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High-Sensitivity cardiac Troponins 
in Cardio-Healthy Subjects: 
A Cardiovascular Magnetic 
Resonance Imaging Study
Tar-Choon Aw  1, Wei-ting Huang2, Thu-Thao Le2, Chee-Jian Pua2, Briana Ang2,  
Soon-Kieng Phua1, Khung-Keong Yeo  2, Stuart A. Cook2,3 & Calvin W. L. Chin2,3

The 99th percentile upper reference limits (URL) of high-sensitivity cardiac troponin (hs-cTn) in healthy 
subjects are essential for diagnosis and management of cardiovascular diseases. Unless screened 
stringently, subclinical disease affects the derived URL. In 779 healthy subjects(49% males; 17–88 
years) screened by cardiovascular magnetic resonance (CMR), the gold standard for assessing cardiac 
volumes and myocardial mass; and estimated glomerular filtration rate (eGFR), the 99th percentile URL 
of hsTnT (Roche) and hs-cTnI (Abbott) were similar to the published URL. The overall 99th percentile 
URL of hsTnT and hsTnI were 15.2 and 21.2 ng/L, respectively; males had higher values than females 
(hsTnT: 16.8 versus 11.9 ng/L and hsTnI: 38.8 versus 14.4 ng/L). Correlation between hsTnT and hsTnI 
was modest (r = 0.45; p < 0.001). A larger proportion of healthy volunteers <60 years had detectable 
hsTnI compared to hsTnT (n = 534; 30.0% versus 18.3%, p < 0.001). Lower eGFR was an independent 
clinical determinant of hsTnT, but not hsTnI. Both hs-cTn concentrations were independently associated 
with myocardial mass and cardiac volumes (p < 0.01 for all), but only hsTnI was independently 
associated with CMR multi-directional strain measures and extent of LV trabeculations (p < 0.05 for 
all). Differences exist between hs-cTn assays and may influence their selection depending on cardiac 
conditions, patient population and local factors.

Two high-sensitivity cardiac troponins (hs-cTn) are widely used – the Roche Diagnostics hsTnT1 and the Abbott 
Diagnostics hsTnI2. Hs-cTn are used for the diagnosis and risk stratification of cardiovascular disorders. In par-
ticular, myocardial infarction is diagnosed when there is clinical evidence of myocardial ischemia and a rise and/
or fall in cardiac troponin concentrations with at least 1 value above the clinical decision limit defined as the 99th 
percentile value determined from a reference population3. Detectable levels of hs-cTn between the assay detection 
limit and the URL are associated with future major adverse cardiovascular events4,5.

Clinical decisions are based on a key metric of 99th percentile upper reference limit (URL) derived from a 
healthy reference population. To exclude subclinical disease, experts and practice guidelines recommend screen-
ing reference subjects with questionnaires/interviews, biomarkers (estimated glomerular filtration rate [eGFR] 
for renal insufficiency, natriuretic peptides for cardiac stress, and HbA1c for diabetes) and imaging6,7. In fact 
further screening with health questionnaires, eGFR, N-terminal pro–B-type natriuretic peptide (NTproBNP), 
and echocardiography resulted in a 50% decline in the 99th percentile URL8,9. In studies of community health sta-
tus involving hsTnT, echocardiography10 and cardiac magnetic resonance (CMR) imaging11 revealed significant 
structural cardiac abnormalities.

There is great variation in the reported hs-cTn URLs (29.4% for hsTnT and 80.0% for hsTnI)12. This is due to 
inadequate sample size and varying composition, age, gender and screening procedures employed for the refer-
ence population. Over 300 subjects per gender are recommended for a sufficiently large URL study. There are few 
studies with adequate sample size: 7 separate hsTnI and 7 individual hsTnT URL studies12. Moreover, only 3 stud-
ies compared both hs-cTn together in the same population12 and they excluded subclinical cardiac disease using 
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questionnaires, biomarkers (2 studies) and electrocardiogram (1 study); cardiac imaging was not done. A handful 
of small echocardiographic hs-cTn URL studies exist for hsTnT8,9,13 and a prototype hsTnI14.

No data is available on hs-cTn levels in those deemed cardio-healthy by the gold standard assessment of car-
diac function and LV mass - cardiac magnetic resonance (CMR). All URL studies have used eGFR of <60 mL/
min/1.73 m2 to exclude renal insufficiency and they may have inadvertently included some subjects with subclin-
ical renal disease. Key questions remain:

•	 What are normal hs-cTn levels in truly cardio-healthy subjects screened by CMR?
•	 What is the impact on hs-cTn URLs of adopting higher eGFR values (90 mL/min/1.73 m2) as opposed to 

60 mL/min/1.73 m2 to screen out subclinical renal disease?

