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The Competition of Homophily and 
Popularity in Growing and Evolving 
Social Networks
Yezheng Liu1,2, Lingfei Li1,2, Hai Wang3, Chunhua Sun1,2, Xiayu Chen1,2, Jianmin He1,2 & 
Yuanchun Jiang1,2

Previous studies have used several models to investigate the mechanisms for growing and evolving real 
social networks. These models have been widely used to simulate large networks in many applications. 
In this paper, based on the evolutionary mechanisms of homophily and popularity, we propose a 
new generation model for growing and evolving social networks, namely, the Homophily-Popularity 
model. In this new model, new links are added, and old links are deleted based on the link probabilities 
between every node pair. The results of our simulation-based experimental studies provide evidence 
that the proposed model is capable of modelling a variety of real social networks.

One of the fundamental problems in the research of social networks is the evolutionary mechanisms of large 
social networks1–4. One of the best-known evolutionary mechanisms of social networks is preferential attach-
ment2, which suggests that a new node will have a higher probability of linking to existing nodes that already have 
a large number of connections in the network2—that is, those nodes that are more visible than others5. We refer to 
this popularity-based attachment as the ‘popularity’ mechanism in this paper. Drawing upon this mechanism and 
network growth, the Barabasi-Albert (BA) model was proposed for generating and simulating social networks2. 
The BA model can reproduce the power-law degree distribution observed in many real social networks; however, 
it does not address several important characteristics of social networks, including clustering and community 
structures3,6–9. Therefore, a number of variations of the BA model, such as the multistage random growing net-
work model and the local-world evolving network model, have been proposed to generate networks that more 
accurately resemble real social networks10–12.

Meanwhile, prior studies have suggested that an individual in a social network tends to connect not only to 
popular individuals such as superstars but also to less popular individuals who share that individual’s special 
interests13,14. Hence, homophily, which suggests that individuals in a social network tend to form relationships 
with others who share similar attributes14–16, should be considered as another important evolutionary mecha-
nism. Homophily can be subdivided into observed homophily and latent homophily. Observed homophily explains 
the similarity in individuals’ preferences that are due to observable attributes such as age, location, and religious 
affiliation15. Latent homophily explains the similarity in individuals’ preferences that are due to unobservable 
attributes such as individuals’ interests15. Focusing on the homophily mechanism, Boguna et al.17 and Wong et 
al.18 parameterized the tendency to establish acquaintances by the spatial distances in a representative social space 
and then developed spatial random graph models in which the homophily between each pair of nodes is deter-
mined by the spatial distance between those nodes. The spatial random graph model can capture many generic 
properties of social networks, including the “small-world” properties, power-law degree distribution, and high 
level of clustering. However, these models cannot be used to study the evolutionary process of social networks 
because the network size is a model parameter and must be a fixed number.

Prior studies proposed a number of generation models for growing and scaling social networks by focusing 
on both the popularity and homophily mechanisms1,4,19,20. For example, Li et al.19 proposed the homophyly/kin-
ship model, in which each node was associated with a distinct colour and that same colour was used to represent 
the homophily or kinship between nodes. In the homophyly/kinship model, when a new node is added into the 
network, it is assigned a new colour according to a given probability and then linked to existing nodes based on 
their degrees. Otherwise, it is assigned an existing colour and linked to existing nodes of the same colour based on 
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their degrees. Papadopoulos et al.4 proposed the popularity*similarity (PS) model, which assumes that all nodes 
exist on a plane. PS model treats the time of a node’s creation as a proxy for the node’s popularity, and maps the 
birth time of the node to its radial coordinate. The angular distance between two nodes is treated as the similarity 
between them. New nodes are then connected to the closest m nodes based on the hyperbolic distances of their 
polar coordinates. The PS model is capable of providing results with strong clustering and a power law degree dis-
tribution. Zuev et al.1 proposed the geometric preferential attachment (GPA) model based on the PS model. In the 
GPA model, the probability that a new node is placed in a particular section is proportional to the density in that 
section. Ferretti et al.20 demonstrated that there was actually a duality among a class of growing spatial networks 
based on preferential attachment on the sphere and a class of static random networks on the hyperbolic plane. 
In fact, the BA model is equivalent to a static random network on a hyperbolic space with infinite curvature20.

The above models can capture many properties of real social networks. In this paper, we attempt to study gen-
eration models from the following perspectives:

	(1)	 How the homophily mechanism affects a node’s connectivity. We propose to use a multi-dimensional 
vector of nodes’ attribute preferences to compute the similarity between two nodes.

