.5% of 1000 random shuffling 
gives higher std of the average dendrite tree size than the std from actual neurons, suggesting tree size of dendrites 
within single neurons is random.

Modelling topology of axonal and dendritic trees. As indicated by above statistical analysis, the tree 
size of dendrites and axons appear to be random independent of the number of dendrites, indicating that the 
formation of brain-wide neuron trees is likely to be a stochastic process. In this section, we use stochastic gen-
eration of rooted z-Cayley trees34 to model the topological structure of axonal and dendritic arbors. A z-Cayley 
tree is a tree where non-terminals have z-neighbours. Here to model neuron trees, we use z = 3 as non-terminal 
nodes in neuron trees are shown to mainly have 3 branches (3 neighboring nodes): one in previous order and two 
in the next order. In the generation of a rooted 3-Cayley tree, we start with an arbitrary node as the root (which 
represents the soma in a neuron tree), and assign an link from this root connecting to another node (viewed as 

Figure 3. Tree geometric length. Top two panels show total branch length L (measured as the sum of all branch 
length) as a function of topological tree size N; lines give the best fitting to the function L(N) = m(2N + 1) with 
m = 123.2 μm for axons and m = 59.9 μm for dendrites. Bottom two panels show the average branch length 
(mean ± sem is shown) at each order k for axons (left) and dendrites (right).
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the 1-th order node); the generation of tree proceeds from this 1-th order node, by (1) bifurcating to two daughter 
branches (linking to 2 neighbouring nodes in the next order) and (2) randomly selecting its neighboring nodes 
in the next order with certain probability; if one node in the k− th order is selected, then it bifurcate into two 
daughter branches to next order k + 1 and random selection on its two neighbours applies independently; if a 
neighbouring node is not selected, then this neighboring node is considered as a terminal (which could not bifur-
cate into the next order). The procedure continues until no more nodes are selected to bifurcate and eventually 
generates a rooted 3-Cayley tree.

We first investigate the homogeneous branching model where all nodes are selected with the equal probabil-
ity p. In this case it is well known that beyond a critical probability pc = 1/2, a positive probability exists that an 
infinite tree is generated, whereas below this threshold, the probability for such infinite spanning is zero and a 
finite tree is generated35. Moreover, the mean tree size of generated finite trees increases with branching proba-
bility as

= − < = .⟨ ⟩N p p p1/(1 2 ), if 1/2 (1)c

In fact if we denote T by the mean number of branches in one branch from the 1-th order node, then by statis-
tical equivalence between sub-branches T = p(1 + 2T), which gives T = p/(1 − 2p), and the mean tree size 
〈 〉 = +N T1 2  where 1 corresponds to the 1-th order branching node.

To model the axonal and dendritic trees, we estimate the constant branching probability p from Eq. (1) using 
measured average tree size, which gives p = 0.498 for axons and p = 0.44 for dendrites. Indeed, the model with 
estimated branching probability produce similar mean tree size as the actual data; see Fig. 5 top two panels. We 
then test this simple homogeneous model for other quantities described in the above section, such as proportions 
of 3 types of branching nodes (we take the B-type branching node as an example for the comparison), topological 
shape indexes (jmax and kmax), and tree asymmetry A. Note that the model takes independent probability for each 
node and thus no excess asymmetry is expected. Figure 5 top panels show the relative difference of the modelling 
results to actual data on these quantities; in particular, we see that proportion of B-type branching node and top-
ological width (jmax) from homogeneous model from both axons and dendrites are far different (>20% relative 
difference) to measurements from actual data. Moreover, distributions on tree size (N), tree topological length 
(kmax) and width (jmax) as shown in Fig. 5 bottom panels for both axons and dendrites are significantly different 
to corresponding distributions from actual axonal and dendritic trees (p < 0.0001 for both axons and dendrites). 
We also notice that distributions from the homogeneous model illustrate higher frequency at lower values and 
larger variation on these quantities for both axons and dendrites, indicating that it has high probability to generate 
smaller tree than the expected mean. We thus conclude that homogeneous model is not sufficient to model the 
topology of neuron trees.