We systematically established the 99th percentile reference limits for high-sensitivity cardiac tropon-
ins T (hsTnT) and I (hsTnI) in the same cohort of well-characterized multi-ethnic Asians who were deemed 
cardio-healthy based on normal cardiovascular magnetic resonance (CMR) imaging15,16, and renal-healthy based 
on the eGFR17(>60 mL/min/1.73m2versus >90 mL/min/1.73 m2). Furthermore, we comprehensively examined 
clinical determinants and CMR measures of left ventricular (LV) morphology and function associated with the 
two high-sensitivity cardiac troponins (hsTnT and hsTnI) in these cardio-renal healthy volunteers.

Results
On the basis of normal CMR and renal function, 779(males, n = 379 [49%]; median age52years [range: 17 to 88]) 
cardio-renal healthy Singaporeans were analyzed in this study. There were 209 (26.8%), 58 (7.4%) and 23 (3.0%) 
participants treated for hypertension, hyperlipidemia and diabetes mellitus, respectively (Table 1).

Distribution and Clinical Determinants of Cardiac Troponin Concentrations. The overall and 
sex-stratified distributions of troponin values were non-Gaussian. The 99th percentile values of hsTnT concen-
trations in all patients, males and females were 15.2 (90% confidence interval (CI): 13.2–18.9), 16.8 (90% CI: 
15.0–38.2) and 11.9 (90% CI: 11.1–32.9) ng/L respectively. For hsTnI, the 99th percentile values in all patients, 
males and females were 21.2 (90% CI: 14.4–37.3), 38.8 (90% CI: 18.2–51.6) and 14.4 (90% CI: 6.9–20.1) ng/L, 
respectively (Fig. 1).

To examine the impact of external factors on the 99th percentile values for cardiac troponin in these CMR 
healthy subjects, we sequentially excluded 213 participants with cardiovascular risk factors and 15 participants 
with NTproBNP > 125 ng/L (Table 2). Even after the pruning exercise, cardiac troponin (hsTnT and hsTnI) distri-
butions remained non-Gaussian. The 99th percentile values for both hsTnT and hsTnI in all CMR healthy patients 
(males and females) remained fairly similar despite exclusion of possible factors that may contribute to subclinical 
cardiac disease; the differences between groups were less than the relative change value for troponins. Table 2 
revealed that applying an even more stringent eGFR cut-off (>90 mL/min/1.73 m2) for renal health would only 
impact hsTnT especially in men as hsTnT is more closely associated with eGFR and the number of subjects avail-
able for analysis declined to less than 300.

The correlation between hsTnT and hsTnI was modest (r = 0.45; p < 0.001). Overall, more healthy volunteers 
had detectable hsTnI compared to hsTnT (38.4% versus 29.7%, respectively; p < 0.001). The proportion of healthy 
individuals with detectable cardiac troponin concentrations increased with age, with some differences observed 
between the two high-sensitivity assays. In healthy participants >60 years old (n = 244), the proportion of indi-
viduals with hsTnI and hsTnT concentrations above the LOD were similar (56.6% versus 54.6% respectively; 
p = 0.72). Conversely, a larger proportion of younger individuals <60 years old had detectable hsTnI compared 
to hsTnT (30.0% versus 18.3%, respectively; p < 0.001; Fig. 2), particularly in younger females (17.5% versus 
4.2%, respectively; p < 0.001). Male sex, increasing age and systolic blood pressure were independent determi-
nants of both hsTnT and hsTnI. Despite normal renal function (eGFR≥60 mL/min/1.73 m2) in all individuals, 
a lower eGFR was independently associated with higher hsTnT concentrations, but not with hsTnI (Table 3). 
Every 10 mL/min/1.73 m2 decrease in eGFR from 90 mL/min/1.73 m2 was significantly associated with a stepwise 
increase in hsTnT concentrations (Fig. 3).

Associations Between Cardiac Troponin Concentrations and Cardiac Morphology and 
Function. Log-transformed troponin (hsTnT and hsTnI) concentrations were weakly associated with LV mass 
(hsTnT: r = 0.26; p < 0.001 and hsTnI: r = 0.29; p < 0.001). Similar weak correlations were observed with cardiac 
volumes in the LV (hsTnT: r = 0.13; p < 0.001 and hsTnI: r = 0.18; p < 0.001) and RV (hsTnT: r = 0.13; p < 0.001 
and hsTnI: r = 0.18; p < 0.001). Both hsTnT and hsTnI concentrations were associated with LV mass and cardiac 
volumes, after adjusting for age, sex, systolic blood pressure and eGFR (p < 0.01 for all).

