
1SCIENTIFIC REporTS |  (2018) 8:15435  | DOI:10.1038/s41598-018-33900-2

www.nature.com/scientificreports

Using volunteered observations to 
map human exposure to ticks
Irene Garcia-Marti   1, Raul Zurita-Milla1, Margriet G. Harms2 & Arno Swart2

Lyme borreliosis (LB) is the most prevalent tick-borne disease in Europe and its incidence has steadily 
increased over the last two decades. In the Netherlands alone, more than 20,000 citizens are affected 
by LB each year. Because of this, two Dutch citizen science projects were started to monitor tick bites. 
Both projects have collected nearly 50,000 geo-located tick bite reports over the period 2006–2016. 
The number of tick bite reports per area unit is a proxy of tick bite risk. This risk can also be modelled as 
the result of the interaction of hazard (e.g. tick activity) and human exposure (e.g. outdoor recreational 
activities). Multiple studies have focused on quantifying tick hazard. However, quantifying human 
exposure is a harder task. In this work, we make a first step to map human exposure to ticks by 
combining tick bite reports with a tick hazard model. Our results show human exposure to tick bites in 
all forested areas of the Netherlands. This information could facilitate the cooperation between public 
health specialists and forest managers to create better mitigation campaigns for tick-borne diseases, 
and it could also support the design of improved plans for ecosystem management.

Forests are complex dynamic systems that provide a wide array of ecosystem services to society, such as ground-
water protection, and wood and fiber production1. Also, forests provide recreational services (e.g. sports, lei-
sure activities), which may have positive (e.g. stress reduction) and negative (e.g. increased exposure to 
pathogens) impacts on human health2. The transmission of pathogens causing tick-borne diseases to human 
hosts poses an important threat to public health3. In this regard, the European Centre for Disease Prevention 
and Control surveys five different tick-borne diseases (i.e. Lyme borreliosis, tick-borne encephalitis, relapsing 
fever, Crimean-Congo hemorrhagic fever, and Mediterranean spotted fever, from https://ecdc.europa.eu/en/
publications-data/presentation-tick-borne-diseases-healthcare-professionals, last accessed July 5th, 2018), and 
reports the prevalence of these diseases across the European continent.

The incidence of Lyme borreliosis (LB), the most prevalent tick-borne disease in Europe, has steadily increased 
during the period 1990–2010 in, at least, nine European countries4. In recent years, however, sub European senti-
nel networks of general practitioners have identified the first signs of stabilization5–7. In the Netherlands alone, the 
number of LB cases has continuously increased since the mid-1990s8,9, but a recent study shows that this trend is 
also stabilizing10. Yet, over 20,000 citizens are diagnosed each year with LB, a situation that prompted researchers 
from Wageningen University and the Dutch Institute for Public Health and the Environment (RIVM), to start 
two crowdsourced projects to collect data on tick bites. Since 2006, the platforms Natuurkalender (NK; “nature’s 
calendar”; http://www.natuurkalender.nl) and Tekenradar (TR; “tick radar”; https://www.tekenradar.nl/), have 
collected nearly 50,000 geo-located tick bite reports. To the best of our knowledge, these platforms constitute 
the first citizen science projects that specifically focus on ticks and tick-borne diseases. Citizen science projects 
present an interesting characteristic when compared to classical forms of data acquisition (e.g. ground surveys 
or sensor networks): the ubiquity of the crowd allows a fine-grained sampling in space and time, which makes it 
possible to monitor elusive public health threats, such as tick bites.

