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Intense spectrally broad-band 
twin beams from poled nonlinear 
crystals
Jan Peřina Jr.

Properties of intense twin beams generated in parametric down-conversion in periodically poled 
LiNbO3 crystals and their chirped variants by intense pump fields are analyzed along the model of 
intense parametric down-conversion that allows for pump depletion and uses the dual spatio-spectral 
Schmidt modes. Spectral and spatial intensity auto- and cross-correlation functions are determined as 
they depend on the pump power. Temporal correlations in intense twin beams at the fs time scale are 
investigated using the Hong-Ou-Mandel interferometer and the process of sum-frequency generation.

Periodical poling of nonlinear crystals with χ(2) susceptibility, invented by Armstrong and his coworkers in 
19621, has become important and powerful tool in nonlinear optics in recent years2, mainly due to its appli-
cation to LiNbO3

3,4 and KTP crystals5,6. It allows for the compensation of natural nonlinear phase mismatch 
occurring among in general three nonlinearly interacting fields on one side, it enables to substantially modify 
the properties of these optical fields on the other side2. The ability to compensate for the natural phase mismatch 
opens the door for the exploitation of the largest nonlinear coefficients of a used material which considerably 
enhances the efficiency of nonlinear interaction under the required conditions. This enhancement has been 
used in second-harmonic generation7–9, difference-frequency generation9,10 and most frequently in paramet-
ric down-conversion for photon-pair generation11–14. The application of periodical poling to reach quasi-phase 
matching among three ordinary waves in the collinear geometry gives the so-called Type-0 three-mode inter-
action that is frequently used as a powerful source of entangled photon pairs, especially based on LiNbO3 crys-
tals13,15. Global periodicity of the nonlinear grating introduced by poling that creates domains with differing 
signs of χ(2) susceptibility can be replaced by local periodicity whose period may gradually change as we move 
along the crystal. This local change of the poling period known as chirped periodical (aperiodical) poling causes 
different phase matching conditions in different parts of a nonlinear crystal. Their suitable tailoring results in 
spectrally broad-band phase matching conditions2. Crystals poled this way then allow, e.g., for the generation 
of broad-band entangled photon pairs with spectral bandwidths extending over several hundreds of nm that are 
also endowed with ultra-fast temporal correlations at the fs time scale. Even photon pairs with correlation (entan-
glement) times comparable to one optical cycle can be produced12,16,17. These ultra-fast correlations are useful in 
metrology (measurement of ultra-short time delays18) and sample characterization (optical quantum coherence 
tomography19). For reaching ultra-short temporal correlations, careful compensation of relative spectral phases 
between the signal and idler fields is necessary; squared hyperbolic poling profiles perform the best here20,21. On 
the other hand, their broad-band spectra are promising for parallel quantum information processing22,23. Also 
other characteristic patterns of nonlinear domains have been found useful for specific purposes, e.g. for reaching 
higher-order quasi-phase matching24, generating spectrally broad-band squeezed light20 or simultaneous reach-
ing of two kinds of phase matching conditions in more complex nonlinear interactions25. Also stochastically 
poled nonlinear structures9,25–27 and randomly poled nonlinear structures15,28 have been analyzed as sources of 
entangled photon pairs.

As the poled nonlinear crystals allow for efficient nonlinear interactions they are naturally suitable for 
the generation of more intense fields arising in the interaction. From the physical point of view, the genera-
tion of more intense fields endowed with quantum properties is the most appealing. Intense twin beams 
exhibiting sub-shot-noise intensity correlations and commonly generated in standard nonlinear crystals by 
intensively-pumped parametric down-conversion29–34 represent a typical example of such fields that could benefit 
from the properties of poled crystals. Indeed, usefulness of poled crystals for the generation of broad-band twin 
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beams has already been experimentally demonstrated in21. Here, we continue this investigation by theoretically 
analyzing both spatial and spectral properties of intense twin beams in the regime with pump depletion. For this 
analysis, we generalize the original model of refs35–38 to include also poled nonlinear crystals. The obtained model 
is applied, as an example, to two typical poled LiNbO3 crystals, one having a regular grating, the other being 
chirped. In the model both coherence of the twin beam as well as its mode structure are determined. The model 
reveals coherence maxima33,34 observed both in spectral and spatial intensity auto- and cross-correlation func-
tions for specific pump powers. They occur as a consequence of the reduction of the number of twin-beam modes 
arising in the nonlinear interaction. The model also predicts ultra-short temporal correlations in twin beams 
whose duration can be comparable to the time interval of one optical cycle in case of chirped crystals.

These intense twin beams may find their application in metrology as they are more resistant against the noise 
compared to their low intensity counterparts containing just one photon pair. They have been recently discussed 
as promising sources for the so-called virtual-state spectroscopy39 where they allow to increase the absolute 
two-photon absorption probabilities, that lie in the heart of the method, by four orders in magnitude40.