	(2)	 How networks are generated based on both the homophily and popularity mechanisms. We propose to 
use a binomial distribution to model the interplay of these two mechanisms during the network growth 
process.

	(3)	 How links change during the network growth process. In previously proposed models, the links between 
existing nodes are static and remain unchanged after they have been inserted into the network. We propose 
that links between existing nodes can be deleted at a certain probability during network evolution.

	(4)	 How the homophily and popularity mechanisms affect the structural properties of social networks.

In this paper, we combine the homophily and popularity mechanisms and propose the Homophily-Popularity 
(HP) model for growing and evolving social networks. In the proposed HP model, we provide a new framework 
to determine the number of new links, calculate the connectivity probability, and insert and delete links. Synthetic 
networks generated by the HP model can reflect many properties of real social networks. Using the HP model, 
when the dynamics of the homophily and popularity mechanisms change during the network generation process, 
the final generated networks would show diversity in many properties, such as degree distribution, degree cor-
relation and community size. As the homophily mechanism becomes more dominant in the network generation 
process, the generated network gradually transforms from disassortative to assortative.

Results
The Homophily-Popularity model.  In practice, popularity and homophily are known to be two dominant 
mechanisms of network evolution21,22. For example, the homophily effect is considerably more significant than 
the popularity effect on Facebook and Flickr but far less significant on YouTube, ScienceNet, and Epinions23. In 
this paper, we propose a novel social network generation model named the Homophily-Popularity (HP) model. 
The HP model attempts to fit different types of real networks through a variety of characteristics. The primary 
motivations for this study are as follows:

•	 Many previously proposed models assume that the number of new links in each step always remains constant. 
However, Leskovec et al.24 examined a wide range of real social networks and discovered that many of these 
networks densify over time, with the number of links growing superlinearly with regard to the number of 
nodes. In particular, the number of nodes versus the number of links fits a line on the logarithmic scale. This 
pattern can be formalized as =M Nt t

k where Mt is the number of links at time t, Nt is the number of nodes at 
time t and the slope k ranges from 1.1 to 1.724.

•	 There are two main reasons why an individual links to another in a social network. First, an individual is 
more likely to connect to others who share similar interests. Second, an individual is likely to connect to other 
individuals who are already well connected in the network. Wang et al.22 empirically studied the evolution of 
collaboration networks and determined that specialty homophily contributes 38% to the formation of co-au-
thor links, followed by preferential attachment (36%) and institution homophily (27%). This implies that link 
probability is determined by both homophily and popularity.

•	 In real social networks, nodes make their own decisions when balancing homophily and popularity. For 
example, some individuals may prefer to follow their own preferences to connect to friends, while others may 
prefer to connect to influential persons to obtain the information. Hence, the decisions to balance homophily 
and popularity are personalized and will vary from person to person25.

•	 Because attributes are often not of equal importance, some attributes may be popular, and other attributes 
may be niche. In general, individuals who are similar in niche attributes are more likely to connect with each 
other through homophily. For example, individuals who enjoy playing chess often have a greater probability 
of being friends than individuals who enjoy watching TV, because many people like watching TV and they 
cannot easily be distinguished.

•	 In the real world, online social networks are dynamic. New links may be formed, and old links may be bro-
ken. Specifically, the largest contribution to network evolution is the appearance of new links between old 
nodes26,27.

According to these motivations, the network generation algorithm of the PH model is summarized as follows:
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Initialization.  Similar to many generation models2,10, our PH model begins with a network of m0 nodes at the 
initial time t0. For simplicity, we set t0 = m0. These m0 nodes are fully connected. Each node ni is associated with 
a vector of attribute preferences Ii = (ai1, ai2, …, aiX), where X is the total number of attributes and aij is a real 
number between 0 and 1 that represents the preference of node ni for attribute j. The sum of all the elements in 
this vector is 1. This vector of attribute preferences Ii is used to determine the connectivity between nodes. The 
construction method for Ii will be described in the next subsection. At each time step, t > t0, a new node nt with a 
new vector It is inserted into the network.

Determining the number of new links.  In contrast to previous proposed models, our PH model assumes that the 
number of new links Δmt at time t is ∆ = − −m N N( 1)t t

k
t

k. We round the real numbers to the nearest 
integers.