The volunteered tick bite reports collected by the NK and TR projects depict the risk of getting a tick bite. This 
risk is the result of the interaction of two components: hazard (e.g. tick activity) and human exposure (e.g. recre-
ational intensity in a location)11, which tends to occur outdoors (e.g. forests, urban parks). There are significant 
efforts in literature to quantify the hazard component12–14, but finding proxies of exposure is a harder task, due to 
the unavailability of human recreational metrics at the national scale. Quantifying recreational pressure in nature 
is of interest in fields as diverse as public health, forestry management or environmental science. In public health, 
knowing the intensity of recreational activities might help delimiting locations that serve as an interface between 
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natural elements and humans13,15–17. This can be useful to better design tick bite prevention campaigns in for-
ested areas. However, the complexity of forest ownership in the Netherlands might pose hurdles to this task. The 
sixth Dutch National Forest Inventory18 indicates that forests occupy 373,480 hectares (roughly, 11% of the ter-
ritory). Public organizations (e.g. Staatbosbeheer: https://www.staatsbosbeheer.nl/, municipalities) own 260,900 
hectares of forest, whereas private partners (e.g. Natuurmonumenten: https://www.natuurmonumenten.nl/,  
citizens) own 112,600 hectares of forest. Dutch law requires private owners with a property larger than 5 hectares 
to be registered at the Dutch Industrial Board for Forest and Nature (i.e. Bosschap http://www.bosschap.nl/). 
Currently, 1,431 citizens own 61,000 hectares of forest larger than 5 hectares, and an unknown number of citizens 
own 51,600 hectares of smaller forest patches18,19. Thus, educating a relatively small group of public and private 
foresters to reduce tick bites in their domain, might lead to a substantial decrease in the number of LB cases per 
year. For instance, forest owners with parcels presenting a medium or high human exposure, could implement 
preventive measures of tick habitat manipulation, such as grass mowing, removing leaf litter, or covering heavily 
visited locations with dry substrates (e.g. wood chips, gravel)20.

In this work, we present a novel method to quantify country-wide exposure to ticks in forested areas. Our 
method is based on volunteered tick bite reports, and on a hazard model developed in our previous work12. This 
hazard model was also based on volunteered data about tick activity in forested areas. The resulting human expo-
sure is presented as a categorical map that shows the recreational intensity across Dutch forested areas. Such a 
human exposure map should facilitate the cooperation between public health specialists and forest managers to 
jointly tackle public awareness about tick bite prevention, especially in locations with a high intensity of human 
exposure. In addition, this first-of-its-kind exposure map helps to understand and locate sources of potential 
landscape disturbance (by visitors) and could support better ecological management practices.

Modelling Human Exposure to Tick Bites
Obtaining measures of human exposure to ticks is a challenging task due to the unavailability of nation-wide 
datasets representing human activities outdoors. However, human exposure is tightly related to risk and hazard, 
so it can be calculated from these two variables. In this section we describe the theoretical background, operation-
alisation and the data processing workflow that allows the calculation of human exposure and graphical mapping 
of this variable.

Theoretical background.  In the field of risk assessment, risk (R) is often modelled as a function of hazard 
(H) and exposure (E). The relationship between the three variables can be conceptualized as R = H × E11. In the 
paragraphs below, we discuss in more detail how we can conceptualize R, H, and E in terms of probabilities, and 
how those probabilities connect to our data. The exposure below pertains to a single location (i.e. grid cell in the 
rasterized map). In Section 2.2 we operationalize the theory by linking it to the NK and TR studies.

We can define a normalized measure of exposure E as a probability: =E P visit( ). Following the same logic, we 
can define a normalized measure for H as the conditional probability of a tick bite given a visit: = |H P bite visit( ).Then, 
we can define R as the unconditional probability of getting a tick bite: =R P bite( ). From the law of total probability, 
and the obvious fact that a tick bit requires a visit, we have: = | + |P bite P bite visit P visit P bite no visit P no visit( ) ( ) ( ) ( ) ( )
= |P bite visit P visit( ) ( ) , from which we recover R = H × E.

Operationalisation.  Let v be a variable representing the unknown total number of visits to each grid cell, 
and let n be the total number of records in the NK and TR studies, then an estimate of =E P visit( ) is v n/ . The 
probability = |H P bite visit( ) can be estimated as the total number of reported tick bites b at the location, divided 
by the number of visits b v/ . Note that H may be zero when b = 0, and is undefined when v = 0. The unconditional 
probability: =R P bite( ) can be estimated by dividing the total number of tick bites by the number of records in 
the NK and TR studies b n/ .

Using these estimates for the probabilities, we find that v can be calculated when the number of person-days in 
the study (i.e. the number of tick bite reports), and a measure of the hazard of the active ticks are known:

= =E R
H

b
nH (1)

Hence, it is possible to obtain a measure of human exposure to ticks by dividing the number of tick bites in a loca-
tion by a measure of the hazard for that location. For a proxy of H, we use a previously developed hazard model12. 
Note that the value of n is immaterial as it is a constant over the Netherlands, and the output of the hazard model 
is not H but assumed to be proportional to H. The above is conditional on H being not equal to zero, which is 
satisfied since a property of our hazard model is that it always yields strictly positive hazard.

