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SMTracker: a tool for quantitative 
analysis, exploration and 
visualization of single-molecule 
tracking data reveals highly 
dynamic binding of B. subtilis global 
repressor AbrB throughout the 
genome
Thomas C. Rösch  1,2, Luis M. Oviedo-Bocanegra  1,2, Georg Fritz1,3 & Peter L. Graumann1,2

Single-particle (molecule) tracking (SPT/SMT) is a powerful method to study dynamic processes in 
living cells at high spatial and temporal resolution. Even though SMT is becoming a widely used method 
in bacterial cell biology, there is no program employing different analytical tools for the quantitative 
evaluation of tracking data. We developed SMTracker, a MATLAB-based graphical user interface (GUI) 
for automatically quantifying, visualizing and managing SMT data via five interactive panels, allowing 
the user to interactively explore tracking data from several conditions, movies and cells on a track-by-
track basis. Diffusion constants are calculated a) by a Gaussian mixture model (GMM) panel, analyzing 
the distribution of positional displacements in x- and y-direction using a multi-state diffusion model 
(e.g. DNA-bound vs. freely diffusing molecules), and inferring the diffusion constants and relative 
fraction of molecules in each state, or b) by square displacement analysis (SQD), using the cumulative 
probability distribution of square displacements to estimate the diffusion constants and relative 
fractions of up to three diffusive states, or c) through mean-squared displacement (MSD) analyses, 
allowing the discrimination between Brownian, sub- or superdiffusive behavior. A spatial distribution 
analysis (SDA) panel analyzes the subcellular localization of molecules, summarizing the localization 
of trajectories in 2D- heat maps. Using SMTracker, we show that the global transcriptional repressor 
AbrB performs highly dynamic binding throughout the Bacillus subtilis genome, with short dwell times 
that indicate high on/off rates in vivo. While about a third of AbrB molecules are in a DNA-bound state, 
40% diffuse through the chromosome, and the remaining molecules freely diffuse through the cells. 
AbrB also forms one or two regions of high intensity binding on the nucleoids, similar to the global gene 
silencer H-NS in Escherichia coli, indicating that AbrB may also confer a structural function in genome 
organization.

With the advent of single-molecule localization microscopy, there is an increasing number of studies reporting 
the dynamics of single molecules at the millisecond range and at high optical resolution1. Contrarily to ensem-
ble measurements, such as fluorescence correlation spectroscopy (FCS) and fluorescence recovery after pho-
tobleaching (FRAP) experiments, single molecule tracking (SMT) provides details about individual molecules 
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and their diffusive behavior2 and has revealed unprecedented insights into the mechanism of diverse cellular 
processes such as signal transduction3, chromosome segregation4,5, transcription6, translation7,8, replication9 and 
DNA-repair10–12.

Despite several established software solutions to detect and connect sequentially acquired signals of fluorescent 
fusion proteins13, we are aware of only few GUI-based tools to easily asses, visualize and further analyze diffusion 
data without advanced computational skills. The softwares InferenceMAP and Diatrack14,15 are able to infer diffusion 
constants from tracking data and allows the user to visualize spatial maps of protein mobilities, primarily designed 
for eukaryotic cells. We therefore devised a GUI-based solution to easily quantify, explore and visualize the molecular 
kinetics and dynamics of single particles in bacterial cells. This program fills a void for tools that provide access to differ-
ent diffusive states of individual molecules, as often incurred by binding and unbinding to other subcellular structures. 
We therefore developed SMTracker, a versatile and user-friendly program operating in MATLAB, which can be run 
without prior programming knowledge. The software allows detailed access to single trajectories, to analyze the mode 
of diffusion via different approaches, the determination of binding kinetics (e.g. of protein-DNA interactions) and the 
2-dimensional visualization of subcellular distributions of molecules and their tracks in a normalised cell.