The paper is organized as follows. In Sec. II, the model of intense parametric down-conversion is described. 
Also quantities characterizing the generated twin beams are introduced. Mode structure and intensity parameters 
of the generated twin beams are discussed in Sec. III for two typical poled structures. Spectral and spatial proper-
ties of the twin beams are analyzed in Sec. IV. Temporal correlations in the twin beams and their behavior in the 
Hong-Ou-Mandel interferometer and the process of sum-frequency generation are in the center of attention in 
Sec. V. Conclusions are drawn in Sec. VI.

Evolution of Intense Twin Beams
Intense twin beams are assumed to be generated in optical parametric down-conversion occurring in a poled 
nonlinear crystal with the spatially varying tensor χ(2)(z) of second-order nonlinear susceptibility. The appropri-
ate interaction momentum operator Ĝint for the signal (index s), idler (i) and pump (p) fields propagating along 
the z axis is expressed as follows41,42:

∫ ∫ε χ= + . .
−∞

∞ + − −ˆ ˆ ˆG z dxdy dt z E t E t E tr r r( ) 2 [ ( ): ( , ) ( , ) ( , ) H c ]; (1)int 0
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] stands for the negative-frequency part of a signal [idler] electric-field operator amplitude. 
Symbol ε0 stands for permittivity of vacuum, H.c. replaces the Hermitian conjugated term and symbol: short-
hands the tensor with respect to its three indices. The poled nonlinear crystal is assumed to be composed of 
domains with negative susceptibility χ(2) that are sandwiched by domains with positive susceptibility χ(2). The 
boundaries between the domains occur at positions zj given as
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0), ζ denotes the chirping parameter and NL gives the number of domains. Parameter 

π≡ Δl k/0 0 guarantees quasi-phase-matching and it means an average domain length. The crystal is positioned 
such that its end occurs at =z 0NL

 and so the constant L0 introduced in Eq. (2) equals ζ− − ′N l N l /4L L0
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0
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crystal length L is then given as NLl0. Periodically poled crystals are characterized by ζ = 0.
To describe the interacting fields through their temporal and spatial spectra, we express their electric-field 

amplitudes +E tr( , )a
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( ) ( ) ] decomposed into harmonic plane waves with wave vectors ka(ωa) 
and frequencies ωa:
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In Eq. (3), c is the speed of light in vacuum, ⊥ka  denotes the transverse part of wave vector ka and the paraxial 
approximation is invoked when describing the fields’ propagation.

An incident pump field with amplitude ξp and central frequency ωp
0 is assumed with Gaussian transverse pro-

file (beam radius wp) and Gaussian temporal spectrum (pulse duration τp):
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For a pulsed pump field with power P and repetition rate f, the incident amplitude ξp is determined as 
ω εP c k f/p 0

2
p .

On the other hand, the spectral electric-field operator amplitudes ω+ ⊥E k( , )a a a
( ) , a = s, i, of the quantized signal 

and idler fields can conveniently be expressed in the dual bases of the Schmidt spectral [fa,q(ωa)] and spatial 
[ ϕ⊥t k( , )a ml a a, ] modes (for details, see36):
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In Eq. (5), the introduced annihilation operators âa mlq,  are associated with the spatio-spectral modes 
ϕ ω⊥t k f( , ) ( )a ml a a a q a, ,  and ħ means the reduced Planck constant.
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In the generalized parametric approximation that considers a classical pump field that depletes during the 
propagation the interaction momentum operator Ĝint in Eq. (1) can approximately be replaced by the following 
momentum operator Ĝint

av
 written in the Schmidt-mode operators âa mlq,

36:

∑ ∑= + . .
=−∞
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=

∞
ˆ ˆ ˆ† †G z i K z a z a z( ) ( ) ( ) ( ) H c

(6)m l q
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, 0

p
s, i,

The coupling constants K z( )mlq
p  are linearly proportional to χ(2) susceptibility and z-dependent pump-field 

amplitude Ap,mlq(z)36,37. They can be written as ≡K z K A z( ) ( )mlq q mlq
p

p, , where κ ξ ξ≡ ⊥K t f L( / ) ( / )q q p p
(n) , κ( )q

2 
gives the norm of spectral pump-field mode associated with a q-th signal-idler Schmidt dual mode, ⊥t  ( f ) quan-
tifies the common nonlinear coupling constants among spatial (spectral) modes, L stands for the crystal length 
and ξ ω= P f/( )p

(n)
p
0  is the overall pump-field amplitude expressed in photon numbers. We note that the spec-

tral pump-field mode profile associated with a given dual signal- and idler-field Schmidt mode is determined by 
spectral convolution and its proper normalization is guaranteed by constants κq

37. The obtained pump-field 
modes are slightly non-orthogonal. The neighbor modes exhibit little overlap that, however, tends fast to zero 
with the increasing mode distance.