Cardiac troponin T and I concentrations were associated with multi-directional strain (global circumferen-
tial, radial and longitudinal). However, only hsTnI were independently associated with myocardial deformation 
after adjusting for age, sex, systolic blood pressure and eGFR. Similar independent associations with hsTnI were 
observed with FD measures (Fig. 4). Of note, hsTnT and hsTnI concentrations did not correlate with ejection 
fractions in the LV (hsTnT: r = −0.06; p = 0.10 and hsTnI: r = −0.02; p = 0.56) and RV (hsTnT: r = −0.02; p = 0.64 
and hsTnI: r = −0.02; p = 0.67). Equally, no correlation was found between hsTnT, hsTnI and the cardiac index 
(r = −0.07; P = 0.04, and r = −0.01; P = 0.74, respectively).

It was perhaps not surprising that the group with both detectable hsTnI and hsTnT had more males, older sub-
jects, more coronary artery risk factors (hypertension and hyperlipidemia) and lower eGFR. Moreover, individu-
als in this group demonstrated increased LV mass index, LV trabeculations and reduced multi-directional strain 
measures (despite all measures being within the normal range) compared to those with undetectable circulating 
troponins (Table 4).
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Discussion
Using a very comprehensive approach to define cardio-renal health (including CMR imaging) we have established 
overall and sex-specific 99th percentile troponin concentrations in the same Asian population of sufficient size for 
the two hs-cTn assays, Roche hsTnT and Abbott hsTnI. The overall hs-cTn URLs in our cardio-healthy subjects 
are 15.2 ng/L for hsTnT and 21.2 ng/L for hsTnI. These values are not dissimilar from that previously reported 
of 14 ng/L (hsTnT) and 26 ng/L (hsTnI)12. Male gender and increasing age were independent determinants in 
both assays. Both hsTnT and hsTnI concentrations were independently associated with myocardial mass and car-
diac volumes after adjusting for age, sex, systolic blood pressure and eGFR (p < 0.01 for all). There were notable 
differences between the two high-sensitivity assays. Only hsTnI was independently associated with myocardial 
multi-directional strain and LV trabeculations, an increasingly recognised marker of cardiac remodelling. HsTnI 
assay had increased sensitivity for detecting measurable troponin values (> LOD) in younger individuals (par-
ticularly women) compared to hsTnT. A lower eGFR in this cardio-renal healthy population was significantly 
associated with higher hsTnT, but not hsTnI.

Currently, the clinical decision limit in the diagnosis of myocardial infarction is based on the 99th percentile 
cardiac troponin values derived from a normal, healthy population18. However, there is insufficient guidance on 
what constitutes a “normal and healthy” population19.The 99th percentile value depends on the characteristics 
of the reference population. Not surprisingly, applying more stringent selection criteria reduces the number of 
outliers and lowers the 99th percentile values due in part to younger subjects remaining in the selected group8. 
In our study of normal CMR subjects the 99th percentile values remained unchanged or altered minimally after 
pruning with clinical history (treatment for diabetes, hyperlipidemia, and hypertension) and biomarkers (eGFR 
and NTproBNP). Thus for the purpose of deriving hs-cTn URL in this cohort, history and biomarkers provided 
minor additional signal to CMR in screening out subclinical cardiac disease. The observed difference in URL 
with or without pruning was less than the reported reference change values (RCV)20 for hsTnI (49–69%) and 
hsTnT (23–32%). The URL of hs-cTn will continue to be influenced by the distortionary effects of the highest few 
troponin values when each pruning modality is applied. Unless pruning measures eliminate these high values, 
the URL will remain relatively unchanged. However, our 99th percentile URL troponin values were indeed lower 
compared to other recent Asian studies12. It is noteworthy that using such extensive screening methodologies 
comes at a cost that may not feasible in many other populations. Instead, a more pragmatic and standardized defi-
nition of a reference population would be preferred to harmonise comparison of assays and values across studies.

All (n = 779)
Males 
(n = 379)

Females 
(n = 400)

Clinical Parameters

Age, years 51.2 ± 14.3 52.0 ± 14.9 50.4 ± 13.8

Smoking, n (%) 24 (3.1%) 20 (5.3%) 4 (1.0%)

Hypertension, n (%) 209 (26.8%) 127 (33.5%) 82 (20.5%)

Diabetes Mellitus, n (%) 23 (3.0%) 11 (2.9%) 12 (3.0%)

Hyperlipidemia, n (%) 58 (7.5%) 36 (9.5%) 22 (5.5%)