SMTracker contains 5 different panels (Fig. 1): (i) The import/exploration panel allows the user to interac-
tively explore tracking data from several conditions, movies and cells on a track-by-track basis. (ii) The Gaussian 
mixture model (GMM) panel analyzes the distribution of positional displacements in x- and y-direction using a 
multi-state diffusion model (e.g. DNA-bound vs. freely diffusing molecules), and infers the diffusion constants 
and relative fraction of molecules in each state. (iii) The squared displacement analysis (SQD) panel uses the 
cumulative probability distribution of squared displacements to estimate the diffusion constants and relative 
fractions of up to three diffusive states. Although the GMM and SQD analyses are closely related, each method 
has strengths and weaknesses in accurately inferring molecular properties under different experimental con-
ditions, e.g. for different magnitudes of the diffusion constant, as shown by benchmarking both methods on 
computer-simulated SMT data. (iv) The mean-square displacement (MSD) panel determines the mode of dif-
fusion from a fit of the MSD plotted against the time lag between image frames, allowing the discrimination 
between Brownian, sub- or superdiffusive behavior. (v) The spatial distribution analysis (SDA) panel analyzes the 
subcellular localization of molecules, summarizing the localization of trajectories in 2D- and 3D-heat maps and 
in normalized distributions projected in x- and y-orientation. This visualization allows distinguishing different 
localization patterns (cytoplasmic, nucleoid- or membrane-bound) arising from different biological conditions.

AbrB is a tetrameric DNA binding protein that generally represses many genes during exponential growth, 
which are released from repression at the transition to stationary phase, rendering AbrB an important global 
regulator for stationary phase gene expression (including biofilm formation) in Bacillus subtilis and other Gram 
positive bacteria16–18. In many different bacterial species, including Cyanobacteria, AbrB confers an impor-
tant function in gene regulation for e.g. metabolic processes, extending its activity into the exponential growth 
phase19,20. In B. subtilis, AbrB also binds to DNA as a heterotetramer, together with its paralog Abh, to a total of 
over 600 binding sites throughout the genome21. Of these, about 100 have been implicated in regulating promoter 
activities in a direct manner, which influences the expression of almost 200 genes. In spite of its genome-wide 
importance, and role as transition-state regulator, AbrB has never been characterized in a cell biological approach. 
Using SMTracker, we determined single molecule dynamics of AbrB, and also found a surprising clustering of 
AbrB molecules on the nucleoids that may confer a more general role as chromosome-structuring element.

Results and Discussion
Import/exploratory panel. As an input, SMTracker requires single-molecule tracking data, cell contour 
data and original fluorescence movies (Figs. 1a and S1). SMTracker supports data input from two of the most 
commonly used particle tracking tools U-track22 and TrackMate23 and computes the x- and y-coordinates of 
molecular trajectories relative to the geometry of each cell, as obtained by the cell segmentation tools 
MicrobeTracker24 or Oufti25. After automatic data import – only requiring the pixel size of the microscopy system 
and the time interval ∆t between image frames as user input – each track is associated to a corresponding cell and 
the user can interactively explore tracking data from several conditions, movies and cells on a track-by-track 
basis. Cells and tracks can be manually removed, if necessary, and overlaid in up to three different channels 
acquired during imaging (e.g. DAPI, membrane or phase contrast), allowing for a manual analysis of protein 
localization relative to cellular markers. Besides choosing a specific trajectory or cell from a pop-up menu, the 
user can drag each cell or trajectory on the screen (Fig. S4) and thereby access statistical details about the track 
(Fig. S5) and visualize the track as a movie. Additionally, this panel provides general statistical information about 
the experiment (e.g. the number of movies, cells, trajectories, etc.) and the conditions studied.

Gaussian mixture model (GMM) analysis panel. To directly compare the change in intracellular protein 
mobility upon changing conditions of the cell (e.g. drug treatment), we developed a method based on Gaussian 
mixture models (GMM). The method assumes that molecules may exist in multiple states, e.g. DNA-bound vs. 
free, or septum-bound and freely diffusive, each of which is associated with a different diffusion constant D1 and 
D2, respectively, and that the fraction α of molecules in the slow diffusive state (or α−1  in the fast diffusive state) 
may change between experimental conditions (Fig. 1b). For each subpopulation the random motion between 
consecutive image frames leads to positional displacements in x- and y-direction, ∆x and ∆y, following a 
Gaussian distribution with zero mean and standard deviation σ = ∆D t2 , where D is the respective 
(1-dimensional) diffusion constant and ∆t the time interval between image frames. By fitting the superposition 
of one, two or optionally three Gaussians to the experimental displacement distributions the algorithm infers the 
diffusion constants D1, D2 (and D )3  as well as the fractions α α,1 2 and α3 of the respective molecules in the differ-
ent diffusive states. In particular, if we let
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Figure 1. The SMTracker software suite. (a) After importing raw data of tracks and cell outlines, the 
import panel allows the user to interactively explore the data, identify characteristic patterns and potential 
experimental artifacts. (b) The Gaussian mixture model (GMM) analysis runs a fit on the probability density 
function (pdf) of positional 1D displacements, assuming a two- (or three-) state model with a mobile (blue line) 
and immobile (red line) subpopulation of molecules, thereby extracting the diffusion coefficient and fraction 
size of each subpopulation. (c) Squared displacement (SQD) analysis considers the cumulative probability 
function of squared displacements and provides an alternative way to analyze up to 3 different subpopulations 
in the biological sample. (d) The mean-squared displacement (MSD) analysis plots the time-ensemble averaged 
MSD vs. the time-lag, revealing the type of motion exhibited by the molecules. A linear dependency of the MSD 
on the time-lag indicates Brownian diffusion (blue line), whereas an asymptotic curve is indicative of confined 
(or sub-diffusive) motion. (e) In the spatial distribution analysis (SDA) panel the software generates 2D- and 
3D- heat maps and distributions of trajectories along the x- and y-axis of the cell, allowing the identification of 
specific localization patterns of molecules, e.g., cytoplasmic, membrane- or nucleoid-bound.