We next consider an inhomogeneous model where branching probability differs between nodes. In particular 
we investigate order dependent branching probability pk; such dependence was considered in the growth model12 
and the computational model36. Figure 6 indeed shows that the branching probability does depend on the order 
in particular at low orders. In the growth model12 for dendritic topology, branching probability is assumed to 
be decay exponentially to 0 as the order k → ∞. However, the observed branching frequencies for both axons 
and dendrites in our brain-wide neurons do not fit well to exponential decay with zero plateau, instead, the data 
exhibit steady branching frequencies at high orders k and statistically the data fit better to exponential decay with 
non-zero plateau in the form of pk = bexp(−ak) + c (F-test; p < 0.001 for both axons and dendrites). In the best 
fitting curve, as k → ∞, the branching probability pk → c < pc = 0.5 (the critical probability); this ensures a finite 

Figure 4. Tree size of axons and dendrites from single neurons. (a) shows scatter plots of average dendrite tree 
size and number of dendrites against axon tree size from single neurons; each dot represents measurements 
from one neuron. Pearson correlation analysis suggests no significant correlation with p = 0.98 for average 
dendrites tree size and p = 0.23 for number of dendrites. (b) shows the tree size of dendrites in relation with 
the number of dendrites in single neurons; each dot represents measurements from one dendrite. Gray lines 
represent the average cross vertical points for each number of dendrites. Pearson correlation analysis suggests 
no significant correlation between the number of dendrites and average dendrite size (p = 0.061). (c) shows the 
histogram of standard deviations of average dendrite tree sizes from 1000 random shuffling of dendrites among 
7 neurons (each of which has 7 dendrites); gray bar shows the standard deviation of average dendrite tree sizes 
from the actual 7 neurons.
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tree generation in our model35. The plateau c also reflects the almost constant branching probability at large orders 
where subtrees branch in an approximately “homogeneous” manner.

With the best fitting branching probability in the form of exponential decay to a non-zero plateau, the inho-
mogeneous model leads to mean tree sizes 〈 〉 ≈ .N 214 3 and 7.1 for axonal and dendritic trees respectively, which 
are close to measured values from actual data. We also test this inhomogeneous model on other topological quan-
tities and show in Fig. 5 that the model not only recaptures the mean tree topological measurements (with relative 
difference <20% to measurement from actual neurons), but also agrees well on their distributions in particular 
the tree size and topological shapes kmax and jmax (two-sample Kolmogorov-Smirnov test with p ≥ 0.05, except for 
test on jmax of dendrite where p = 0.01). We next examine the scaling of topological shapes in relation to tree size. 
Figure 7 shows that the conditional averages of tree length and width scale with the tree size N as 〈 | 〉 λ~k N Nmax  
and 〈 | 〉 τ~j N Nmax  with exponents λ = 0.339 ± 0.007, τ = 0.754 ± 0.009 (significant difference between λ and τ; 
F-test; p < 0.0001) for axons and λ = 0.631 ± 0.048, τ = 0.522 ± 0.044 (no significant difference between λ and τ; 
F-test; p = 0.339) for dendrites. These exponents from simulations are close to those estimated from actual neu-
rons, showing that as similar as in actual neurons, simulated virutal axons are self-affine while simulated virtual 
dendritic trees are self-similar. These suggest that inhomogeneous model with a simple order dependent rule on 
branching probability is sufficient to statistically capture a number of topological features of both axonal and 
dendritic morphology in a quantitative manner.

Statistical properties of the probability model. In this section, we explore how topological character-
istics of artificial trees generated from the inhomogeneous model with branching probability =p bmin { expk
− + ∀ ≥ak c k( ) , 1}, 2 vary with parameters. Note that we take a min operation in pk here, considering a prob-

ability cannot be larger than 1. Also note that, if we denote p1 as the branching probability for order k = 1, then 
≡p 11 , as the first branching is initially selected in the model.

Figure 5. Comparison between actual neuron data and model. Top two panels show relative difference on 
quantities including tree size N, percentage of B-type branching nodes B(%), tree topological length kmax 
and width jmax as well as tree asymmetry A from (in)homogeneous modelling to those measured from actual 
axonal (left) and dendritic (right) trees respectively. Bottom panels show distributions on tree size N and 
topological shape parameters (kmax and jmax). Two-sample Kolmogorov-Smirnov test is used to compare 
between distributions from actual axonal (left) and dendritic (right) trees and virtual trees generated using the 
(in)homogeneous model; p values are indicated for each comparison. The imhomogeneous model uses the best 
fitted exponential decay with non-zero plateau of the branching probability given in Fig. 6.
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Simply, the mean tree size which can be calculated as the total number of branching nodes from all orders, 
and read as

