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Exact explosive synchronization 
transitions in Kuramoto oscillators 
with time-delayed coupling
Hui Wu1, Ling Kang2, Zonghua Liu2 & Mukesh Dhamala3

Synchronization commonly occurs in many natural and man-made systems, from neurons in the 
brain to cardiac cells to power grids to Josephson junction arrays. Transitions to or out of synchrony 
for coupled oscillators depend on several factors, such as individual frequencies, coupling, interaction 
time delays and network structure-function relation. Here, using a generalized Kuramoto model of 
time-delay coupled phase oscillators with frequency-weighted coupling, we study the stability of 
incoherent and coherent states and the transitions to or out of explosive (abrupt, first-order like) phase 
synchronization. We analytically derive the exact formulas for the critical coupling strengths at different 
time delays in both directions of increasing (forward) and decreasing (backward) coupling strengths. We 
find that time-delay does not affect the transition for the backward direction but can shift the transition 
for the forward direction of increasing coupling strength. These results provide valuable insights 
into our understanding of dynamical mechanisms for explosive synchronization in presence of often 
unavoidable time delays present in many physical and biological systems.

In many physical, biological and technological oscillatory systems, useful function emerges from collective syn-
chronization of an ensemble of constituent oscillators. Examples include working of neurons in the brain1–3, 
phase-locking of Josephson junction arrays4,5, the dynamics of power grids6. The Kuramoto model7,8, originally 
formulated to simplify the Winfree’s coupled oscillator model for the circadian rhythms of plants and animals9, 
remarkably generalizes to explain phase synchronization phenomena in these examples and many more10,11. 
Transitions to or out of synchronization as a consequence of changing coupling strength are analogous to phase 
transitions studied in statistical physics such as ferromagnetic, superconductive and thermodynamic transitions12.

Collective synchronization of coupled phase oscillators depends on several factors: intrinsic frequency dis-
tribution, coupling strength, interaction time-delays, network and structure (coupling strength or topology)- 
dynamics (frequency) relation. As the coupling strength is changed across a certain critical value, the transition 
from incoherent to coherent, or coherent to incoherent states takes place smoothly (the second-order phase tran-
sition like) or abruptly (the first-order like). When coupling is associated with oscillator characteristics or outputs, 
abrupt transitions to synchrony can occur with hysteresis in a variety of coupled oscillator systems, including 
in Josephon junction arrays13, in complex networks of oscillators12,14–18, and in frequency-weighted, mean-field 
coupled system of Kuramoto models19. Time-delay in mean-field coupling can also make the synchronization 
transition abrupt20,21. Despite our current advanced understanding of synchronization transitions in a variety of 
these systems, the effects of time-delay and frequency correlated mean-field coupling (structure-dynamics rela-
tion) in phase synchronization remain to be explored.

Interaction time-delays and structure-function interdependence are usually unavoidable characteristics of 
spatially distributed, adaptive oscillatory systems, such as neurons in the brain that has a functional organiza-
tion3,22,23. In such systems, smooth or abrupt synchronization transitions may help us to distinguish between 
normal and abnormal functioning, such as pconerceptual decision-making24 as an example of normal functions 
and epileptic seizure as dysfunction18,25.

In this work, we analyze a generalized Kuramoto model of time-delay coupled phase oscillators with 
frequency-weighted global coupling for stability of incoherent states and coherent states and derive the exact 
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analytical solutions for the critical coupling strengths at different time delays in both directions of increasing 
(forward) and decreasing (backward) coupling strengths. Here, as a general result, we will come to show that the 
time delay coupling can affect the abrupt synchronization transition only in the forward direction and not in the 
backward direction in various network topologies and distributed time-delays.

Methods and Results
We consider the following generalized Kuramoto model with time-delay and frequency-weighted coupling:

∑θ ω κ ω θ τ θ= + | | − −
=

 t
N

t t( ) sin( ( ) ( ))
(1)

i i i
j

N

j i
1

Here, the coupled system consists of N number of oscillators, each with θi(t) as the instantaneous phase at time 
t, θ t( )i  its derivative and ωi as the natural frequency. A set of N natural frequencies is drawn from a zero-centered 
symmetric distribution function (g(ω) = g(−ω)). The coupling strength k is modulated by |ωi|. The heterogeneity 
of couplings thus achieved can represent characteristics of adaptive oscillator systems commonly found in nature. 
The heterogeneity of couplings thus achieved can represent characteristics of many functionally organized and 
spatially distributed oscillator systems, some relevant examples of which include power grid networks12,26, social 
communication networks27,28 and brain neuronal oscillatory networks3,29.