Body surface area, m2 1.70 ± 0.20 1.83 ± 0.17 1.59 ± 0.14

Systolic blood pressure, mmHg 135 ± 18 139 ± 16 131 ± 19

Cardiovascular Magnetic Resonance

LV EF, % 64 ± 6 63 ± 6 65 ± 6

RV EF, % 62 ± 7.4 59 ± 7 64 ± 6

Indexed LV mass, g/m2 45 ± 10 50 ± 9 39 ± 7

Indexed LV EDV, mL/ m2 69 ± 10 71 ± 11 66 ± 9

Indexed LV ESV, mL/ m2 24 ± 7 26 ± 7 23 ± 6

Indexed RV EDV, mL/ m2 71 ± 13 75 ± 13 65 ± 10

Indexed RV ESV, mL/ m2 27 ± 9 31 ± 9 24 ± 7

Indexed LA area, cm2/ m2 11.6 ± 2.0 11.0 ± 2.0 12.1 ± 1.9

Indexed RA area, cm2/ m2 10.7 ± 2.0 11.0 ± 2.1 10.5 ± 1.8

Global FD 1.21 ± 0.03 1.22 ± 0.03 1.21 ± 0.03

Mean apical FD 1.22 ± 0.05 1.24 ± 0.05 1.21 ± 0.05

Maximum apical FD 1.28 ± 0.05 1.29 ± 0.05 1.27 ± 0.05

Global circumferential strain, % −21.2 ± 2.9 −19.5 ± 2.0 −22.9 ± 2.6

Global radial strain, % 48.4 ± 11.0 42.4 ± 7.6 54.4 ± 10.7

Global longitudinal strain, % −20.0 ± 2.5 −18.6 ± 2.0 −21.4 ± 2.1

Biochemical Markers

Estimated GFR (mL/min/1.73 m2) 96.4 ± 21.1 104 ± 21 88 ± 17

NTproBNP, ng/L 29.6 [14.8, 54.9] 20.8 [9.6, 39.4] 39.1 [21.1, 65.8]

hsTnT, ng/L 2.5 [2.5, 5.5] 2.5 [2.5, 6.4] 2.5 [2.5,2.5]

hsTnI, ng/L 0.75 [0.75, 2.1] 1.5 [0.75, 2.7] 0.75 [0.75,1.5]

Table 1. Baseline Characteristics of Study Population.
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The second issue is that of sample size. A sufficiently large sample size is needed to minimise the effects of 
extreme values on the 99th percentile values. To achieve a tolerance level of 0.95, a sample size of 600 (300 males 
and 300 females)would be necessary to determine the 99th percentile values for either sex21. With these issues 
in mind, we used CMR to assess cardiovascular health22 and ensured that it was sufficiently powered to derive 
sex-specific 99th percentile values for both hsTnT and hsTnI.

Consequent to our stringent patient selection guided by CMR and the large number of young healthy vol-
unteers (44% of the healthy participants were less than 50 years old), the proportion of patients with detectable 
troponins by either assay was expectedly low. Our findings suggest that hsTnI had significantly higher sensitivity 
for detectable cardiac troponin values in younger individuals, particularly females, compared to hsTnT.

Previous studies comparing hsTnT and hsTnI had demonstrated a stronger association between eGFR and 
hsTnT in patients with chronic kidney disease23,24. Our study extends these findings to a well-characterised 
cardio-healthy population with normal renal function. Despite normal renal function (eGFR ≥60 mL/
min/1.73 m2), eGFR was an independent determinant of hsTnT. For every 10 mL/min/1.73 m2 decrease in eGFR 
from 90 mL/min/1.73 m2, there was a significant and step-wise increase in hsTnT concentrations. The mecha-
nisms for the increased variability of hsTnT with renal function remain unclear, although it has been postulated 
that hsTnT fragments (<18 kDa) present in chronic renal disease can cross-react with current clinical hsTnT 
assays25,26. Adopting a tighter eGFR cutoff (>90 mL/min/1.73 m2) to rule out even mild cases of renal insuffi-
ciency in URL studies will impact hsTnT more than hsTnI as well as crimp the size of the renal-healthy cohort 
especially amongst men. This is borne out in our data (see Table 2); 15.5% (85/550) of the healthy men were 
eliminated with a consequent reduction of the male hsTnT URL from 15.8 ng/L to 12.6 ng/L and the hsTnI from 
42.3 ng/L to 40.0 ng/L. Such stringency will render URL studies even more onerous. We agree with the expert 
committee Practice Guidelines7 for the modest eGFR cutoff of 60 mL/min/1.73 m2.