The generalized parametric approximation provides the pump-field amplitude Ap,mlq along the z axis in the 
form:
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 from Eq. (6) gives the following linear Heisenberg equations for each mode 
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Their solution can be written in the following simple form:
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The solution in Eq. (11) predicts thermal statistics of the emitted signal and idler fields originating in the 
incident vacuum state. We note that the occurrence of coherent component in the otherwise thermal statistics is 
anticipated when more general three-mode nonlinear momentum operators are considered38.

The emitted twin beam is characterized by several simple quantities. Individual fields are described by their 
spatio-temporal spectral photon-number densities na determined along the following formula

ϕ ω ϕ ω= 〈 〉 =⊥ ⊥ˆn k n k a s i( , , ) ( , , ) , , , (13)a a a a a a a a

that uses the photon-number operator ≡ ′ = ′ =ˆ ˆ ˆ†n a z L a z L( ) ( )a a a  defined at the crystal end. The operators âa, 
a = s, i, are given in general as:

∑ϕ ω ϕ ω′ = ′⊥ ⊥ˆ ˆa k z t k f a z( , , , ) ( , ) ( ) ( )
(14)

a a a a
mlq

a ml a a a q a a mlq, , ,

and symbol 〈〉 stands for quantum mechanical averaging. Substituting the solution in Eq. (10) into Eq. (13), we get 
the photon-number density na in field a in the following form:
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∑ϕ ω ϕ ω= | |⊥ ⊥n k t k f V( , , ) ( , ) ( )
(15)
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and coefficients Vmlq are taken at z = 0. Integration of the photon-number density na in Eq. (15) over the variables 
⊥ka  and ϕa in the transverse plane provides the temporal spectral intensity Ia,ω in the form:
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(16)
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Similarly, the formula for spatial spectral intensity Ia,k is obtained in the form:
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Also, the formula for overall intensity Ia of field a, a = s, i, expressed in the number of emitted photons is 
derived as:
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Intensity auto- (A) and cross- (C) correlation functions are the most important quantities describing coher-
ence of intense twin beams. They are defined as follows using the normally-ordered ( :: ) intensity fluctuations 
Δn̂:
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Substituting Eq. (14) into Eq. (19), we arrive at the explicit formulas for the intensity auto- and 
cross-correlation functions:
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Specific intensity auto- and cross-correlation functions characterizing the twin beam either in the spatial or 
temporal spectral domain are derived using appropriate averaging in Eq. (20).

Temporal counterparts f  of the spectral Schmidt functions f defined as


∫π

ω ω ω ω= −f t d f i t( )
2

( )exp( )
(21)a q a a a a q a a a, ,

allow us to describe temporal properties of the analyzed twin beam including its photon fluxes and photon-flux 
auto- and cross-correlation functions along the same vein as in the spectrum36. As temporal correlations in a twin 
beam are usually too fast to be directly measurable, other experimental approaches are used instead. Also in these 
cases the temporal functions f  allow for appropriate description of the observed quantities.

Detection of intensity arising in the process of sum-frequency generation43 seeded by the signal and idler 
fields44 represents the most common approach. Temporal correlations in the twin beam are deduced from the 
sum-frequency intensity profile I SFG depending on the mutual delay τ between both fields and it is derived in the 
form:

∫τ η τ τ= 〈 + + 〉 .
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s
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i
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In Eq. (22), η is a suitable constant and subscript ⊥ indicates averaging of the sum-frequency intensity over the 
transverse plane.

Alternatively, the Hong-Ou-Mandel interferometer45 and detection of correlations of intensity fluctuations at 
detectors A and B of the interferometer can be used to infer the information about temporal correlations in the 
twin beam. In this case, the interference pattern RΔ that quantifies these correlations and depends on the mutual 
delay τ between the signal and idler fields is expressed as
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The detector operator amplitudes 
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ÊA
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 and 
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 are derived from the mutually delayed signal and idler opera-
tor amplitudes 

+
Ês
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 and 

+
Êi

( )
 using transmissivity t and reflectivity r of the beam splitter that is placed in the 

interferometer:



www.nature.com/scientificreports/

5SCIentIFIC REPORTS |  (2018) 8:15350  | DOI:10.1038/s41598-018-33546-0

τ τ= + − = − − .
+ + + + + +ˆ ˆ ˆ ˆ ˆ ˆ⁎ ⁎E t rE t tE t E t t E t r E t( ) ( ) ( ), ( ) ( ) ( ) (24)A

( )
i
( )

s
( )

B
( )

i
( )

s
( )