Here, we consider the case of fully connected networks so that we can use the mean-field approach and the 
continuity equation for the time-evolution of instantaneous phase distribution ρ(θ, ω, t) on a unit circle. We 
define an order parameter r for t − τ time by
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where r characterizes phase coherence and φ the average phase of the coupled system. In stationary state, the 
definition of Eq. (2) will be equivalent to the traditional definition of = ∑φ θ

=re ei
N j
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1

j with no time-delay. 
Multiplying a factor θ−e i t( )i  to both sides of Eq. (2) we have
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The imaginary part of Eq. (3) is:
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With Eqs (1) and (4), we obtain:

θ ω κ ω φ τ θ= + | | − −˙ r t tsin( ( ) ( )) (5)i i i i

Dependent on the coupling strength κ and time delay τ for a given frequency distribution g(ω), the cou-
pled system as represented in Eq. (1), can show phase coherence (r > 0), or incoherence (r ≈ 0). For the forward 
(incoherent to coherent state) transition, we linearize the continuity equation around the incoherent state (ρ(θ, 
ω, t) = 1/2π) and obtain the critical coupling strength Kf for the forward direction. For the backward (coher-
ent to incoherent state) transition, we start with fully coherent state (r = 1) at sufficiently large κ and use the 
self-consistency approach on the main mean-field equation to obtain the critical coupling strength Kb in the 
backward direction. Here, we show our calculations for a zero-centered Lorentzian distribution of frequencies, 
but the calculation method can be applied to any smooth symmetric frequency distribution.

Forward phase transition. In the continuum limit → ∞N , the probability density function (ρ(θ, ω, t)) 
that represents the fraction of oscillators with frequency ω whose phases are distributed between θ and θ + dθ 
satisfies (i) the normalizing condition: ∫ ρ θ ω =

π t( , , ) 1
0

2  and (ii) the incoherent state value ρ0(θ, ω, t) = 1/2π 
uniformly distributed over the unit circle. We introduce a small perturbation to a completely incoherent state: 
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We now get r = εr′ and
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The continuity equation for ρ is:

ρ ρ
θ

∂
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+
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∂
=

t
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The flow velocity function v(t) is

ω εκ ω φ τ θ= + ′| | − −v t t r t t t( ) ( ) ( ) sin( ( ) ( )) (10)

By sustituting (6), (8), (10) into (9) and considering the consistency of O(ε) terms, we have
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Here η(θ, ω, t) can be expanded into the following complex Fourier series:
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η⊥ represents higher Fourier harmonics terms. Now,
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Similarly,
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Using (12), (15) into (11) and comparing the coefficients of eiθ:
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We now look for a separable solution: c(ω, t) = b(ω)eλt in the equation (16):
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( 1)2  for a standard Lorentzian distribution, we have:
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As R = |λ| > 0, κ passes through the bifurcation point when λ = iR or λ = −iR. When λ = iR,
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When λ = −iR,
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We set κ κ=1 2 (complex conjugate pairs) to seek for real critical values. When τ and R satisfies:

τ
π

= −R Rtan( ) 2 ln (22)

κ1 = κ2 and both are real. Equation (22) has many number of intersection points. Only one R = R0 > 0 is a 
unique efficient solution and all others are extra roots. The forward critical value of κ is determined by the value 
of R0 as follows:

τ=
+K R

R
R2( 1) cos( )

(23)f
0
2

0
0

All unique solutions in (23) are greater than or equal to 4 for any τ ≥ 0, as shown in Fig. 1(a).

Backward phase transition. Set a rotating frame with the average phase of the system,

φ φ ω= + 〈 〉t t( ) (0) (24)

Here 〈ω〉 is the average frequency of the oscillators. For an even symmetric distribution of g(ω), 〈ω〉 = 0. 
Hence, φ(t) = φ(0), φ(t − τ) = φ(0). With Δθi(t) = θi(t) − φ(0), then Δθi(t) = θi(t) − φ(t − τ), the mean field equa-
tion (5) can be transferred into:

θ ω κ ω θΔ = − | | Δ r sin( ) (25)i i i i

In the coherent state, all the oscillators are phase locked. So θΔ = 0i .
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Figure 1. (a,b) Theoretical predictions of critical coupling strengths (Kcritical = {Kf, Kb}) as a function of time 
delay (τ) for increasing (forward) and decreasing (backward) directions. The inset in (b) shows how the real 
(blue line) and imaginary (red dashed line) values of r(κ) vary with κ in the range [14], which helps to determine 
the critical coupling to be Kb = 2 at r(κ) ≈ 0.7 for the forward direction.
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Δθi+ and Δθi− represents the two groups in the equation (26).
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The above equation (29) has four possible solutions of r(κ) for different κ, all of which are complex for κ < 2, 
two of which are positive for κ ≥ 2, and only one of which increases for increasing κ. Thus, the equation for a 
viable solution is: κ = κ κ κ

κ
+ − +r( ) ( 2)( 2)

2
, for which the first solution with zero imaginary part occurs at κ = 2. 

Hence, the backward critical value of κ becomes Kb = 2 for any even, symmetric distribution function g(ω) 
(Fig. 1(b)). The inset in Fig. 1(b) shows the real (blue line) and imaginary (red dashed line) parts of r(κ) at differ-
ent κ: the imaginary part becomes zero at κ = 2 and remains so for increasing κ and, at κ = 2, r(κ) ≈ 0.7 (pre-
dicted value of r at the backward transition point).

Numerical results and extensions. As shown in Fig. 2, we numerically verify the above analytical 
results in a case of frequency-weighted, fixed time-delayed all-to-all coupling. We show that these findings from 
all-to-all, fixed time-delayed networks hold also true for the cases of sparsely connected networks (Fig. 3(a–d))  
and with distributed time-delayed couplings (Fig. 4(a–d)). We now turn to extend the above results of fully 
connected networks to a more realistic case of sparsely connected networks. For that, we consider the random 
Erdos-Renyi (ER) network as an example. For an uncorrelated network, we follow refs16,30 to rewrite Eq. (1) as
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where P(k), 〈k〉, ρ(k; θ, t) represent the degree distribution, average degree, and density of the nodes with phase θ 
at time t for a given degree k, respectively, and the term h(t) takes into account time fluctuations and is given by 
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=
− − , where “Im” stands for the imaginary part. In the thermodynamic 

limit, the term h(t) can be neglected when the average degree 〈k〉 is large enough30. Consequently, Eq. (2) can be 
rewritten as
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Figure 2. (a) Numerical values (x) overlaid on the theoretically predicted critical values for the forward 
transition (Kf − τ boundary), (b) r versus κ at τ/2π = 3.2 × 10−4, and (c) r versus k at τ/2π = 0.16. These 
numerical results are based on the RK4-integration scheme with step-size = 0.001 to solve the ordinary 
differential equations for 1000 coupled oscillators with incoherent initial conditions for the forward direction.
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h(t) and substituting Eq. (31) into Eq. (30), we obtain

θ ω κ ω φ τ θ= + | | − − t r t( ) sin( ( ) ) (32)

This is exactly Eq. (5). Therefore, the results obtained from Eq. (5) should also work for the case of non-fully 
connected networks, provided that the term h(t) in Eq. (30) can be neglected. In numerical simulations, the ER 
networks with a larger average degree 〈k〉 will satisfy the mean-field approximation (30–32) better. Figure 3(a–d) 
show the dependence of r on κ for different average degrees 〈k〉 and time delay τ, respectively, with (a) 〈k〉 = 10 
and τ/2π = 3.2 × 10−4; (b) 〈k〉 = 100 and τ/2π = 3.2 × 10−4; (c) 〈k〉 = 10 and τ/2π = 0.16; and (d) 〈k〉 = 100 and 
τ/2π = 0.16. Comparing the case of 〈k〉 = 100 in Fig. 3(b,d) with that of 〈k〉 = 10 in Fig. 3(a,c), we see that the 
former has a larger loop than the latter. Then, if we compare the case of 〈k〉 = 100 in Fig. 3(b,d) with that of 
fully connected network (〈k〉 = 999) in Fig. 2(b,c), we find that latter has a larger loop than the former. Thus, 
the size of loop will monotonously decrease with the decrease of 〈k〉. On the other hand, comparing the case of 
τ/2π = 3.2 × 10−4 in Fig. 3(a,b) with that of τ/2π = 0.16 in Fig. 3(c,d), we see that their differences are not signif-
icant, indicating that the explosive synchronization is robust to the time delay τ. In sum, Fig. 3(a–d) tells us that 
for different 〈k〉 and τ, there is always a hysteresis loop and the backward Kb is always close to κ = 2, confirming 
the theoretical extension of Eq. (30).