www.nature.com/scientificreports/

4SCIENtIFIC REPORTS |         (2018) 8:15747  | DOI:10.1038/s41598-018-33842-9

be the cumulative distribution function (CDF) of the Gaussian distribution, we performed a least square fit of 
the function
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to the experimental CDF, ∆H x( ), by using a trust-region reflective Newton method (MATLAB, The MathWorks, 
Inc.). Note that the algorithm allows the user to either pool x- and y-displacements into a single distribution H 
(which is the preferred choice if x- and y-displacements are given in an image-centric coordinate system and cells 
are randomly oriented) or to treat x- and y-displacements independently (which is the preferred choice if the 
analysis is performed in a cell-centric coordinate system, with the x- and y-axis corresponding to the long and the 
short cell axis, respectively). To evaluate the goodness of fit, a Kolmogorov-Smirnov test has been applied.

An example of a protein investigated by GMM can be seen in suppl. Fig. S6: in the left panel, many small steps 
(around “0”) can be seen, and fewer larger steps (these are shown by the dotted line), while in the right panel, 
the protein has become much more mobile; now, the static fraction (dotted line) is much smaller than the one in 
the left panel. The red curves show two population fits, which explain the data well, while a single fit (assuming a 
single population), shown in green, could not explain the observed distribution of steps. The bubble plot GMM 
(Fig. S6) shows the size of the two populations, and their average diffusion constant on the y-axis. It can be seen 
that the right condition has an inverse relation between static and mobile molecules, revealing that the protein 
markedly changes its dynamics between the two conditions.

To better compare changes in molecular behavior between different treatments of cells, the algorithm option-
ally allows the user to keep the diffusion constants D1, D2 (and D3) identical between conditions and to attribute 
changes in the displacement distributions only to changes in the fractions αi. A two-sample Kolmogorov-Smirnov 
test has been implemented in order to evaluate significant differences between the experimental cumulative dis-
tributions of displacements. The software also runs a model comparison test based on the Bayesian Information 
Criterion (BIC)26, and displays which model (i.e. the number of diffusive states), explains the experimental data 
best, i.e., the model for which

χ= + ⋅BIC k nln( )2

is minimal. Here, χ2 denotes the residual between model and experimental CDF for the optimal parameter set, k 
the number of model parameters and n the number of experimental data points.

As an additional output the software also calculates the residence times for the molecules of each condition, 
e.g. how long a protein binds to DNA, by counting the time a molecule stays within a predefined radius R. This 
radius is based on the standard deviation of the immobile fraction of molecules, σ = ∆D t2 ,1 1 such that it 
includes 99.7% of the smaller displacements ( σ= ⋅R 3 1), thereby also allowing the classification into confined 
and non-confined trajectories.

Mean-square displacement (MSD) analysis panel. The most common way of analyzing SMT data is 
the extraction of the time-ensemble averaged MSD, which is plotted as a function of the time lag (tlag)27. While 
normal (Brownian) diffusion shows linear relation between the MSD and tlag, confined motion is represented by 
a MSD that reaches a plateau for high tlag and directed motion is characterized by parabolic MSD curve (Fig. 1d). 
By fitting the MSD plot with a linear function at short time-lags (Fig. S7), the diffusion coefficient can be esti-
mated28. To this end the user can interactively define the number of tlag taken into account to linearly fit the MSD 
function, which condition and which direction (x-, y- or pooled xy-orientation) should be plotted. Additionally, 
the panel provides a measure for the localization error ξ of the microscopy system, which is derived from the 
y-axis intercept of the time-averaged MSD curves generated for single trajectories28. To improve precision in the 
estimation of ξ the software limits this analysis to tracks with a high goodness of fit (R2) value and a low diffusion 
coefficient.