∑ ∑ ∏〈 〉 = = +
=

∞

=

∞
−

=
N j p1 2

(2)k
k

k

k

m

k

m
1 2
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For the homogeneous model pm = p, it reduces to Eq. (1). For the inhomogeneous model, this estimation agrees 
well with simulated data; see Fig. 8 top panels. As expected, tree size N, tree length kmax and width jmax increase with 
decreasing decay rate a or increasing b, c. Moreover, we note that for a similar variation of parameters, the decay rate 
a allows to give a board range of values on topological quantities in particular the tree size N. Furthermore, from the 
simulated data, we observe that on average tree length kmax is larger than tree width jmax when tree size is small, 
whereas when tree size is big (e.g. see simulations with small a on the top left panel in Fig. 8) tree length kmax is 
smaller than tree width jmax on average. This is further confirmed in Fig. 8 bottom panel, which illustrates changes of 
conditional average of tree length kmax and width jmax for various tree size N. Note that the model has three parame-
ters a, b and c and different combinations of the parameters could give the same tree size N depending on the 
branching probability expression on pk. However, from Fig. 8 bottom panel, we see that for the same tree size N, the 

Figure 6. Branching frequency of axonal and dendritic trees. F test shows that the branching frequency 
measured from actual axonal (circles) and dendritic (dots) trees prefers an exponential decay − +b ak cexp( )  
with non-zero plateau c (solid lines), instead of an exponential decay to c = 0 (dashed lines). The best fitting 
parameters for the exponential decay with non-zero plateau are a = 0.206, b = 0.855, c = 0.409 for axonal trees 
and a = 0.79, b = 1.933, c = 0.313 for dendritic trees. To have appropriate average branching frequency values for 
the fitting, only orders with sample size larger than 10 is considered here.

Figure 7. Tree topological width and length scale with tree size from model simulations. Red and blue dots 
show the conditional average of topological length kmax and width jmax respectively for given tree size (i.e. 
〈 | 〉k Nmax  and 〈 | 〉j Nmax ) from simulations using inhomogeneous model with parameters given in Fig. 6 for both 
axonal (left panel) and dendritic (right panel) trees. Lines show the best fitted curve of the corresponding 
simulated dots to 〈 | 〉 λ~k N Nmax  and 〈 | 〉 τ~j N Nmax . Best fitting gives exponents λ = 0.339 ± 0.007, 
τ = 0.754 ± 0.009 (significant difference between λ and τ; F-test; p < 0.0001) for axons and λ = 0.631 ± 0.048, 
τ = 0.522 ± 0.044 (no significant difference between λ and τ; F-test; p = 0.339) for dendrites. Black and grey dots 
are measured from actual data as shown in Fig. 2(b).
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corresponding mean tree length and width from different combinations of parameters are similar. This suggests that 
the tree shape largely depends on the tree size regardless of the branching probability pattern along the orders in the 
model. Moreover, Fig. 8 bottom panel shows that for small magnitude of tree size N, the mean tree length and width 
grow with the tree size N in a similar scale, i.e. 〈 | 〉 〈 | 〉λ τ~ ~k N N j N N,max max  with λ ≈ τ; the dendrite trees are 
particularly of this case. Whereas for a large magnitude of tree size N, the mean tree width grow faster than tree 
length when increasing tree size N, i.e. λ < τ; axons are particularly of this case. An intersection between tree length 
and tree width in relation with tree size occurs at around N = 400; for tree size much larger than this, the mean tree 
width is larger than mean tree length (i.e. 〈 | 〉 > 〈 | 〉j N k Nmax max ). These could be used as predictions for topological 
tree length and width when knowing tree size.

Conclusion and Discussion
In this manuscript we examine several neuronal morphological features and develop an inhomogeneous model 
to generate finite realistic virtual axonal and dendritic tree structures. By analyzing topological shape (length and 
width) in relation with tree size, we find that axons exhibit an self-affine patten while dendrites are self-similar. 
Moreover, analyses on excess asymmetry and dendrite shuffling, suggest that tree size appear to be random; this 
supports the idea of a probability model for neutron tree structures. Using inhomogeneous branching probabil-
ity, our probability model generates finite virtual trees of statistically similar to brain-wide Pyramidal neutrons 
in a number of features (including axonal and dendritic tree size and shape). In contrast to published simula-
tion tools7–9,13, this modelling approach provides a tool with simple rules in a self-organized manner to generate 
virtual topological neuron structures of finite size. We remark here that models using different order depend-
ent branching probability functions (e.g. polynomial decay, modelling data not shown) which fit the measured 
branching frequency as shown in Fig. 6, are also able to recapture measured data. Mechanisms underlying the 
decay pattern of branching probability remains unclear; however order dependent branching frequency alone is 
thus sufficient to capture the tree topology.