Finally, the twin beam changes the number K of effectively populated modes in its structure during its prop-
agation. As the twin beam is endowed with multi-mode thermal statistics, the number K of modes can be esti-
mated by the following formula that relies on the signal field:
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Mode Structure of Twin Beams
To reveal properties of pulsed intense twin beams generated in poled nonlinear crystals, we consider two crystals 
made of LiNbO3 and optimized for spectrally degenerate collinear down-conversion of type 0 (interaction among 
extraordinary waves) for the pump wavelength 775 nm and the signal and idler central wavelengths 1550 nm. The 
poling period Λ equals 9.516 μm in this case. Both structures are composed of NL = 700 domains and are approx-
imately 6.66 mm long. Whereas the first regular periodical structure contains domains of the same length the 
second structure is chirped with chirping parameter ζ equal to 2.5 × 10−6 μm−1 [ζ′ = 7.57 × 10−6 μm−2]. In the 
chirped structure, the shortest (longest) domain length equals 9.036 μm (9.995 μm). Pump fields with radius 
wp = 500 μm, repetition rate f = 100 Hz, varying pump power P and three different spectral widths Δλp equal to 
0.2 nm (0.5 nm), 1 nm and 5 nm (FWHM, full width at half maximum, λ π ω τΔ = c4 2ln(2) /[( ) ]p p

0 2
p ) are consid-

ered. The corresponding pump-pulse durations τp equal in turn 3.75 ps (1.5 ps), 0.75 ps and 0.15 ps. To distinguish 
the curves corresponding to different crystals and pump-pulse durations in the graphs below, we plot them in 
different colours: For the regular (chirped) structure, the curves determined for Δλp = 0.2 nm (0.5 nm), 1 nm 
(1 nm) and 5 nm (5 nm) are in turn plotted in red (magenta), black (brown) and blue (green) colors. We note that 
both structures were analyzed in cw-regime in15,28 as sources of entangled photon pairs. In our analysis, we first 
address intensity parameters and mode structure of the emitted twin beams and then, in the following sections, 
we discuss their spectral and temporal properties as they vary with the increasing pump power P.

The number of signal photons (and thus also photon pairs) quantified by intensity Is increases roughly expo-
nentially with the increasing pump power P until certain threshold power Pth is reached. Then the increase of the 
number Is of signal photons with the increasing power P is gradually becoming linear (see Fig. 1)37. The threshold 
power Pth considerably differs for both structures and it also depends on the pump spectral width Δλp. These 
dependencies can be understood by considering the dependence of the threshold pump power Pth on the number 
Kn of spatio-spectral modes that constitute the twin beam at low intensities. The greater the number Kn of such 
modes the greater the value of threshold power Pth (compare the curves in Figs 1 and 2). This behavior reflects the 
fact that the nonlinear evolution of a twin beam inside the crystal proceeds faster for the beams with lower num-
bers Kn of modes34,37. According to the theory presented in section Evolution of Intense Twin Beams, the pump, 
signal and idler fields can approximately be decomposed into many independent modes’ triplets each containing 
one pump, one signal and one idler spatio-spectral mode. Each modes’ triplet has its own effective nonlinear 
coupling constant and its pump mode contains certain fraction of the whole pump power P. For twin beams with 
lower numbers Kn of spatio-spectral modes greater pump powers are assigned to individual pump modes and this 
makes the nonlinear evolution along the crystal faster. The region with the exponential increase of intensity Is nat-
urally occurs for lower pump powers P at which individual signal and idler modes in each modes’ triplet exhibit 
an exponential increase. When the modes’ triplets with the greatest effective nonlinear coupling constants enter 

Figure 1. Signal intensities Is as they depend on pump power P for (a) regular poled structure and 
Δλp = 0.2 nm (red, ), 1 nm (black, ) and 5 nm (blue, *) and (b) chirped poled structure and Δλp = 0.5 nm 
(magenta, ), 1 nm (brown, ) and 5 nm (green, *).
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into the regime with pump mode depletion or even if the back-flow of energy from the signal and idler modes 
into the pump mode occurs, an exponential increase of intensity Is is not more possible and the transition to the 
region with only a linear increase of intensity Is of the whole signal field occurs.

As shown in Fig. 2 the number Kn of modes decreases with the increasing pump power P in the exponential 
region. This is a consequence of different effective nonlinear coupling constants assigned to different modes’ 
triplets and the nonlinear evolution that populates faster the signal and idler modes belonging to modes’ triplets 
with greater coupling constants34,37. This effect gradually diminishes the role of the signal and idler modes from 
modes’ triplets with smaller coupling constants in the twin beam and it leads to the dominance of the modes from 
the modes’ triplets with the greatest coupling constants. This dominance is maximal around the threshold power 
Pth as evidenced by the minimum of the number Kn of modes reached in this area. The loss of this dominance 
caused by pump-mode depletion and back-flow of energy in these modes’ triplets at the pump powers P greater 
than Pth allows the remaining modes to again significantly contribute to the twin-beam structure. This is reflected 
in the evolution of the number Kn of modes that increases with the increasing pump power P in this area with the 
typical linear increase of the signal intensity Is (compare the curves in Figs 1 and 2).