Here, it should be noted that the MSD analysis is most appropriate if individual molecules are in one diffusive 
state characterized by a single diffusion constant. However, if individual molecules switch between diffusive states 
(e.g. by DNA binding and unbinding), the MSD analysis will only report an average diffusion constant for each 
molecule. Thus, even if molecules are in clearly distinct diffusive states, but if they switch between them, the 
time-averaging performed on each trajectory can lead to a whole spectrum of apparent diffusion constants 
between D1 and D2.

Squared displacement (SQD) analysis panel. The SQD panel integrates an alternative way of analyzing 
the diffusive behavior of the molecules at the sub-population level (Fig. 1c), which was first described by Schütz 
et al29. and has been applied in a variety of studies5,30,31. The basic idea is similar to the GMM analysis, but the 
SQD analysis considers the solution of the diffusion equation in terms of the 2-dimensional radial displacement 

= − + −r t x t x y t y( ) ( ( ) (0)) ( ( ) (0))2 2 2, which leads for one diffusive molecule species to the cumulative distri-
bution function
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Accordingly, for multiple diffusive species with diffusion constants = …D i q( 1, , )i  and relative fractions αi 
the CDF reads
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i1 . For a given number of diffusive states q, the algorithm implemented in the SQD panel performs 
a simultaneous nonlinear least square fit of Eq. (1) to the experimental CDFs for = ∆ ∆ ∆ ∆t t t t t1 , 2 , 3 , 4  - 
thereby estimating the αi and Di

32. Here, the user can either choose manually between a one-, two- or three-state 
model to estimate the αi and Di of a given dataset, or to automatically choose the best-fitting model according to the 
BIC criterion (Fig. S8). Please note that in contrast to the GMM method, the CDF of squared displacements are fitted 
independently for each condition or treatment. For the evaluation of the difference between the CDFs of the mod-
elled distributions of each pair of conditions, a two-sample Kolmogorov-Smirnov is performed.

Spatial distribution (SDA) panel. The spatial distribution panel summarizes the localization of the trajectories 
in 2D- and 3D-heat maps and provides normalized distributions for the localization in x- and y-orientation. To this 
end all trajectories are transformed into a cell-centric coordinate system and then scaled to a unit cell of µ µ×m m1 1  
(Fig. S9). This visualization allows distinguishing different localization patterns (cytoplasmic, nucleoid and mem-
brane) (Fig. 1e), and the visualization of changes in localization patterns of a given protein in response to e.g. changes 
in environmental conditions, or by the absence of another protein thought to interact with the protein of interest.

Benchmarking SMTracker performance with synthetic SMT data. In order to validate the perfor-
mance of SMTracker, we used computational simulations to generate sets of synthetic SMT data with known 
properties, i.e., diffusion constants and fraction sizes of molecules in the different diffusive states. Applying the 
GMM and SQD methods to the synthetic data then allows benchmarking the performance of each method as a 
function of simulation parameters, as detailed in the following.

Simulation of synthetic single molecule trajectories. Simulations of single molecule trajectories were 
performed on a total of = +n n ntot 1 2 molecules, where n1 and n2 are the number of molecules in a slow and fast 
diffusive state (with diffusion constants D1 and D2), respectively. For each subpopulation, Brownian motion of 
molecules was modeled by a 3-dimensional discrete-time random walk in x-, y-, and z-direction according to

δ δ τ= + ∼+x x N D; (0, 2 )i i x x1

δ δ τ= + ∼+y y N D; (0, 2 )i i y y1

δ δ τ= + ∼ .+z z N D; (0, 2 )i i z z1

Here, δ δ,x y and δz  are Gaussian-distributed random variables with zero mean and standard deviation 
σ τ= D2 , with ∈D D D{ , }1 2  being the diffusion constant of the respective subpopulation and τ  the time 
interval between simulation steps = …i N1, 2, , t. The initial particle positions x y z( , , )0 0 0  were randomly sam-
pled according to a uniform distribution within a 3-dimensional, rod-shaped cell, formed by a cylinder and two 
hemispherical end caps with a radius of µ. m0 5 and a total length of µm3 . From these starting points tridimen-
sional random trajectories were simulated with a time lag of τ = . ms0 02 . Reflecting boundary conditions at the 
cell membrane were implemented by rejecting (and re-drawing) all random moves (δ δ δ, ,x y z) leading to posi-
tional vectors outside the rod-shaped cell. Additionally, the simulation accounts for a finite localization precision 
in typical experimental setups by adding a random vector (ε ε ε, , )x y z  to the “true” positions in the simulation, 
leading to the “observed” positions X Y Z( , , )i i i  at each point in time i