Calculating the connectivity probability.  Our PH model assumes the probability that node ni will link to node nj 
at time t (denoted as pij

t) is a linear function of homophily and popularity:

β β= − +p F sim n n(1 ) ( , ), (1)ij
t

i j
t

i i j

where Fj
t is the popularity of node nj at time t, and sim(ni, nj) is the homophily between nodes ni and nj at time t. 

We use βi(0 ≤ βi ≤ 1) to model the preference of homophily for the node ni. Each βi, for all i = 1, 2, …, N, is a 
sample of β, where β is the preference distribution for homophily and N is the number of nodes in the network.

Determining Fj
t and sim(ni,nj).  In many models, the popularity of node ni is determined by its degree2,10–12. To 

make the popularity value ranges from 0 to 1, we define the popularity of node ni at time t as
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where di
t is the degree of node ni at time t. Note that Fi

t is always proportional to +d 1i
t , and the popularity of an 

isolated node (di = 0) is always positive.
The homophily can be modelled by the similarity between nodes4,19. Our PH model uses the aforementioned 

attribute preference vectors (Ii, i = 1, …, N) of nodes to measure node similarity. The construction of vector Ii, 
described in the next subsection, reflects the fact that popular attributes generally have small indices and niche 
attributes generally have large indices in the vector. Our PH model models the importance of attributes using a 
weight vector W, where the weight for the ith attribute is proportional to i2 as follows:
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The attribute preference vectors for nodes ni and nj are denoted as Ii = (ai1, ai2,…, aiX) and Ij = (aj1, aj2,…, ajX), 
respectively. The similarity between the nodes ni and nj with respect to homophily is defined as
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The purpose of Equations (3) and (4) is to assign larger weights to niche attributes and smaller weights to 
popular attributes so that the similarity between two nodes reflects niche attributes more than popular attributes.

The homophily between the nodes ni and nj is defined as

= .
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Because the homophily sim(ni, nj) is on the same scale as the popularity Fi
t, Equation (1) computes the connec-

tivity probability between the two nodes.

Determine the parameter β.  In Equation (1), every node ni can have a different preference value βi that describes 
the preference of homophily for that node. Each βi can be viewed as a random sample from a distribution of β. 
To illustrate how different distributions of β affect the final generated networks, we study three different types 
of probability density functions: uniform, monotonically decreasing within [0, 1] and monotonically increasing 
within [0, 1]. The probability density functions and the cumulative distribution functions are shown in Fig. 1.

When the probability density function is monotonically increasing, the mean of β is larger than 0.5, and 
homophily is stronger than popularity. We use ‘high’ to denote the networks generated in this case. When the 
probability density function is uniform, the mean of β equals 0.5; thus, homophily and popularity are approxi-
mately the same. We use ‘uniform’ to denote the networks generated in this case. When the probability density 
function is monotonically decreasing, the mean of β is less than 0.5; thus, homophily is weaker than popularity. 
We use ‘low’ to denote the networks generated in this case.

After all βi values are acquired from the distribution β, the link probability pij
t between any two nodes ni, nj can be 

computed using Equations (1) through (5), resulting in a nt-dimension square matrix, Pt, in which pij
t is an element.
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Inserting and deleting links.  The link insertion and deletion process of the PH model is as follows:
At time t, we first compute the median of all elements in the link probability matrix Pt and use this value as the 

threshold T t
1. If the link probability of an existing link pij

t is smaller than T t
1, we delete that link from the network. 

Let mt′ denote the number of links deleted at time t. The total number of new links to be inserted at time t should 
be Δmt + mt′ where ∆ = − −m N N( 1)t t

k
t

k and Nt is the number of nodes at time t. Second, to ensure that the 
new node nt will not be an isolated node, we connect the new node to an existing node ni with the probability 
Π =

∑ =
−n n( , )t i
p

p
ti
t

j
t

tj
t

1
1

. Third, we select the top T t
2 links with the highest connection probabilities from the uncon-

nected edges according to the matrix Pt. Suppose the connect probabilities of the corresponding links 
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2 . Without loss of generality, we set l = 0.02. When the corresponding two endpoints of link 
l(i) are not connected, insert the undirected link l(i) into the network. This process repeats until the total Δmt + mt′ 
new links have been inserted into the network.

Constructing and estimating the vector of attribute preferences.  One key component of the HP 
model is the vector of attribute preferences Ii for node i in the network. Individuals/nodes may have information 
recorded for a different subset of attributes. In this subsection, we illustrate through a real-world example how to 
construct and estimate all the vectors Ii for nodes i, i = 1, …, N. The idea is to treat a vector of attribute preferences 
Ii as a random sample from the underlying distribution of attributes that can be estimated based on the social 
network data.