Data processing.  The calculation of human exposure to ticks requires calculating risk and hazard. The risk 
of getting a tick bite can be estimated from the volunteered tick bite reports, and hazard can be derived from a 
tick activity model developed in our previous work12. The workflow designed to obtain human exposure to ticks 
consists of four steps: (1) mapping the risk of getting a tick bite; (2) estimating tick hazard; (3) calculating and 
mapping human exposure; (4) validating the results. Note that this work has been developed using different 
Python libraries: numpy21 has been used to handle the different arrays, jenks22 package implements Jenks Natural 
Breaks (JNB) algorithm to classify the exposure layer, GDAL23 and cartopy24 were used to process geospatial data 
and prepare the maps, and matplotlib25, and seaborn26 to prepare the plots.

The transformation of tick bite reports into a risk layer requires selecting a spatial aggregation unit. Here we 
choose a regular grid with cells of 1 km2 as spatial unit because the existing hazard model works for grid cells 

https://www.staatsbosbeheer.nl/
https://www.natuurmonumenten.nl/
http://www.bosschap.nl/


www.nature.com/scientificreports/

3SCIENTIFIC REporTS |  (2018) 8:15435  | DOI:10.1038/s41598-018-33900-2

with this spatial resolution. Thus, the tick bite reports were aggregated to grid cells of 1 km2. Risk is defined as the 
cumulative sum of tick bite reports over the period 2006–2016 occurring in each grid cell (Fig. 1a), if the cumu-
lative sum is greater than zero.The number of tick bites per cell ranges between 1 (in blue) and 353 (in red). The 
visual inspection of Fig. 1a shows that coastal (e.g. from Haarlem to Middelburg), and forested areas (e.g. Veluwe 
national park, Utrechtse Heuvelrug) in the center of the country present a high concentration of high risk loca-
tions. These are well-known locations for outdoor recreation. Smaller regions of high tick bite risk can be found 
in the rest of the country (e.g. provinces of Drenthe and Groningen).

Hazard is defined as the tick activity provided by a data-driven model12 that predicts daily tick activity in 
vegetated areas suitable for ticks (i.e. forests and natural grasslands). This model was built using nine years (2006–
2014) of volunteered tick activity data (acquired in the Netherlands by using cloth dragging) and a large suite of 
environmental variables. Volunteers sampled 15 vegetated locations on a monthly basis, and counted the num-
ber of ticks per life stage (i.e. larvae, nymph, and adult). Our model, which was only calibrated for nymphs as 
they pose the highest hazard to humans, uses 101 biotic and abiotic environmental predictors. These predictors 
include data about the habitat conditions for ticks (e.g. litter, moss), mast years for three tree species, weather (e.g. 
temperature, evapotranspiration, relative humidity), satellite-derived vegetation indices (e.g. NDVI), and land 
cover. To account for the effect that short- and long-term weather conditions have on tick activity, we aggregated 
the weather data to 11 temporal resolutions (i.e. 1–7, 14, 30, 90, 365 days). The model yields daily tick activity for 
4,132km2 for forests and grasslands (hereinafter ‘forests’), which enables further studies in the fields of ecological 
research, nature management and public health. Limitations of this model include the lack of data about wildlife, 
due to unavailability of this type of data at the national level and for the entire study period. Hazard predictions 
are included in this work by running our data-driven model for each day of each year included in the study period 
to compute the maximum annual tick activity, and by averaging these annual values to obtain a robust proxy of 
tick hazard at 1 km (Fig. 2). A visual inspection of Fig. 2 shows that the area of highest tick activity is located in the 
northeastern half of the country (e.g. provinces of Overijssel, and Drenthe). Forested areas in the center and south 
of the country present an average tick activity and coastal areas present a low tick activity.