To date, elevated cardiac troponin has been considered the sine qua non for myocardial infarction. Recently, 
we have demonstrated an association between cardiac troponins and hypertrophic response in two common 

Figure 1. Distribution of high-sensitivity cardiac troponin T (Panel A) and I (Panel B) Concentrations in 
Cardio-renal Healthy Asians.
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causes of heart failure: calcific aortic stenosis27 and hypertensive heart disease28. In separate studies, cardiac tro-
ponins were independently associated with increased LV mass and myocardial fibrosis on CMR, supporting the 
hypothesis that the release of cardiac troponin relates to the myocardial injury that accompanies increased myo-
cardial hypertrophy and fibrosis. The current study extends the association between cardiac troponins and cardiac 
remodelling to healthy volunteers, albeit with weaker correlations. Of note, hsTnI was independently associated 
with sensitive CMR measures of intrinsic cardiac function: multi-directional strain and LV trabeculations. These 
findings suggest that hsTnI has higher clinical sensitivity (ability to detect low troponin concentrations in younger 
individuals and subtle changes in cardiac function) and more cardiac specificity (less influenced by other clinical 
confounders such as renal function) than hsTnT.

Cardiac troponin concentrations correlate with LV mass and females have less LV mass than males15,29. It is 
perhaps not surprising that such biological differences contribute to lower 99th percentile cardiac troponin con-
centrations in females compared to males, as also demonstrated in our study. The use of sex-specific troponin 
thresholds has already been recommended by the ESC/ACCF/AHA/WHF Task Force for the Universal Definition 
of Myocardial Infarction18 and the American Association for Clinical Chemistry/International Federation 
of Clinical Chemistry and Laboratory Medicine Task Force on Clinical Applications of Cardiac Biomarkers7. 
However, the current clinical evidence supporting the use of sex-specific thresholds are controversial30–33. There 
are relevant concerns regarding the use of sex-specific thresholds34,35. It is also conceivable that the clinical deci-
sion limits for myocardial infarction in different assays are not biologically equivalent36.

Occult underlying cardiac disease has been excluded to the greatest extent possible with CMR. We demon-
strated a modest correlation between the two assays (r = 0.45; p < 0.001). Both biological and analytical charac-
teristics of the assays may explain the observed differences between hsTnT and hsTnI37. Although small, these 
potentially important differences between troponin assays have diagnostic and prognostic impact. In myocar-
dial infarction, the diagnostic performance of hsTnI at admission was superior to hsTnT in a subgroup of early 

Population

hsTnT, ng/L (90% confidence interval) hsTnI, ng/L (90% confidence interval)

All Males Females All Males Females

All (Total = 779; F = 400, M = 379) 15.2 (13.2–18.9) 16.8 (15.0–38.2) 11.9 (11.1–32.9) 21.2 (14.4–37.3) 38.8 (18.2–51.6) 14.4 (6.9–20.1)

Group 1 minus diabetes mellitus (Total = 756; F = 388, 
M = 368) 15.2 (13.2–18.9) 15.7 (13.9–22.3) 11.9 (11.1–32.9) 22.5 (14.5–45.5) 39.7 (18.2–51.6) 14.5 (7.4–20.1)

Group 1 minus hyperlipidemia (Total = 721; F = 378, 
M = 343) 15.1 (12.6–18.9) 16.0 (13.9–22.3) 12.0 (11.1–32.9) 24.6(14.5–45.5) 41.7 (18.2–51.6) 14.6 (7.4–20.1)

Group 1 minus hypertension (Total = 570; F = 318, 
M = 252) 13.7 (11.9–18.9) 15.8* 12.2 (11.1–32.9) 22.8 (10.2–47.8) 41.9* 14.3 (6.2–20.1)

Group 1 minus NTproBNP > 125 ng/L (Total = 744; 
F = 376, M = 368) 15.1(12.3–22.3) 16.9 (13.9–38.2) 11.9 (10.4–32.9) 23.1 (14.5–45.5) 39.6 (18.2–51.6) 14.4 (6.2–20.1)

Group 1 minus diabetes mellitus, hyperlipidemia, 
hypertension** (Total = 566; F = 316, M = 250) 13.8 (11.9–18.9) 15.8* 12.3 (11.1–32.9) 23.2 (10.3–47.8) 42.1* 14.3 (6.2–20.1)

Group 6 minus NTproBNP > 125 ng/L** (Total = 550; 
F = 302, M = 248) 12.9 (11.9–17.7) 15.8* 11.9 (9.0–32.9) 24.9 (10.1–47.8) 42.3* 13.8 (5.3–20.1)

Group 1 minus eGFR <90 mL/min/1.73 m2 (Total = 465; 
F = 302, M = 163) 11.9 (10.4–13.2) 12.6* 11.8 (10.4–12.3) 21.9 (9.4–51.6) 40.0* 12.8 (5.3–20.1)

Table 2. Effect of Patient Selection on the Troponin 99thPercentile Upper Reference Limit. *90% confidence 
intervals not estimated because sample size was less than 300. **Subjects excluded are not mutually exclusive.