In some real online social networks such as Weibo, nodes’ attributes are reflected in users’ personal infor-
mation: Weibo users can tag themselves; thus, users with the same tags can find each other faster. However, the 
tag settings are not mandatory. After a user has added tags, we regard those tags as the user’s real attributes. The 
total number of tags set by a user corresponds to the number of attributes associated with this user, and the set of 
attributes associated with a user is a subset of the set of all attributes of the social network. In this paper, we ran-
domly select 150,000 Weibo users’ personal information and obtain 82,578 pieces of user tags information. The 
tag number distribution for Weibo users is shown in Fig. 2 in both normal and logarithmic scales on the y-axis.

The probability that a user has i tags approximately decreases as i increases, but the probabilities for i = 5 and 
i = 10 are abnormally high. This discrepancy may be caused by the tag-setting rules of Weibo: a new user reg-
istering a Weibo account can select at most five tags, and the system recommends other users for this new user 
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Figure 1.  The probability density functions (a) and the cumulative distribution functions (b) for β.

Figure 2.  Tag number distribution for Weibo users: (a) normal scale, (b) logarithmic scale on the y-axis.
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account according to their tags; thus, the number of users with five tags is artificially huge. Moreover, users can 
add or delete tags on Weibo, but the upper limit is ten tags. Ignoring the exception points for i = 5 and i = 10, the 
scatter plot is approximately linear on the logarithmic scale. As shown in Fig. 2(b), the black solid line is the fitting 
function and the goodness of fit is R2 = 0.9712. Taking the logarithm of the exponential distribution function 
p(y) = λe−λy, we obtain

λ λ= − .p y yln( ( )) ln( ) (6)

Moreover, researchers have indicated that human cognitive ability allows social network users to have stable 
interpersonal relationships with up to 150 friends28. A larger number of user tags indicates a stronger human 
cognitive ability for that user. Hence, the probability that a user has i tags is a decreasing function with respect to 
i. Because the decreasing trend is stronger than the linear relationship and the number of tags has a more stable 
mean and variance than the power distribution, we can conclude that the number of tags for each user will follow 
the exponential distribution.

Furthermore, the total number of tags on Weibo is huge. Different users choose different tag subsets. Some 
tags are relatively popular, such as listening to music or watching movies, while others are relatively niche, such as 
studying social network analysis. The extreme inhomogeneity between tags causes the tag distribution to exhibit 
a significantly long tail. Figure 3(a) shows the tag distribution of Weibo users. Most tags are set by users with a low 
probability, but several tags are set by users with a high probability. The power law distribution has been widely 
used for fitting long-tail distributions in the social and economic fields29. However, distributions such as exponen-
tial or log-normal distributions may have similar effects30.

To identify the proper distribution for the tag distribution of Weibo users, we use the approach proposed in30 
to fit the power law, exponential and log-normal distributions. Unfortunately, the three corresponding p-values 
are all 0, indicating that the tag distribution of Weibo users does not follow any of those distributions. To show 
how the model can be set up without using overly complicated probability models, we choose an alternative 
method. A power-law distribution is approximately linear in the double logarithmic scale; an exponential distri-
bution is approximately linear in the logarithmic scale; and a log-normal distribution is a quadratic function in 
the double logarithmic scale. We then use the least squares method to fit the tag distribution of Weibo users. The 
goodness of fit are 0.9495 (power-law), 0.1473 (exponential), and 0.673 (log-normal) respectively. The power-law 
distribution fits the data best. Hence, we assume that the tag distribution of Weibo users approximately follows a 
power law distribution.

Figure 3(b) shows the scatter plot in the double logarithmic scale. We use the maximum likelihood method 
(MLE)30 to estimate the power exponent and the lower bound of the power-law behaviour. The black solid line in 
Fig. 3(b) is the resulting fitting curve.

Consequently, the vector of attribute preferences Ii for node i can be constructed as follows:
Step 1. Suppose that there are total X attributes in the network and that the number of attributes associated 

with each user is no more than Y, where Y ≤ X. For each node ni, we randomly select a sample from the exponen-
tial distribution f(y) = λe−λy using the parameter λ and then round it up to the nearest integer y. If y ≤ Y, we let 
the number of attributes for ni be y; otherwise, we resample y until y ≤ Y.