As explained in section 2.2, human exposure can be calculated by dividing the risk and the hazard compo-
nents. Note that there are locations in which these measures are not available. This means that there are locations 
in which no tick bites are reported, or locations outside forests with no measurement on tick activity available that 
are excluded from the exposure calculation. Depending on the values of these variables, four cases will be found 
(c.f. Table 1): (1) risk and hazard are positive (i.e. R > 0 and H > 0); (2) risk is positive and hazard is undefined 
(i.e. R > 0 and H = undefined); (3) risk is zero and hazard is positive (i.e. R = 0 and H > 0); (4) risk is zero and 
hazard is undefined (i.e. R = 0 and H = undefined). Cases 2 and 4 lead to a mathematically undefined operation, 
hence the exposure is undefined too. Case 1 represents locations in which there is tick activity and human expo-
sure. Case 2 can be used to characterize locations where tick bites are reported outside forests (e.g. urban and 
peri-urban areas). Case 3 depicts forested locations with a low recreational intensity or a low hazard (i.e. no tick 
bites reported), and case 4 shows areas in which there is no risk and hazard data available.

To ease the interpretation of the results, the resulting exposure was classified using the JNB algorithm. This 
algorithm minimizes the intra cluster variance and maximizes the distance between clusters. The optimal number 

Figure 1.  (a) Risk of tick bites (2006–2016) as collected by the NK and TR volunteered projects. The cumulative 
sum of tick bites reports per 1 km grid cell are used as a proxy of tick bite risk. The image reveals that tick bites 
are produced throughout the country. However, the reports tend to be clustered around forests (e.g. Veluwe 
national park, center of the country), or recreational areas (e.g. coastal areas). (b) Locations mentioned along the 
text. The provinces and the national parks are labeled with capital letters, whereas cities are labeled in lower case.



www.nature.com/scientificreports/

4SCIENTIFIC REporTS |  (2018) 8:15435  | DOI:10.1038/s41598-018-33900-2

of classes is iteratively found testing all values between 2 and 10 and calculating the goodness of variance fit of 
the resulting classification. Using the classes yielded by this algorithm, we created a categorical human exposure 
to ticks map.

To assess the validity of our exposure results, we compared them with a publicly available map depicting 
the attractiveness of the landscape (i.e. Belevingswaarde van het landschap, https://data.overheid.nl/data/dataset/
dank-belevingswaarde-van-het-landschap, last accessed July 5th, 2018)27,28. The attractiveness map relies on 3 
positive variables (i.e. naturalness, terrain elevation, historical value), and 3 negative variables (i.e. visibility of 
the horizon, urbanization, noise pollution) to classify the attractiveness of each grid cell. In short, this map shows 
how much citizens find a landscape attractive, expressed as six categories in the range 6–8. The less attractive loca-
tions have an attractiveness lower or equal to 7, and the most attractive ones an attractiveness higher than 7. For 
our validity assessment we first extracted the value of landscape attractiveness for each of the forested locations 

Figure 2.  Hazard (e.g. tick activity) per 1 km grid cell. We used the model developed in12 to predict daily tick 
activity for the period 2006–2016. Then, we calculated the maximum mean tick activity for the period to devise 
this map. The numbers in the legend indicate the average number of active questing ticks per grid cell. The 
locations of the highest hazard are within the provinces of Groningen, Drenthe, and Overijssel, whereas the 
lowest hazard levels are located along the coastal areas.

Case Risk Hazard Exposure Interpretation Representation

1 R > 0 H > 0 E > 0 Standard case
Fig. 3, classified 
exposure (i.e. low, 
medium, high)

2 R > 0 H = undefined E = undefined Tick bites reported in 
non-forested locations Fig. 6, light green

3 R = 0 H > 0 E = 0
Forest with a low 
intensity of recreation 
or hazard

Fig. 6, yellow

4 R = 0 H = undefined E = undefined No data Fig. 6, grey

Table 1.  The four possible cases that can occur when dividing risk by hazard.
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with calculated exposure. Then, we counted the number of grid cells in our exposure map that belong to each of 
the six attractiveness classes. Finally, we normalized these counts by the total number of grid cells belonging to 
each attractiveness class to obtain the percentages of tick bites that occurred in each exposure class.