We now extend the findings to the case of non-uniform delays. For this purpose, we let each node have a 
different τi and let each τi be taken from a random uniform distribution with the average 〈τ〉/2π = 0.16 and 
standard deviation σ. To focus on the effect of distributed τi, we take the fully connected network as an exam-
ple. Figure 4(a–d) show the dependence of r on κ for different σ, respectively, with (a) σ = 0.001; (b) σ = 0.01; 
(c) σ = 0.1; and (d) σ = 1.0. We find that the backward Kb is always close to κ = 2 and the forward Kf is only 
slightly different for different σ, indicating that the explosive synchronization is robust to the distribution of 
time delay.
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Figure 3. Numerical simulations on the case of random Erdos-Renyi (ER) networks with size N = 103, where 
the “triangles” and “circles” represent the forward and backward processes, respectively. (a–d) Show the 
dependence of r on κ for different average degrees 〈k〉 and time delay τ, respectively, with (a) 〈k〉 = 10 and 
τ/2π = 3.2 × 10−4; (b) 〈k〉 = 100 and τ/2π = 3.2 × 10−4; (c) 〈k〉 = 10 and τ/2π = 0.16; and (d) 〈k〉 = 100 and 
τ/2π = 0.16.
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Discussion and Conclusions
Here, we have generalized the Kuramoto model to include fully connected, time-delayed, frequency-weighted 
coupling and analytically derived the exact formulas for critical transitions to or out of explosive (abrupt, 
first-order like) phase synchronization and extended these results to sparsely connected networks and distrib-
uted time-delays.

We used |ω|-weighted coupling previously used in a non-delayed system17. This scheme is one of the ways to 
obtain and maintain explosive transitions to or out of synchronization. The frequency-based weighting scheme 
is relevant to many functionally organized and spatially distributed oscillator systems, some relevant examples of 
which include power grid networks12,26, social communication networks27,28 and brain neuronal oscillatory net-
works3,29. In the example of power grid network, a network consists of Kuramoto oscillators, where the weighted 
coupling coefficient between two oscillators is related to their own natural frequencies26,27. In the example of com-
munication networks, an extrovert contacts his or her neighbors more frequently than an introvert. If we define 
the contact between two individuals as a kind of coupling and the frequency of contacts as coupling strength, the 
coupling strength becomes correlated with the characteristics of individuals, i.e., a kind of natural frequency of 
human interactions27.

In addition to the frequency-weighting scheme, there are other documented ways to induce and maintain 
explosive synchronization, which are: (i) uniform frequency distribution in all-to-all network topology7,8,14, 
(ii) time-delayed coupling20, (iii) order parameter-dependent coupling13, (iv) scale-free network topology 
and correlation between intrinsic frequencies and node degre15, and (v) coupling based on weighting proce-
dure with network link frequency mismatch and link betweeness31. Taken these cases together, it leads to a 
general notion that additional constraints or ‘inertia’ in the system, such as avoiding close frequencies, having 
time-dependence in parameters or network structure - dynamics correlation, can equally induce or enhance 
explosive synchronization.

In sum, we generalize the Kuramoto model of globally coupled phase oscillators with time-delay and oscil-
lation frequency-modulated coupling considering its relevance to adaptive physical, biological or technoligcal 
oscillators. We have analytically and numerically studied the stability of first-order synchronization in this gen-
eralized Kuramoto model. We have found the exact formulas for the critical coupling strengths at different time 
delays in both the increasing (forward) and decreasing (backward) directions of coupling strengths. We find that 
time-delay does not change the transition in the backward direction but can shift the transition for the forward 
direction. These results, consistent across sparsely connected networks and networks with distributed time delays, 
provide useful insights into our understanding of dynamical mechanisms leading to explosive synchronization in 
presence of often unavoidable time delays in realistic spatially distributed and functionally organized systems. We 
envision that our theoretical work may encourage future research on abrupt collective synchronization in models 
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Figure 4. Numerical simulations on the case of fully connected networks with size N = 103, where the 
“triangles” and “circles” represent the forward and backward processes, respectively. (a–d) Show the dependence 
of r on κ for 〈τ〉/2π = 0.16 and different σ, respectively, with (a) σ = 0.001; (b) σ = 0.01; (c) σ = 0.1; and (d) 
σ = 1.0.
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of spatially distributed and functionally organized real systems that can be mapped or reduced onto the Kuramoto 
model, such as Josehpon juctions4, cortical neurons32 and many more19.
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