The comparison of curves in Fig. 2(a,b) giving the numbers Kn of modes for the regular and chirped structure, 
respectively, reveals that, at low pump powers P, the twin beams in the chirped structure are composed of about 
two orders in magnitude greater numbers of spatio-spectral modes compared to those emitted from the regular 
structure. The nonlinear evolution dramatically decreases the number Kn of modes for both structures and the 
numbers Kn of modes are only by one order in magnitude greater for the chirped structure than those for the 
regular one for the pump powers P around Pth. Whereas the twin beam generated by the pump field with 
Δλp = 1 nm in the regular structure is effectively composed of 136 spatio-spectral modes at the threshold power 
Pth = 7.5 mW, 3380 modes are needed in case of the chirped structure for which the threshold power Pth = 3.9 W. 
In the regular (chirped) structure, as the pump power P changes from 0 to Pth the number ωK n of spectral modes is 
reduced from 66 (180) to 12 (15), the number Kk

n of radial modes in the spatial spectrum lowers from 8 (37) to 1.7 
(2.6) and the number ϕK n of azimuthal modes in the spatial spectrum decreases from 40 (235) to 7 (85). The 
dependencies of the numbers ωK n of spectral modes on the pump power P with well defined minima are shown in 
Fig. 3 for both structures.

The number Kn of modes constituting a twin beam depends on the pump spectral width Δλp
35. For a given 

structure there exists an optimal value of the pump spectral width Δλp that gives the minimal number Kn of 
modes. So, both narrower and wider pump spectra lead to greater numbers Kn of modes, as documented in 
Figs 2(a) and 3(a) for the regular structure and Δλp = 0.2 and 5 nm. Narrower pump spectra induce lower coher-
ence in a twin beam whereas wider pump spectra lead to broader signal and idler spectra. In both cases a greater 
number Kn of modes is necessary to appropriately describe properties of the twin beam. As shown in Figs 2(b) 
and 3(b), broadening of the pump spectrum Δλp from 1 nm to 5 nm improves coherence of the twin beam gener-
ated in the chirped structure such that a lower number Kn of modes is needed to built the twin beam.

Spectral Properties of Twin Beams
Changes in the mode structure of a twin beam considerably modify its spectrum and spectral coherence. Gradual 
increase of the pump power P makes the signal temporal intensity spectrum Is,ω of a twin beam in the regular 
structure narrower until the threshold power Pth is reached. Then the signal intensity spectrum Is,ω broadens and 
its central part is partially depleted due to the modes from modes’ triplets with the greatest coupling constants 
in which the back-flow of energy into the corresponding pump modes occurs [see Fig. 4(a)]. The spectral widths 
ΔIs,ω depend on the pump spectral width Δλp: The wider the pump spectral width Δλp the wider the signal 
spectral width ΔIs,ω. Whereas the low-intensity spectral widths ΔIs,ω equal in turn 28, 33, and 68 nm considering 

Figure 2. Numbers Kn of spatio-spectral modes as they depend on pump power P for (a) [(b)] regular [chirped] 
structure and Δλp = 0.2 nm [0.5 nm] (), 1 nm () and 5 nm (*).
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Δλp = 0.2, 1 and 5 nm and the regular structure, their narrowest widths observed around the threshold power Pth 
are 15.5, 18 and 36 nm. On the other hand, the temporal intensity spectra Is,ω of twin beams in the chirped struc-
ture are broad (180–220 nm) for all considered pump spectral widths Δλp = 0.5, 1 and 5 nm and these widths 
change only weakly as the pump power P increases [see Fig. 4(b,c)]. As typical for the chirped poled structures, 
these broad-band spectra contain local peaks that are considerably amplified as the pump power P increases 
[see Fig. 4(b)]. For the intensity spectra Is,ω plotted in Fig. 4(b) for the pump spectral width Δλp = 1 nm, the 
outer-most local peaks are magnified around six times at the threshold power Pth. Wider pump spectra smooth 
out the local peaks in the signal low-intensity spectra Is,ω. Also the edges of intensity spectra Is,ω are emphasized 
for the greater pump powers P around Pth in this case, as demonstrated in Fig. 4(c).