Results
Figure 3 shows the classified tick exposure map, obtained by dividing the risk of getting a tick bite risk (Fig. 1a) by 
the hazard (Fig. 2). The application of the JNB algorithm resulted in the identification of three exposure classes: 
low, medium, and high. A visual inspection of Fig. 3 shows that there is a high amount of grid cells belonging 
to the medium exposure class. Those cells are especially concentrated along the forest edges of the Utrechtse 
Heuvelrug forest and of the Veluwe national park (center of the country). The class high exposure corresponds to 
highly popular places for outdoor activities, such as the coastal areas from Haarlem to Middelburg, or with a lower 
intensity, areas close to Hertogenbosch, Eindhoven, and around the small forest patches between Groningen and 
Emmen (north of the country). The class low exposure indicates locations that are less visited, and yet visitors 
could get bitten by ticks.

Figure 4 explore the relationship between E, H, and R. The boxplot in Fig. 4a show that the risk of getting a 
tick bite has a skewed distribution (i.e. long-tailed distribution) spanning up to 353 tick bites per grid cell (not 
shown due to visual cluttering of the box plots), regardless of the exposure class. The medians of the boxplots 
(plot A) correspond to 3, 8, and 23 tick bites per km2 for the low, medium, and high exposure classes. The height 
of each box indicates the variety of risky conditions in which tick bites ensue. Low and medium exposure classes 
present a narrow range of risky conditions, whereas the high exposure class occurs in a wider range of conditions. 
The boxplots in Fig. 4b show that the hazards have a unimodal distribution, regardless on the exposure class. The 
medians indicate that tick bites occur in locations with similar levels of hazard, and the fairly uniform height of 
the boxes show that the range of risky conditions in which tick bites occur is alike. Note that Fig. 4a shows that 

Figure 3.  Human exposure to tick bites as a result of combining the maps in the previous two figures. 
Background color refers to non-forested locations or locations without tick bite reports. The exposure is 
classified in three categories. Well-known forest edges (e.g. Veluwe national park, Utrechtse Heuvelrug forest) 
and popular outdoor recreational areas (e.g. coastal areas from Haarlem to Middelburg) are classified as places 
with a medium and high human exposure. The remaining low exposure class depicts locations less intensely 
visited by people. Both results suggest that human exposure to tick bites is driven by two types of users (i.e. 
recreational, residential) as spotted in previous works13,34, that may require different treatment in the design of 
public health campaigns targeting a decrease on tick bites occurrence.
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the risk increases as the exposure increases, whereas Fig. 4b shows how hazard is almost constant as long as the 
exposure increases.

Figure 5 shows the relationship between human exposure and the attractiveness of the landscape. Each cell 
represents a number of grid cells belonging to both categories. To ease the interpretation of results, note that we 

Figure 4.  Boxplots showing the relationship between exposure and risk (a) and the relationship between 
exposure and hazard (b). For both figures, the X-axis shows the exposure class, and the Y-axis shows the 
number of tick bites per grid cells (a) and the tick activity per grid cell (b) respectively. Risk is a skewed 
distribution (i.e. long-tailed), thus presents low averages per boxplot, and a high number of outliers (reaching 
the maximum of 353 tick bite reports/cell), whereas hazard is a Gaussian-like distribution and so the averages 
per boxplot occupy the central part of the distribution. Plot A shows how the risk increases as the exposure 
increases, and plot B shows how the hazard remains (almost) constant as long as the exposure increases. This 
means that the risk of getting tick bites is mainly driven by exposure factors, regardless of the amount of hazard 
(e.g. tick activity) in a location.