Figure 2. Proportion of Individuals with Detectable Cardiac Troponins.
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presenters; and hsTnT was superior to hsTnI in predicting long-term prognosis38,39. As sensitivity of cardiac tro-
ponin assays improve, there is increasing recognition that troponin release is a continuum between health and 
risk40, an observation also supported by our current and previous work. There is increasing interest in the appli-
cation of cardiac troponins in cardiovascular disorders other than myocardial infarction and its prognostic value 
beyond dichotomous clinical decision limits41. Undoubtedly, an understanding of the differences in troponin 
assays is crucial to guide the design of studies, interpretation of results and improvement in their clinical use.

We found the distribution of serum troponin levels remain non-Gaussian and skewed to the right. This finding 
has been observed even with the most sensitive hsTnI assay (Singulex; LOD of 0.091 ng/L), where distribution was 
highly skewed to the right in a large reference range study (n = 1,645) pre-screened with 12 biomarkers42. This 
precludes the notion that the distribution of cardiac troponin in cardio-healthy subjects tends toward Gaussian 
and may be amenable to a 97.5th percentile upper reference limit, like other laboratory analytes40.

The hsTnT (Roche) has been criticised for not being a true high-sensitivity assay43. As demonstrated in our 
study, both hsTnT and hsTnI are not detectable in >50% of CMR cardio-renal healthy subjects. Does the crite-
rion of a high-sensitivity troponin assay (defined as detectable troponin in at least 50% of healthy individuals) 
need revision given that even in very healthy subjects (such as our cohort) neither hsTnT nor hsTnI satisfied this 

High-sensitivity 
Troponin T

Univariate 
Unstandardized Beta 
(standard error) P Value

Multivariate 
Unstandardized Beta 
(standard error) P Value

Age, 10 years 0.14 (0.01) <0.001 0.11 (0.01) <0.001

SBP, 10 mmHg 0.07 (0.01) <0.001 0.02 (0.01) 0.04

Male 0.34 (0.04) <0.001 0.26 (0.04) <0.001

BSA, m2 0.41 (0.09) <0.001 —

Hypertension 0.28 (0.04) <0.001 —

Hyperlipidemia 0.29 (0.07) <0.001 —

Diabetes 0.30 (0.11) 0.006 —

Smoking 0.03 (0.11) 0.80 —

eGFR, 10 mL/
min/1.73 m2 −0.09 (0.01) <0.001 −0.03 (0.01) 0.006

High-sensitivity 
Troponin I

Univariate 
Unstandardized Beta 
(standard error)

P Value
Multivariate 
Unstandardized Beta 
(standard error)

P Value

Age, 10 years 0.13 (0.02) <0.001 0.10 (0.02) <0.001

SBP, 10 mmHg 0.11 (0.02) <0.001 0.06 (0.02) <0.001

Male 0.43 (0.06) <0.001 0.37 (0.06) <0.001

BSA, m2 0.67 (0.14) <0.001 —

Hypertension 0.25 (0.06) <0.001 —

Hyperlipidemia 0.07 (0.11) 0.50 —

Diabetes 0.10 (0.17) 0.55 —

Smoking 0.09 (0.17) 0.57 —

eGFR, 10 mL/
min/1.73 m2 −0.10 (0.01) <0.001 —

Table 3. Clinical Determinants Associated with high-sensitivity Troponins.

Figure 3. Association Between High-Sensitivity Cardiac Troponins and Renal Function. Results presented in 
box and whiskers (Tukey method).
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criteria except perhaps hsTnI in men. In fact, when first mooted as a metric for high-sensitivity troponins44, none 
of the available troponin assays then were detectable in > 25% of healthy subjects. Larger studies and consensus 
statements are sorely needed in this regard.

This study has several limitations. We did not assess age-specific 99th percentile cardiac troponin values. 
Extending the study to include each age-decile by sex would require 3,000 individuals, a prohibitive undertaking. 
Moreover, as highlighted in the study, current troponin assays have limited sensitivity in younger individuals and 
thus will not likely yield meaningful results in the younger population and thus mitigate against their inclusion in 
the reference population. Lastly, it is possible that some healthy volunteers have subclinical myocardial ischemia or 
coronary atherosclerosis. Of note, we had previously reported hsTnI concentrations were similar between patients 
with and without coronary artery disease and no correlation was observed between coronary calcium scores and 

Figure 4. Association Between High-Sensitivity Cardiac Troponins and Left Ventricular Mass (Panels A and 
B), Global Longitudinal Strain (Panels C and D) and Apical Maximum Fractal Dimensions (Panels E and F). 
Results presented in median and interquartile range.
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hsTnI27. This supports the observation that myocardial ischemia and/or coronary atherosclerosis probably have less 
effects on troponin elevations than myocardial structural changes (elevated mass, necrosis and fibrosis).