ε ε= + ∼ σX x N; (0, )i i x x x loc,

ε ε= + ∼ σY y N; (0, )i i y y y loc,

ε ε= + ∼ σ .Z z N; (0, )i i z z z loc,

here the (ε ε ε, , )x y z  are again normally distributed random numbers with zero mean and standard deviation 
σ = σ = σ = σ = nm30x loc y loc x loc loc, , , . For the generation of synthetic single molecule trajectories, we used a 
sampling interval of ∆ =t ms20 , which is often used in experimental setups (see Tables 1 and 2 for a summary of 
all simulation parameters).

Benchmarking of GMM and SQD method performance. For benchmarking the performance of the 
GMM and SQD methods, we simulated a set of synthetic datasets varying in the diffusion constants D1 and D2, as 
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well as in the fraction α of the slow-diffusive subpopulation of molecules (Figs 2–4). Each dataset consists of 30 
simulation runs with 2000 single molecule tracks with a length of 20 frames. The tracks of each synthetic dataset 
were analyzed via the GMM and SQD methods and the resulting estimated parameters were compared with the 
true values entering the simulation (Fig. 2 – D1; Fig. 3 – D2; Fig. 4 – α). Overall, we found that both methods cap-
ture the diffusion constants and the fraction sizes of the two subpopulations with reasonable accuracy, provided 
that the diffusion constants are significantly different from each other and both range in a regime amenable to 
experimental resolution, as detailed further below.

When comparing both inference methods, it became apparent that the SQD method is more accurate in infer-
ring the diffusion constant of the slower subpopulation (Fig. 2) while the GMM method is more precise in esti-
mating the diffusion constant of the fast subpopulation (Fig. 3). Intuitively, this performance difference is related 
to the fact that the GMM method only takes into account the displacements between single frames, while the 
SQD method considers the displacements between multiple (up to 4) frames simultaneously. Accordingly, if the 
displacements are small (as for the case of the slowly diffusing fraction of molecules) the SQD method averages 
over more displacements and thereby achieves a higher accuracy in estimating the diffusion constant than the 
GMM method. Note, however, that both methods can only resolve diffusion constants larger than a lower limit 

determined by the finite localization precision σloc of the experimental setup, as given by = σ
∆

Dloc t2
loc
2

(Fig. 2; 
dashed lines). On the other hand, if displacements are large (as for the case of the rapidly diffusing fraction of 
molecules) averaging the displacements over multiple frames leads to a slight underestimation of the diffusion 
constant by the SQD method (Fig. 3), because the longer the observation timescale, the more likely the trajectory 
is restricted by the confinement to the cell volume, leading to an apparent reduction in the observed displace-
ments. To provide the user with the ability to flexibly adjust the accuracy of the SQD method to either slow or fast 
diffusive molecules we further implemented the option to choose between fits considering 

= ∆ ∆ ∆ ∆t t t t t1 , 2 , 3 , 4  time frames or all of them simultaneously. Thus, in order to obtain high accuracy in 
the estimation of low diffusion constants the user should choose to take all time frames into account, whereas for 
accuracy in the estimation of high diffusion constants the best choice will be = ∆t t1 . Under the latter conditions 
the GMM and SQD methods are in fact equivalent and yield identical results (Figs S10–S12). Comparing the 
estimated fraction sizes α shows that for most parameter combinations both methods show a comparable accu-
racy, with estimated fraction sizes deviating from the true fraction sizes by less than 10% (Fig. 4). Only if the dif-
fusion constant of the slow and the rapid subpopulation are (almost) identical (Fig.  4D,G; 

µ µ= . . = .D m s D m s0 05, 0 1 / ; 0 1 /1
2

2
2 ), the variance in the estimated values of α increases, indicating that more 

than a 2-fold difference in diffusion constants is required to reliably infer the fraction sizes of two 
subpopulations.