Figure 5.  Heat map showing the relationship between the exposure classes and the attractiveness classes. 
The X-axis represents the six classes available in the attractiveness map, and the Y-axis the three classes of the 
exposure map. Thus, each cell in the heat map represents the number of grid cells belonging to both categories. 
Note that we applied a per-column normalization of the raw numbers to percentages to ease the interpretation 
of results, but both values are shown. The first three columns correspond to forest patches that are less attractive 
for citizens, whereas the last three columns correspond to attractive forested and rural locations. Thus, the 
first group of columns show a more urban exposure to ticks, whereas the second group of columns show 
human exposure to ticks in forested locations. The last two columns show an interesting pattern. The fifth 
column shows that 65% and 26% of the grid cells in the attractiveness class 7.5–8 have a zero and low exposure, 
respectively. The last column shows that 17% and 61% of the grid cells in the maximum attractiveness class have 
a zero and low exposure, respectively. This means that within forested locations, citizens have a preference for 
visiting a subset of them. Absolute numbers show that the majority of the exposure grid cells are concentrated 
along the column with the maximum attractiveness. This indicates that human recreational intensity is mainly 
concentrated in very appealing locations.
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included the locations in which the exposure or the hazard are low (i.e. no tick bites registered in that forested 
location), and also that we applied a per-column normalization to turn the raw numbers to percentages. The 
visual inspection of the attractiveness layer and Fig. 6 reveals that the first three columns show the exposure in 
forest patches which are less attractive for citizens (i.e. ≤7), whereas the last three columns correspond to attrac-
tive forested and rural locations (i.e. >7). As seen, the distribution of exposure grid cells within the first group is 
similar among the different attractiveness classes. In the second group, there are two columns showing interesting 
patterns. The fifth column shows that 65% and 26% of the grid cells in the attractiveness class 7.5–8 have a zero 
and low exposure, respectively. The last column shows that 17% and 61% of the grid cells in the >8 class have 
a zero and low exposure, respectively. This indicates that citizens prefer visiting certain forested locations. The 
absolute numbers in Fig. 6 show that the majority of the human exposure is concentrated along the column with 
the maximum attractiveness. In Table 2 we provide a summary on the area in which humans are exposed to ticks. 
As seen, citizens are exposed to ticks in 271 km2 of forests in unattractive locations, and 2,694 km2 of forests in 
attractive locations. Note that there are 922 km2 of forest in which the exposure is zero. Thus, this study shows that 
citizens are more exposed to ticks in locations that are very appealing to the general public.

Figure 6 shows the four possible cases (Table 1) that can occur when dividing the risk by the hazard layer. To 
avoid visual cluttering, the three exposure classes from Fig. 3 have been merged into a single class. Figure 6 also 
shows the locations with tick bites outside forests, forests with a low recreational intensity, and the locations with 
zero tick bites reported. The visualization of cases 2 and 3 (Table 1) reveals two new insights. First, we can see 
that the occurrence of tick bites is a pervasive phenomenon that goes beyond the forest edges, because there are 
tick bites reported out of this scope, and across the country. Thus, vegetated landscape types (e.g. residential areas 
close to forest, urban parks with a dense tree coverage, natural coastal dunes with dense shrubs), might be optimal 
locations in which ticks and humans are in close contact. Second, there is a number of small forest patches with-
out tick bite reports, which indicates that citizens do not intensively visit these locations.

Figure 6.  Visual representation of the four cases described in Table 1. To avoid visual cluttering, the classes in 
the first case (i.e. R > 0 and H > 0) have been condensed in one category (white). The remaining cases, namely, 
tick bites reported outside forests (i.e. R > 0 and H = undefined), forests with a low recreational intensity 
(i.e. R = 0 and H > 0), and locations with zero tick bites reported (i.e. low exposure or low hazard) R = 0 and 
H = undefined), are shown in the image in light green, yellow, and grey respectively.
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Discussion
Our results show that clusters of high human exposure are concentrated along forest edges and popular places for 
recreation. The analysis reveals that the exposure categories in Fig. 3 mostly occur in forested locations that are 
very attractive locations, as seen in Fig. 5 and Table 2. This can be related to previous literature, since transitional 
vegetation (i.e. ecotones) has been identified as a risky place to acquire tick-borne pathogens: humans tend to 
carry out outdoor activities along the forest edge, rather than going inside29,30. Moreover, forest edges are suitable 
locations for mammalian species to forage, and present higher abundances of ticks31,32. The Netherlands is heavily 
urbanized33, which means that multiple land uses are intertwined in a small area unit, thus bringing humans 
and ticks in peri-urban and residential areas in close contact. All the above suggests that the exposure to tick 
bites is driven by two types of activities, namely recreational, and residential, as suggested in previous works13,34. 
Therefore, we suggest defining different LB prevention campaigns and public health policies for each activity. For 
an instance, activities such as gardening16 can be linked to the residential exposure, whereas other activities such 
as scouting13, or outdoor sport15 competitions could be linked to the recreational exposure. Note that a limitation 
of this work is that we are unable to provide a measure of occupational risk, but farmers35, veterinarians36, land-
scapers37, or forest workers38 are known to have an elevated risk of LB infection. Unfortunately, information on 
whether the tick bite was acquired during a work-related activity was only available for the TR data and is there-
fore not incorporated in the model. However, these collectives tend to present a higher seroprevalence for LB35,36.