Step 2. Randomly select y samples x1, …, xy from the power law distribution g(x) = Cx−γ using the parameter 
γ, xi ∈ [1, X], i = 1, 2, …, y. Here, we round the real numbers down to the nearest integers.

Step 3. For each xi, we randomly select a real value zi from the interval [0,1] as the user’s preference for attrib-
ute xi and assign zi as the xi

th element of vector Ii.
Step 4. We normalize all the elements in vector Ii = (ai1, ai2, …, aiX) by setting = ∑ =a z z/ij ij k

X
ik1  so that 

∑ == a 1j
X

ij1 .
In the above algorithm, we assume that the attribute distribution approximately follows a power law dis-

tribution and that x1, …, xy are sampled from this power law distribution. Here, x1, …, xy are the indices of the 
attributes in vector Ii. Hence, popular attributes generally have small indices, and niche attributes generally have 
large indices in vector Ii.

Figure 3.  Tag distribution of Weibo users: (a) normal scale, (b) double logarithmic scale.
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Experiments.  These experiments use three probability density functions to examine how different prefer-
ences regarding the popularity and homophily mechanisms change the final generated networks. We compare 
our PH model with the previously proposed BA and PS models. All the experiments are executed with the total 
nodes N = 2,000. Other parameters in the experiment are as follows.

	 1.	 The total number of attributes in the networks X = 10.
	 2.	 The power exponent γ = 2. Because X = 10, setting γ = 2 causes the probabilities that the 11th and higher 

attributes will be selected to be extremely small.
	 3.	 The upper bound of the number of attributes used by each user Y = 10.
	 4.	 The parameter for the exponential distribution λ = 1/3. In this case, the mean of the exponential distribu-

tion is 1/λ = 3.
	 5.	 The number of initial nodes m0 = 3.
	 6.	 The relationship between the number of nodes and the number of links is =M Nt t

k. To determine the 
power exponent k, we calculate the power exponent of 9 real social networks in the Stanford Large 
Network Dataset Collection. The results are shown in Table 1. Based on these results, we set the power 
exponent k to 1.2; thus, Δ = − −. .m N N( 1)t t t

1 2 1 2.

In the BA and PS models, the number of initial nodes m0 = 3, and the number of new links in each step 
m = 3. For the PS model, the parameter β′ controls the relative contributions of popularity and similarity, and the 
power-law exponent is η = 1 + 1/β′. The contribution of homophily increases as η increases. As previous research4 
studied the cases for η = 2.1, 2.5, 3.0, we also adopt these values in our experiments.

To investigate whether the proposed model is capable of accurately modelling real social networks with dif-
ferent characteristics, in our experiments, we choose three representative social network datasets with distinct 
characteristics (i.e., YouTube, Twitter and DBLP) from the Stanford Large Network Dataset Collection. Previous 
empirical studies have indicated that the popularity effect is stronger than the homophily effect on YouTube23 but 
that the homophily effect is stronger than the popularity effect on DBLP22. Table 2 shows some basic information 
for these three types of networks. Because Twitter is a directed network, Twitter’s properties are calculated under 
a directed graph model. For example, the in-degree of a node in a directed network is used to compute how many 
nodes are connected to the node in the network. Therefore, in this paper, when the properties of Twitter are 
related to node degree, we always use the in-degree instead of the degree.

Network properties.  The main properties of social networks can be summarized as follows:

•	 Clustering. Clustering is a typical property of social networks, where two individuals with a common friend 
are more likely to know each other. The clustering coefficient ci of node i is defined as the fraction of the 
possible edges that could exist between the neighbours of node i that actually exist3. The average clustering 
coefficient of a network is the average of ci over all the nodes in the network. Most complex networks show a 
high value for the average clustering coefficient C.

•	 Average path length. The average path length L of a social network is small. Because the average path length 
L is susceptible to outliers (i.e., long chains) for many social networks, we follow the Stanford Large Network 
Dataset Collection and use the 90-percentile effective diameter D to measure this property. Given a network, 
the 90-percentile effective diameter is the minimum number of hops required for 90% of all connected pairs 
of nodes to reach each other31,32.

•	 Community structure. The communities are dense subgraphs that tend to be well separated from each other. 
We follow the literature33 and use modularity M to measure whether the network has a community structure. 