Transition state regulator AbrB shows highly dynamic binding throughout the Bacillus subtilis 
nucleoids, and forms one or two subcellular clusters on the chromosomes. Next, we applied 
the SMTracker software to analyze experimentally aquired single molecule tracking data by focussing on the 
subcellular dynamics of the transcription factor AbrB in the Gram-positive model organism Bacillus subtilis. 
AbrB has long been known as a global regulator of genes whose expression is de-repressed as cells transition 
from exponential into stationary growth. Due to its structural similarity to small nucleoid-associated proteins 
in bacteria (often also called histone-like proteins), it has been speculated that AbrB may also confer a structural 
role in chromosome organization, in addition to its specific role in gene regulation. To investigate this point from 
a cell biological perspective, we generated a C-terminal fusion of YFP to AbrB in B. subtilis, which was still able 
to support biofilm formation (data not shown), indicating that it functions similar to wild type AbrB. The fusion 

Number of tracks 2000

Max number of points/track 20

Simulation time lag τ (ms) 0.02

Observation time lag (ms) 20

Number of simulation runs 30

Diffusion constant D1 (μm2 s−1) [0.01 0.05 0.1]

Diffusion constant D2 (μm2 s−1) [0.1 0.5 1]

Fraction size α (% molecules at diffusion rate D1) [20 40 60 80]

Localization error ξ (nm) 30

Table 1. Configuration of the synthetic trajectories.

Fitting upper boundaries [D1, D2] (μm2 s−1) [1, 10]

Fitting lower boundaries [D1, D2] (μm2 s−1) [0.0225, 0.0225]

Fit method Nonlinear least-squares

Tolerance 10−8

Table 2. Configuration of the fitting procedure.
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was expressed from the original gene locus as sole source of the protein in the cell, under control of the original 
promoter, ensuring that wild type levels are expressed.

Using 15 ms stream acquisitions, we obtained 1900 tracks from 66 cells, having an average duration of 180 ms. 
Using SMTracker, we characterized AbrB dynamics using above-mentioned features. Figure 5A shows a projec-
tion of all fluorescence intensities obtained in a chain of cells over time, revealing that AbrB is mainly restricted to 
the centrally located chromosome(s). In Fig. 5C, the positions of AbrB-YFP tracks in a slow/static state (red) and 
mobile state (blue) are shown within a standardized cell of 3 × 1 µm, revealing that AbrB binds throughout the 
entire nucleoid, and thus throughout the chromosome. This is in agreement with its more than 600 binding sites 
distributed across the genome21. GMM analyses show that 68% of the time AbrB molecules move with a diffusion 
constant of 0.084 µm2/s, whereas in 32% of the time they move with a diffusion constant of 0.8 µm2/s (Fig. 5E). 
Interestingly, the diffusion constant for the fast subpopulation of AbrB (total mass of 156 kDa including YFP) is 
very similar to the diffusion constant of 0.53 µm2/s for the freely diffusive fraction of the Smc dimer33 (total mass 
of 330 kDa including YFPs), and 0.51 µm2/s for the freely diffusive fraction of the DnaA dimer9 (total mass of 
156 kDa including YFPs), suggesting that this corresponds to the freely diffusive state of AbrB. In contrast, the 
previously reported diffusion constant for the DNA-bound state of Spo0J (0.02 µm2/s)9 is about 4-fold lower than 

Figure 2. Dependence of estimated diffusion constant D1 (slow subpopulation) on simulation parameters and 
inference method. Each panel (A–I) corresponds to a combination of simulation parameters D1 and D2, as 
indicated by the green and blue labels outside the plot panels, respectively. Within each panel 4 values of the 
fraction sizes α were chosen and synthetic simulations were performed on all parameter combinations. For each 
parameter combination (D1, D2 and α) 30 simulations with 2000 tracks of 20 frames duration (see Table 1 for all 
simulation parameters) were executed and the resulting data was analyzed with the GMM and SQD method, 
yielding two different estimates for the value of D1(GMM: black boxplots; SQD: cyan boxplots). On each box, 
the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the 
most extreme data points not considered outliers and the outliers are plotted as individual circles. The green 
horizontal lines indicate the true value for D1 in the simulation. The black dashed lines indicate the lower limit 

= = . µσ
∆

D 0 0225loc t
m
s2

loc
2 2

 for an estimate of the diffusion constant, given a finite localization precision 
σ = nm30loc  and a frame rate of ∆ =t ms20  used in our simulations.
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that for the static subpopulation of AbrB (0.084 µm2/s), suggesting that this value might be the result of a mixture 
between two diffusive states, for instance by AbrB frequently interacting with DNA in a non-specific manner, 
in search of its binding sites. Indeed, a more fine-grained analysis using the 3-state SQD approach support the 
presence of 3 populations: D = 0.019/0.1/ 0.81 µm2/s; F = 35/40/25%, suggesting that 35% of AbrB molecules are 
bound to their target DNA sites, while 40% move along DNA in a constrained manner, and 25% freely diffuse as 
tetramers.