The boxplots in Fig. 4 show that the risk of getting a tick bite increases as the exposure increases, whereas the 
hazard remains constant as long as the exposure increases, which is indicative that the risk of getting a tick bite is 
driven by the human exposure in a location more than to the existing hazard. This makes sense, because humans 
might be unaware of the hazard, and do not consider this threat when organizing outdoor activities. For example, 
the recreational coastal areas between Haarlem and Middelburg present a relatively low hazard (Fig. 2), however, 
the risk of getting a tick bite (Fig. 1) is very high, because the human exposure around the area is high as well. This 
is also supported by Fig. 5 and Table 2, as they show that citizens mainly get exposed to ticks in areas which are 
very attractive, and therefore, it is likely that they have high numbers of recreational visitors.

These new insights show that hazard maps alone are insufficient to identify locations with a high risk for LB, 
motivating the creation of human exposure maps for public health specialists and forest managers. In this line, 
maps like the one presented in Figs 3 and 6 may help to facilitate the cooperation between public health special-
ists and foresters to implement prevention campaigns. For instance, these maps can be used to classify patches of 
forests that require active management and those that can suffice with only public awareness campaigns. In this 
work we encountered three main hurdles. First, the difficulty of validating the exposure results, since exposure 
heavily depends on the quality of the hazard model, and on the representativeness of the tick bite reports. The 
hazard model can capture general tick dynamics. However, hazard predictions might be uncertain in locations in 
which atmospheric conditions are not the main driver of tick activity. At the same time, the risk map contains an 
unknown factor of citizen’s reporting errors (e.g. positional inaccuracy at the time of adding the tick bite report 
to the NK and TR platforms, or citizens that over- or under-report tick bites). To overcome these issues and to 
validate the exposure products ICT data (e.g. mobile phones locations), geolocated data streams from social net-
works (e.g. Twitter) could be incorporated in the analysis. However, the use of this data is limited by privacy laws. 
Second, the exposure remains unknown in locations where there is no data from hazard or risk. This means that 
locations in which the hazard model is unable to predict the tick activity (e.g. non-forested areas), or locations 
where there are no tick bites registered, it is not possible to apply eq. 1, thus we cannot estimate human exposure 
to ticks. Third, there is a substantial number of locations in which there are no tick bites reported during the study 
period. We do not think that the risk is actually inexistent in these locations, but with the current data collections 
we are unable to disentangle if the zero tick bite count is due to a low human exposure or a low hazard. As a con-
sequence, we choose to exclude these locations from the exposure calculation, because it is hard to assess whether 
or not it is a true zero, and subsequently we do not know if it is a robust indicator for low risk of tick bite.

Conclusion
In this paper we present a first-of-its-kind map of human exposure to ticks in forested areas created from volun-
teered data. This map will hopefully contribute to mitigate the number of tick bites and hence of LB cases because 
exposure information might encourage forests managers and public health specialists to implement preventive 
measures. For instance, this map could be used to design targeted informative campaigns in recreational loca-
tions. Moreover, ecologists might use exposure information to locate hot spots of human disturbance, which 

Exposure

Landscape attractiveness

Low High

High 29 (6%) 193 (6%)

Medium 41 (9%) 514 (15%)

Low 201 (43%) 1,987 (58%)

Zero 196 (42%) 726 (21%)

Table 2.  Forested areas per human exposure and simplified landscape attractiveness classes (i.e. low 
corresponds to scores ≤7, whereas high to scores >7). Areas as expressed in km2 and as percentage over the 
total forested areas. There are 2,965 km2 of forests in which citizens are exposed to ticks, and 992 km2 with an 
exposure equal to zero (i.e. no tick bites recorded, although there might be a certain tick activity in those areas).
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could support better nature management practices. Future work should aim at quantifying uncertainties in the 
risk, hazard and exposure information, studying the main drivers of tick bites at each location (i.e. high hazard, 
vs. high exposure areas), and analyzing exposure in residential areas.

Data Availability
The exposure data produced in this study are available from the corresponding author upon request.
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