In conclusion, this study affirms that males have significantly higher troponin concentrations compared to 
females. Whether sex-specific troponin concentrations should be considered in the diagnosis of myocardial 
infarction requires further prospective validation. In a highly enriched healthy population, our study demon-
strated differences between hsTnT and hsTnI that may influence the selection of assays depending on the cardiac 
condition and patient population.

Methods
Study Population. Healthy Singaporeans without symptoms, clinical or family history of cardio- and cer-
ebrovascular diseases were prospectively recruited in an on-going bio-banking project at the National Heart 
Research Institute Singapore, National Heart Center Singapore to identify novel genetic variants in Asians. Renal 
function of all the patients was assessed using Chronic Kidney Disease Epidemiology Collaboration formula17. 
Children, subjects under 18 years old, pregnant women, and participants with estimated glomerular filtration rate 
(eGFR) of < 60 mL/min/1.73 m2 were excluded from the analysis. The study was conducted in accordance with 
the Declaration of Helsinki and approved by the SingHealth Centralised Institutional Review Board. Informed 
consent was taken from all patients.

Cardiovascular Magnetic Resonance and Image Analysis. Cardiac phenotyping using cardiovascu-
lar magnetic resonance (CMR) was performed in all participants (3 T Philips Ingenia or 1.5 T Siemens Aera). 
Conventional balanced steady-state free precision cine images of the vertical and horizontal long-axis planes and 
the sagittal LV outflow tract view were acquired. Short-axis cines were obtained from the mitral valve annulus to 
the apex (1.6–1.9 mm × 1.3–1.8 mm × 8 mm slice thickness; 2 mm gap). In each view, there were 30 phases per 
cardiac cycle.

LV mass, cardiac volumes, and function were assessed in all patients using standardized protocols (CMR42, 
Circle Cardiovascular imaging Inc., Calgary, Canada) as detailed previously15. Individuals with abnormal cardiac 
findings that suggest cardiomyopathies and ischemic or valvular heart diseases were excluded.

We have recently developed and published a semi-automated fractal analysis tool to assess the extent of LV 
trabeculations, an increasingly recognised indicator of cardiac remodelling16. Fractal dimensions (FD), a dimen-
sionless measure of trabeculation complexity, were measured using the LV short axis cine images at end-diastole. 
As each slice is a two-dimensional plane, the range of FD is between 1 and 2. Global, mean apical and maximum 
apical FD values were derived.

In a sub-set of healthy volunteers, multi-directional strain (peak global longitudinal, circumferential and 
radial) was assessed using the Tissue Tracking Plugin in CMR42. Peak circumferential and peak radial strains 
were measured from the LV short axis cine images; peak longitudinal strain was measured from the vertical and 

Below LOD for both 
assays Detectable hsTnI Detectable hsTnT

Detectable hsTnI and 
hsTnT

P Value(n = 406) (n = 142) (n = 74) (n = 157)

Age, years 47 [37,56] 51 [42,60] 57 [47,64] 63 [55,73] <0.001

Males, n (%) 126 (31) 79 (56) 55 (74) 119 (76) <0.001

SBP, mmHg 130 ± 17 138 ± 18 137 ± 16 145 ± 18 <0.001

BSA, m2 1.66 ± 0.19 1.74 ± 0.20 1.78 ± 0.22 1.74 ± 0.20 <0.001

Smoking, n (%) 9 (2.2) 6 (4.2) 5 (6.7) 4 (2.5) 0.16

Hypertension, n (%) 74 (18) 34 (24) 28 (38) 73 (46) <0.001

Diabetes Mellitus, n (%) 9 (2.2) 2 (1.4) 4 (5.4) 8 (5.1) 0.11

Hyperlipidemia, n (%) 23 (5.7) 4 (2.8) 9 (12) 22 (14) <0.01

Estimated GFR (mL/min/1.73 m2) 101 [90,115] 95 [83,108] 82 [75,98] 81 [71,92] <0.001

LV EF, % 64 ± 6 65 ± 7 63 ± 6 64 ± 7 0.06

RV EF, % 61 ± 7 62 ± 7 61 ± 8 62 ± 8 0.56

LV indexed mass, g/m2 42 ± 9 46 ± 10 47 ± 9 49 ± 9 <0.001

LV indexed EDV, mL/m2 68 ± 9 69 ± 11 69 ± 10 70 ± 12 0.31

LV indexed ESV, mL/m2 24 ± 6 24 ± 7 26 ± 6 26 ± 8 0.13

RV indexed EDV, mL/m2 70 ± 12 71 ± 13 71 ± 13 73 ± 15 0.05

RV indexed ESV, mL/m2 27 ± 8 27 ± 9 28 ± 10 29 ± 10 0.17

Global circumferential strain, % −21.7 [−23.9,−20.1] −20.4 [−22.9,−18.4] −19.6 [−21.1,−19.0] −18.9 [−20.9,−17.3] <0.01