Figure 5D shows SMT-derived dwell time determination of AbrB-YFP, revealing two distinct fractions – one 
with 38 ms, and the other with 110 ms. The latter fraction likely represents the DNA-bound AbrB fraction, and 
because its dwell time is shorter than the average life time of AbrB tracks, it reveals that binding of AbrB is very 
dynamic in vivo. It should be noted that actual dwell time in vivo will be somewhat longer, because of YFP bleach-
ing due to the experimental setup. To test if bleaching strongly influences dwell time determination, we used a 
YFP-MreB fusion and determined bleaching kinetics of static MreB molecules (Fig. 6), which are bound within 
filaments that run underneath the cell membrane mostly perpendicular to the long axis of cells34, and play an 
important role in the maintenance of cell morphology. Average half-lifetime of YFP molecules was 1.4 s, much 
longer than the estimated dwell time of AbrB-YFP, showing that YFP bleaching does not strongly affect dwell time 
determination of AbrB. Interestingly, an average dwell time of 110 ms was found for 30% of AbrB-YFP molecules 
(Fig. 5E), in good agreement with the 35% of static AbrB molecules as deduced from SQD analyses. Thus, AbrB 

Figure 3. Dependence of estimated diffusion constant D2 (fast subpopulation) on simulation parameters and 
inference method. Each panel (A–I) corresponds to a combination of simulation parameters D1 and D2, as 
indicated by the green and blue labels outside the plot panels, respectively. Within each panel 4 values of the 
fraction sizes α were chosen and synthetic simulations were performed on all parameter combinations. For each 
parameter combination (D1, D2 and α) 30 simulations with 2000 tracks of 20 frames duration (see Table 1 for all 
simulation parameters) were executed and the resulting data was analyzed with the GMM and SQD method, 
yielding two different estimates for the value of D2(GMM: black boxplots; SQD: cyan boxplots). On each box, 
the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the 
most extreme data points not considered outliers and the outliers are plotted as individual circles. The blue 
horizontal lines indicate the true value for D2 in the simulation.
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binding sites are occupied by individual AbrB molecules for only short times (LacI repressor has average DNA 
binding times of few minutes35), revealing high molecule turnover on the chromosome.

A further interesting finding is shown by overlaying all tracks obtained by SMT acquisition, which reveals 
the position of static tracks. Figure 5B shows that AbrB-YFP forms static foci in cells, either one or two, on the 
nucleoids. Although we can presently not determine if these sites correspond to any specific site on the chromo-
some (e.g. origin regions), and if they confer an important function, it is interesting to note that this is a parallel 
to global trabscriptional silencer H-NS in E. coli, an important nucleoid-associated protein with many hundreds 
of binding sites. In contrast to other nucleoid-associated proteins such as HU, Fis and IHF, which are scatterd 
throughout the genome, H-NS forms one or two subcellular clusters on the nucleoids that are important for 
nucleoid shaping36. It is therefore possible that AbrB confers a similar structural function in B. subtilis.

Conclusions
SMTracker software provides a user-friendly interface for comprehensive visualization and analysis of SMT 
data that can be readily printed in publication-quality figures in an effortless and automated way. It provides 
an intuitive pipeline to compare the diffusion of molecules under varying conditions in terms of fraction size, 
spatial distribution and binding times. Our software was benchmarked on a computer-simulated set of tracking 
data, exposing the advantages of individual SMT analyses under different experimental conditions, and thereby 