Reduction of the number ωK n of spectral modes improves spectral coherence of a twin beam because the 
lowest-order spectral Schmidt modes dominate in the twin-beam structure and the suppressed higher-order 
modes do not degrade the spectral coherence. The widths ΔAs,ω and ΔCs,ω of spectral intensity auto- and 
cross-correlation functions, respectively, broaden from 3.5 [5.3] nm to 9.7 [17.8] nm as the pump power P 
increases towards Pth for the regular [chirped] structure and Δλp = 1 nm (see Fig. 5). Moreover, considering the 
pump field with Δλp = 5 nm and the chirped structure, the spectral widths ΔAs,ω and ΔCs,ω approach 47 nm for 
the threshold pump power Pth, as it follows from the curves of Fig. 5(b).

The spectral intensity auto-correlation functions As,ω are usually broader than their cross-correlation coun-
terparts Cs,ω for low pump powers P, but they practically coincide for greater pump powers P, as shown in 
Fig. 5. Only for the chirped structure pumped by the field with a wide spectrum (Δλp = 5 nm) the intensity 
cross-correlation function Cs,ω is broader than the corresponding auto-correlation function As,ω [see the curves 
with * in Fig. 5(b)]. This is a consequence of complex phase relations among the three interacting fields that orig-
inate both in the chirped structure and broad pump-field spectrum. Profiles of the spectral intensity auto- and 
cross-correlation functions As,ω and Cs,ω typical for low-intensity twin beams, twin beams generated around Pth 

Figure 3. Numbers ωK n of spectral modes as they depend on pump power P for (a) [(b)] regular [chirped] 
structure and Δλp = 0.2 nm [0.5 nm] (), 1 nm () and 5 nm (*).

Figure 4. Temporal intensity spectra Is,ω for (a) regular structure, Δλp = 1 nm and P = 1 × 10−5 mW (plain 
curve), P = 7.5 mW () and P = 75 mW (◊) and (b) [(c)] chirped structure, Δλp = 1 nm [Δλp = 5 nm] and 
P = 1 × 10−8 W (plain curve), P = 2.9 W [P = 0.9 W] () and P = 5 W (◊). Intensity spectra Is,ω are normalized 
such that ∫ ω ω ω =ωd I ( )/ 1s s, s s

0 .
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and those observed for P > Pth are plotted in Fig. 6(a) for the regular structure and Fig. 6(b) for the chirped struc-
ture. We can see in these figures that broader tails are observed in the profiles for P > Pth and even well-developed 
side-peaks occur in the twin beams originating in the chirped structure.

It is remarkable that the curves in Fig. 5(a) giving the spectral widths ΔAs,ω and ΔCs,ω of the twin beam created 
in the regular structure by the pump field with Δλp = 1 nm exhibit two coherence maxima, at the threshold pow-
ers Pth = 7.5 mW and 117 mW. The occurrence of multiple coherence maxima was discussed in37. These peaks are 
observed when the modes’ triplets with the greatest nonlinear coupling constants change the flow of energy more 
than one time during their propagation in the crystal. This leads to the presence of two considerably populated 
groups of modes in the twin-beam structure for the pump powers P around the second threshold which reduces 
the spectral coherence in this area compared to that found around the first threshold power.

The signal radial spatial intensity spectrum Is,k determined in the transverse plane behaves qualitatively sim-
ilarly as the temporal intensity spectrum Is,ω, as follows from the comparison of curves drawn in Figs 4 and 7 for 
the pump field with Δλp = 1 nm and both analyzed structures. In the regular structure, the radial spatial intensity 
spectra Is,k become narrower as the pump power P increases until Pth is reached and then they broaden. Contrary 
to this, the radial spatial intensity spectra Is,k in the chirped structure keep their widths roughly the same as the 
pump power P grows. However, well separated peaks gradually develop as the pump power P increases [see 
Fig. 7(b)]. This means, that a low-intensity disc in the far-field plane of a twin beam is gradually transformed into 
concentric rings. Coherence of twin beams in the radial spatial spectrum as quantified by the intensity auto- and 
cross-correlation functions As,k and Cs,k considerably improves for pump powers around Pth compared to their 

Figure 5. Widths ΔAs,ω (solid curves) and ΔCs,ω (dashed curves) of spectral intensity auto- and cross- 
correlation functions (FWHM) as they depend on pump power P for (a) [(b)] regular [chirped] structure and 
Δλp = 0.2 nm [0.5 nm] (), 1 nm () and 5 nm (*). For greater P, solid and dashed curves nearly coincide.