Global radial strain, % 48.8 [42.2,57.2] 44.6 [39.7,52.1] 43.8 [38.8,48.8] 41.1 [35.4,54.8] 0.02

Global longitudinal strain, % −20.7 [−22.3,−19.0] −19.2 [−21.5,−17.1] −19.0 [−20.7,−17.5] −18.9 [−19.9,−16.0] <0.01

Global FD 1.21 [1.19,1.23] 1.22 [1.19,1.24] 1.21 [1.18,1.24] 1.22 [1.19,1.25] 0.03

Mean apical FD 1.22 [1.18,1.25] 1.23 [1.19,1.27] 1.23 [1.19,1.26] 1.24 [1.20,1.27] <0.01

Maximum apical FD 1.28 [1.24,1.31] 1.29 [1.26,1.33] 1.28 [1.24,1.34] 1.30 [1.26,1.33] <0.01

Table 4. Clinical and CMR Characteristics of Individuals with Detectable High-Sensitivity Troponin I and/or T.
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horizontal long axis cine images. We had previously tested and reported excellent inter- and intra-observer vari-
ability of tissue tracking to measure multi-directional strain16.

Measurements of Serum Cardiac Troponins. Serum samples were collected from participants on the 
day of CMR and initially frozen at −70°. Biochemical analyses were performed in a single freeze-thaw cycle over 
4 assay runs with the same lot of reagents in a laboratory accredited by the College of American Pathologists 
(Changi General Hospital, Singapore).

Serum hsTnT (STAT; Roche Diagnostics, Pensberg, Germany) was analysed using electro-chemiluminescence 
on the Cobas E602 immunoassay analyzer (Roche Diagnostics Asia-Pacific, Singapore). We have recently demon-
strated the limit of detection (LOD) and the concentration at the 10% inter-assay coefficient of variation (CV) 
for hsTnT was 5 ng/L and 11.5 ng/L, respectively; and the between-day precision was < 3%45. Serum hsTnI 
(ARCHITECT STAT High-sensitive Troponin-I; Abbott Diagnostics, Abbott Park, IL) was determined using 
chemiluminescent microparticle immunoassay on the ARCHITECT i2000SR analyzer (Abbott Diagnostics, 
Singapore). In our recent study46, the LOD for hsTnI was 1.5 ng/L, the concentration at 10% inter-assay CV was 
6.0 ng/L and the between-day precision was < 5%. Serum NTproBNP (proBNP II STAT; Roche Diagnostics, 
Pensberg, Germany) was assayed using electro-chemiluminescence (Cobas E602 analyzer, Roche Diagnostics 
Asia-Pacific, Singapore). The manufacturer-reported LOD for NTproBNP was 5 ng/L. Biomarker concentrations 
less than the detection levels were assigned a value equivalent to half the LOD.

Statistical Analysis. Recent publications47,48 have shown that the nonparametric approach in combina-
tion with a conservative treatment of outliers is the preferred method for determination of the 99thpercentile 
URL for hs-cTn. The 99th percentile values were determined by 1-tailed non-parametric statistics according to 
CLSI guidelines49–51 with no exclusion of outliers. Continuous variables were assessed for normal distribution 
using the Shapiro-Wilk test. Data were presented in either mean ± SD or median [interquartile range], as appro-
priate. Depending on data distribution, parametric Student t test and 1-way ANOVA or the non-parametric 
Mann-Whitney U and Kruskal-Wallis tests were used to compare groups of continuous variables. Categorical 
variables were compared using the χ2 test. Multi-variable linear regression models were used to establish clinical 
determinants associated with cardiac troponins: clinically relevant variables that demonstrated univariate asso-
ciation with cardiac troponins (p < 0.05) were selected in the multi-variable linear regression models (forward 
method). The associations between cardiac troponins and CMR measures of LV mass, fractal dimensions (FD), 
cardiac volumes and function were examined using multi-variable linear regression, adjusting for potential clini-
cal confounders. Log-transformed troponin (hsTnT and hsTnI) concentrations were used in the analyses because 
of non-normal distribution. All statistical analyses were performed using MedCalc 18.0 (MedCalc Software, 
Ostend, Belgium) and Stata Release 14.0 (StataCorp., Texas, USA). Statistical significance was taken as a 2-sided 
p < 0.05.

Data Availability
The datasets generated during and/or analysed during the current study are not publicly available due to privacy 
issues and national laws but are available from the corresponding author on reasonable request under the provi-
sion that data may not leave the hospital/center premises.
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