Our modelling of brain-wide neuron branching topology can be extended to take geometric information of 
branches into account, e.g. branch length and branch angles as studied in14,36. Note that a branch in a real neuron 
is not a straight line between two branching points, but exhibit complicated curvature structures; see Fig. 1(a). 
Including curvature structures would thus be important for a complete and better understanding of mechanism 
underlying brain-wide neuron morphology and its relation to specific functions at a single neuron scale. One 
possibility for such extending could be the inclusion of a stochastic process for the outgrowth direction of each 
branch as considered in the NETMORPH14. Single neurons can expand towards different regions in the brain and 
different areas in the brain are specialized for different functions; e.g. left hemisphere of the brain is dedicated to 
language while the right hemisphere is involved in more creative activities such as drawing. Thus morphological 
difference between different regions in a single neuron scale is likely to link at with different region-specified 

Figure 8. Statistical properties of tree topological shape when varying model parameters. Top panels show 
average tree size, tree length and width when varying parameters a, b, c in the inhomogeneous model with 
branching probability = − +p b ak cmin { exp( ) , 1}k  from simulations; lines show the mean tree size according 
to estimation (2). Bottom panel shows the change of conditional average of tree length and width 
〈 | 〉 〈 | 〉k N k N,max max  using different parameters in the inhomogeneous model; one parameter is given in the 
legend while other parameters are the same as the best fitting curve for axons in Fig. 2(b); for a given tree size N, 
only sample size larger than 10 of tree length and width are plotted.
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functions37–39. Indeed, neuron morphology and function in different layers of brains have been studied40,41. 
However, we are still far away to understand neuron morphology-function relationship at a single neuron scale.

As a theoretical approach in studying morphological role of neurons in their function, our brain-wide model-
ling of neuron branching could be useful to study the enhancement of dynamic range42, by creating virtual realis-
tic neuron topologies. Traditional Cayley trees (where terminals are of the same order) considered as an excitable 
media for input signal propagation has been recently used to investigate dynamic range4,42. With our modelling 
approach for realistic neuron tree topology, it would be interesting to explore statistical properties of neuron 
trees in relation with dynamic ranges of neurons. In particular, it has been suggested that larger tree size could 
give larger dynamic ranges42; this can be tested with realistic virtual neuron trees using our modelling approach 
instead of traditional Cayley trees. Moreover, using more realistic virtual neuron trees also allow investigating the 
impact of tree asymmetry as well as tree shape in dynamic range.

Methods
In this manuscript, we use 35 neuron digital reconstructions of pyramidal cells for analysis. Pyramidal neurons 
digital reconstructions are provided by authors in25. Briefly, neuron digita reconstructions were obtained as fol-
lows. The brain is from C57BL/6J mouse line, and its pyramid neurons are sparsely labelled with Adeno-associated 
virus (AAV). Fluorescence micro-optical sectioning tomography microscopy (fMOST) was used to image these 
labelled neurons which span different brain regions or even the whole brain. From the imaging dataset, GTree 
method was used to reconstruct these labelled neurons, all of which contained axonal and dendrite tree mor-
phology. The animal experiments were approved by the Institutional Animal Ethics Committee of Huazhong 
University of Science and Technology, and all experiments were performed in accordance with relevant guidelines 
and regulations.

The digital reconstruction of each brain-wide neuron is stored in a morphological file (in “SWC” format) 
which includes position information of each traced point and its linkage points. For analysis, each empirically 
neuron is decomposed into one axonal tree and several dendritic trees; each tree stems from the same soma. The 
axon part is identified as the largest component (in terms of the number of branching points) among all subcom-
ponents and the rest are considered as dendrites.

A subcomponent of digital reconstruction stemmed from the soma is excluded for analysis if there is no 
branching points in this subcomponent; this in fact corresponds to a tree of size N = 0. Note that there is a small 
proportion of branching points which bifurcate to more than 2 branches; this could possibly due to errors in 
digital reconstruction. We manually adjust this by splitting such branching points so that all branching points 
bifurcate to 2 branches.

Data Availability
The data that support the findings of this study are available from the corresponding author on request.
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