Figure 6. Relative spectral intensity auto- ( ωAs,
r , solid curves) and cross- ( ωCs,

r , dashed curves) correlation 
functions for (a) regular structure, Δλp = 1 nm and P = 1 × 10−5 mW (plain curves), P = 7.5 mW () and 
P = 75 mW (◊) and (b) chirped structure, Δλp = 1 nm and P = 1 × 10−8 W (plain curves), P = 2.9 W () and 
P = 5 W (◊); ω ω ω ω ω≡ω ω ωA A A( ) ( , )/ ( , )s,

r
s s, s s

0
s, s

0
s
0 , ω ω ω ω ω≡ω ω ωC C C( ) ( , )/ ( , )s,

r
s s i

0
s
0

i
0 . Solid and dashed curves 

with  and ◊ nearly coincide.
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low-intensity limits, as documented in Fig. 8. The comparison of curves drawn in Fig. 8 for different pump spec-
tral widths Δλp and both regular and chirped structures reveals that the maximal achievable spatial coherence of 
a twin beam is mainly determined by the pump beam radius wp.

Temporal Properties of Twin Beams
Photon fluxes of twin beams are considerably influenced both by the character of a poled structure as well as the 
pump power P. With the increasing pump power P, the profiles Is,t of signal photon fluxes behave qualitatively 
in the same way as the corresponding temporal intensity spectra Is,ω in the regular structure, as it follows from 
the comparison of curves in Figs 4(a) and 9(a). The profiles Is,t of photon fluxes narrow as the pump power P 
increases for P < Pth, then they broaden and later there occurs a dip in their central part due to pump depletion 
in individual modes’ triplets. In case of the chirped structure, the profiles Is,t of photon fluxes slightly narrow as 
the pump power P increases and also local peaks are gradually formed in these profiles. Both structures generate 
the signal and idler pulsed fields around 1-ps long. The temporal auto-correlation functions As,t of photon fluxes 
are narrower than the corresponding temporal cross-correlation functions Cs,t both for the regular and chirped 
structure, as documented in Fig. 10. This relation is opposed to that observed between the spectral intensity 
auto- and cross-correlation functions. At low pump powers P, the widths ΔAs,t of temporal auto-correlation 
functions belonging to the chirped structure are much narrower than the widths ΔCs,t of the corresponding 

Figure 7. Radial spatial intensity spectra Is,k for (a) regular structure and P = 1 × 10−5 mW (plain curve), 
P = 7.5 mW () and P = 75 mW (◊) and (b) chirped structure, P = 1 × 10−8 W (plain curve), P = 2.9 W () and 
P = 5 W (◊); Δλp = 1 nm. Intensity spectra Is,k are normalized such that ∫ =⊥ ⊥dk I k k( )/ 1ks s, s s

0 .

Figure 8. Widths ΔAs,k (solid curves) and ΔCs,k (dashed curves) of radial spatial intensity auto- and cross- 
correlation functions (FWHM) as they depend on pump power P for (a) [(b)] regular [chirped] structure and 
Δλp = 0.2 nm [0.5 nm] (), 1 nm () and 5 nm (*). Solid and dashed curves nearly coincide.
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cross-correlation functions, and also considerably narrower than the widths ΔAs,t determined for the twin beams 
in the regular structure. This indicates that the twin beams generated in the chirped structure, compared to those 
originating in the regular structure, will provide better temporal resolution in metrology applications including 
quantum optical coherence tomography19. Complex phase relations met during the twin-beam generation in 
the chirped structure may lead to oscillations in the temporal intensity correlation functions, as observed for the 
cross-correlation function Cs,t drawn in Fig. 10(b).

We note that the spectrally ultra broad-band photon pairs generated in chirped poled structures are conven-
iently used in the measurement of ultra-short temporal intervals17. It holds that the broader the spectrum, the 
shorter the smallest resolved temporal interval, that is reached after careful spectral phase compensation. From 
this point of view, the capability of more intense twin beams to resolve the shortest temporal intervals weakens for 
the pump powers around Pth as the nonlinear interaction makes the twin-beam spectra slightly narrower. On the 
other hand, the presence of a smaller number of spectral modes in the twin beams generated around the thresh-
old power Pth partially reduces phase variations along the twin-beam spectra which results in a better temporal 
resolution achieved without applying an additional phase compensation.

However, the analyzed temporal correlation functions cannot be observed directly. To reveal temporal coher-
ence of a twin beam experimentally, one needs to rely either on the process of sum-frequency generation seeded 
by the twin beam or interference between the mutually delayed signal and idler fields in the Hong-Ou-Mandel 
interferometer45. In the Hong-Ou-Mandel interferometer whose interference pattern RΔ(τ) is described by Eq. 
(23), the analyzed twin beams reach 100% visibility due to their symmetry with respect to the signal and idler 
fields. Whereas the interference pattern RΔ of low-intensity twin beams contains only a fast-oscillating narrow 
component in the central part, an additional broad component without oscillations occurs for more intense twin 

Figure 9. Signal photon fluxes Is,t for (a) regular structure and P = 1 × 10−5 mW (plain curve), P = 7.5 mW () 
and P = 75 mW (◊) and (b) chirped structure and P = 1 × 10−8 W (plain curve), P = 2.9 W () and P = 5 W (◊); 
Δλp = 1 nm. Photon fluxes Is,t are normalized such that ∫ =dt I t( ) 1ts s, s .