Figure 4. Dependence of estimated fraction α (slow subpopulation) on simulation parameters and inference 
method. Each panel (A–I) corresponds to a combination of simulation parameters D1 and D2, as indicated by the 
green and blue labels outside the plot panels, respectively. Within each panel 4 values of the fraction sizes α were 
chosen and synthetic simulations were performed on all parameter combinations. For each parameter 
combination (D1, D2 and α) 30 simulations with 2000 tracks of 20 frames duration (see Table 1 for all simulation 
parameters) were executed and the resulting data was analyzed with the GMM and SQD method, yielding two 
different estimates for the value of α (GMM: black boxplots; SQD: cyan boxplots). On each box, the central 
mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most 
extreme data points not considered outliers and the outliers are plotted as individual circles. The red lines 
indicate the true values for α in the simulation.
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highlighting the usefulness of combining multiple approaches of SMT data analysis in the SMTracker suite. Using 
this pipeline, we show that the genome-wide repressor AbrB in B. subtilis shows three fractions of different mobil-
ity, with one third of the molecules being bound to DNA throughout the genome, about one third sliding along 

Figure 5. SMT analyses of AbrB-YFP from Bacillus subtilis. (A) Projection of all frames of a typical stream 
acquisition overlayed with tracks (in blue) detected by U-track (left panel), (B) and a projection of frames 
without tracks. (C) Heat map showing mobile AbrB-YFP tracks in blue, and static tracks in red. (D) dwell time 
determination, (E) Diffusion constants and average dwell times of AbrB-YFP.

Figure 6. Bleaching of YFP-MreB in single B. subtilis cells. Image acquisition parameters were identical to those 
used in Fig. 5. Exponential fits (solid curves) to the bleaching curves of 23 single cells (dots) revealed an average 
bleaching half-life time of <τ1/2> = 1.3 s with a standard deviation of σ1/2 = 0.4 s.
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DNA in search of binding sites, and another third freely diffusing. As AbrB has very short dwell times on DNA, 
our data suggest that there is a high exchange between molecules being bound and diffusing along DNA, and 
between the latter fraction and freely diffusing molecules. Although SMTracker was used for SMT in rod-shaped 
bacterial cells, SMTracker can be applied to SMT experiments in cells with different morphologies even up to 
eukaryotic cells (e.g. Schizosaccharomyces pombe). We expect that SMTracker will enable non-specialized sci-
entists to answer advanced questions in (bacterial) cell biology without the need to deeply engage in program-
ming and the underlying mathematical analyses. Finally, SMTracker allows data export to other tools such as 
SMMtrack9 and the vbSPT software37 (see suppl. material), which analyzes SMT data on the basis of a Hidden 
Markov model to extract diffusion coefficients and transition rates between diffusive states.

Materials and Methods
Bacterial strains and growth conditions. AbrB was fused to YFP by amplification of 500 bp from the 3′ 
end of the abrB gene (excluding the stop codon) and by Gibson assembly into pSG116438. B. subtilis strain PY79 
was transformed with the resulting plasmid, such that a fusion of the abrB gene with yfp at its C-terminus was 
generated at the original gene locus, which was under control of the abrB promoter. As abrB is monocistronic, no 
downstream gene was affected. For microscopy, cells were grown in S750 minimal medium at room temperature 
until mid-exponential growth, and were imaged under laid by agarose containing growth medium.

Single molecule tracking of AbrB. Imaging was performed with a Nikon Ti-E microscope configured 
with a high numerical aperture objective (CFI Apochromat TIRF 100XC Oil, NA 1.49), an EM-CCD camera 
(ImagEM X2, Hamamatsu) and an filter set for imaging YFP molecules (YFP HC Filterset; BrightLine 500/24, 
Beamsplitter 520 and BrightLine 542/27). Specimen were continuously illuminated with the central part of an 
expanded laser beam (TOPTICA Beam Smart, 515 nm, max. power 100 mW) with an intensity of 160–300 W/cm2 
and streams were recorded at a frame rate of ~67 Hz using VisiView (Visitron Systems).

Software implementation. SMTracker was developed for Windows and Mac OS X running MATLAB 
R2014b and later. The graphical user interface (GUI) of SMTracker relies on the GUI layout Toolbox (Ben Tordoff 
and David Sampson, Consulting Services group at MathWorks), which is freely available at https://www.math-
works.com/matlabcentral/fileexchange/47982-gui-layout-toolbox. In addition, SMTracker requires the follow-
ing MATLAB toolboxes: Curve Fitting, Statistics and Machine Learning, Optimization, Image Processing and 
Parallel Computing. SMTracker is available under GPLv3 license at https://sourceforge.net/projects/singlemole-
culetracker, where updated versions can be downloaded for direct use as well as for further extension and mod-
ification by experienced developers. The authors request acknowledgment of the use of SMTracker in published 
works.

Data Availability Statement
All data are availabile within the manuscript.
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