Figure 10. Relative temporal auto- [ ≡A t A t t A t t( ) ( , )/ ( , )t t ts,
r

s, s
max

s, s
max

s
max , solid curves] and cross- 

[ ≡C t C t t C t t( ) ( , )/ ( , )t t ts,
r

i
max

s
max

i
max , dashed curves) correlation functions of photon fluxes for (a) regular and 

(b) chirped structure; Δλp = 1 nm, P = 1 × 10−8 W.
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beams [see Fig. 11(a)]. The narrow component is typical for the Hong-Ou-Mandel interference observed with 
individual photon pairs45. On the other hand, the broad component is formed by the whole signal and idler fields 
and its contribution to the overall visibility is 50% for more intense twin beams. Similar components are identified 
also in the profile ISFG(τ) of sum-frequency intensity determined along Eq. (22) [see Fig. 11(b)]. Also here the 
narrow peak arises from the signal-idler fields’ correlations that originate in the pairing of photons. The broad 
peak arises from the usual sum-frequency response to two in general uncorrelated pulsed fields. While the broad 
dip in the Hong-Ou-Mandel interference pattern and broad peak in the sum-frequency intensity have compa-
rable widths, the narrow dip in the interference pattern is narrower than the narrow peak of the sum-frequency 
intensity. For this reason, the use of Hong-Ou-Mandel interferometer in metrology for quantifying ultra-short 
temporal intervals gives better temporal resolution. The same conclusions can be drawn for the twin beams emit-
ted from the chirped structure that provide even better temporal resolution. This is a consequence of considerably 
broader temporal spectra typical for the twin beams emitted from the chirped structures.

As the pump power P increases, the widths of the broad dips (peaks) in the Hong-Ou-Mandel interference 
pattern (sum-frequency intensity) behave in the same way as the temporal widths of the signal photon fluxes. 
Similarly, the widths of the narrow dips (peaks) are close to the widths of temporal intensity auto-correlation 
functions. As a consequence, the narrow dips (peaks) become the widest for the pump powers P around Pth, as 
illustrated in Fig. 12(a) for the regular structure and Hong-Ou-Mandel interference pattern. Whereas the narrow 
dip can be as short as 10 fs in the regular structure, the chirped structure allows for the generation of 3-fs-long 
dips [see Fig. 12(b)]. We note that the attainable accuracy in metrology applications based on such twin beams is 
a small fraction of these temporal intervals.

Figure 11. (a) Normalized interference pattern ΔRn  in the Hong-Ou-Mandel interferometer and (b) normalized 
sum-frequency intensity In

SFG as they depend on mutual delay τ between the signal and idler fields for regular 
structure and P = 1 × 10−5 mW (plain curve), P = 7.5 mW () and P = 75 mW (◊); Δλp = 1 nm. It holds that 
∫ τ τ =d I ( ) 1n

SFG .

Figure 12. Widths Δ ΔRn  (FWHM) of the Hong-Ou-Mandel interference pattern as they depend on pump 
power P for (a) [(b)] regular [chirped] structure considering Δλp = 0.2 nm [0.5 nm] (), 1 nm () and 5 nm (*).
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Conclusions
The generation of intense twin beams in poled nonlinear crystals, both with periodic and chirped poling, has 
been analyzed. It has been shown that an initial exponential increase of twin-beam intensity with an increasing 
pump power is gradually suppressed and replaced by a linear increase. This allows to transfer a considerable 
amount of the pump energy into the twin beam. The increase of pump power gradually reduces the number of 
effectively populated spatio-spectral modes which is accompanied by the improvement of spatial and spectral 
coherence, both inside the signal and idler fields and between them. At certain threshold pump power, no further 
reduction of the number of twin-beam modes is possible and increase in the number of modes and degradation 
of twin-beam coherence follow for even greater pump powers. Nonlinear dynamics of modes in the twin beam 
and the pump field has been found to cause this behavior. Intense twin beams emitted from the chirped poled 
crystals have considerably broader spectra as well as larger spectral correlations compared to those generated in 
poled crystals with a periodic grating. This leads to considerably narrower temporal correlations that approach 
3 fs in the analyzed cases. These ultra-short correlations are reached in the chirped poled crystals without consid-
ering any additional phase compensation, contrary to the case of the fields composed of individual photon pairs. 
These correlations may find their application in ultra-fast metrology based either on sum-frequency generation 
or the Hong-Ou-Mandel interferometer. The latter has been found more suitable owing to the better attainable 
temporal resolution.
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