Facebook Gplus Twitter Epinions LiveJournal Pokec Slashdot1 Slashdot2 Wiki-Vote

nodes 4039 107614 81306 75879 4847571 1632803 77360 82168 7115

edges 88234 13673453 1768149 508837 68993773 30622564 905468 948464 103689

k 1.37 1.42 1.27 1.17 1.17 1.20 1.22 1.22 1.30

C 0.6055 0.4901 0.5653 0.1378 0.2742 0.1094 0.0555 0.0603 0.1409

Table 1.  The power exponent of 9 real social networks.

nodes Edges
Power 
exponent S-Metric

PS HP

m η k case

YouTube 1134890 2987624 2.14 0.0159 2.63 ≈ 3 2.14 1.069 low

Twitter 81306 1768149 2.46 0.3889 21.74 ≈ 22 2.46 1.2724 uniform

DBLP 317080 1049866 3.26 0.6689 3.31 ≈ 3 3.26 1.0945 high

Facebook 4309 88234 2.25 0.4882 20.48 ≈ 20 2.25 1.3608 uniform

Table 2.  The basic information of real social networks and the corresponding synthetic networks.
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A modularity no less than 0.3 provides clear evidence of the existence of community structures in the net-
work. Furthermore, the community size distribution can be different in different networks.

•	 Degree distribution. Many social networks approximatively exhibit a power-law degree distribution where the 
power-law exponent often ranges from 2 to 3.

•	 Degree correlation. The degree correlation, that is, the probability that a node of degree k is connected to 
another node of degree k’ depends on k, always exists in real social networks34. Most social networks show 
“assortative mixing” on their degrees; that is, a high-degree node tends to be connected to other high-degree 
nodes. In contrast, networks such as the Internet show “disassortative mixing”, in which nodes with a low 
degree are more likely to be connected with nodes with a high degree35.

Then, we study these properties separately.

C, D, and M.  Table 3 shows the C, D, and M values for different networks. As shown in Table 3, the networks 
generated by our PH model capture many generic properties of social networks, including a higher average clus-
tering coefficient than networks generated by the BA model, a small average path length, and clear community 
structure. Moreover, for the networks generated by the PH model with the “high”, “uniform” and “low” distribu-
tions, as the popularity effect increases, the average clustering coefficient increases as well, but the average path 
length decreases. The dynamic evolutions of these properties from N = 500 to N = 5,000 are illustrated in Fig. 4. 
The average clustering coefficients of networks generated by the HP model using the three different distributions 
all decrease sub-linearly, and the average path length and modularity of these networks both increase as the net-
works grow and evolve, while their increasing and decreasing tendencies gradually diminish.

Degree Distribution.  Figure 5(a–c) shows a double logarithmic plot of the empirical degree distributions for 
three networks generated by the PH model with the ‘low’, ‘uniform’ and ‘high’ distributions. The power-law expo-
nents are 2.41, 2.48, and 2.63, respectively. Figure 5(d–f) shows the degree distributions of the PS and BA models. 
Both models follow the power-law distribution; the power-law exponents are 2.49, 2.77, 2.96 for the PS model 
and 2.76 for the BA model. Figure 5(g–i) shows the degree distributions for YouTube, Twitter and DBLP. YouTube 
follows the power-law degree distribution with a power-law exponent of 2.14. The degree distributions for Twitter 
and DBLP exhibit steep downward trends in the tails.

When the popularity mechanism is dominant in the networks, as in Fig. 5(a,d,g), the tails (i.e., the high-degree 
parts) of the degree distributions are relatively longer because some nodes have very high degrees. In contrast, 
as the homophily mechanism becomes more dominant in the networks, as in Fig. 5(c,f,i), the tails (i.e., the 
high-degree parts) of the degree distributions are gradually shorter, and the relative degree of the maximum 

C D M SK S-Metric R SL

HP, low 0.149 4.3 0.495 4.3129 0.1832 0.8065 −0.268

HP, uniform 0.126 4.9 0.552 2.8017 0.4774 0.7857 0.0966

HP, high 0.111 5.9 0.520 0.9015 0.7080 0.86 0.3794

BA 0.02 4.3 0.371 1.1539 0.2690 0 −0.1300

PS, η = 2.1 0.814 3.8 0.767 3.6808 0.0336 0 −0.9636

PS, η = 2.5 0.767 4.7 0.871 3.2478 0.1135 0 −0.9468

PS, η = 3 0.716 5.7 0.903 2.2001 0.2967 0 −0.9387

YouTube 0.0808 6.5 0.687 12.8101 0.0159 0.9973 −0.8805

Twitter 0.383 4.5 0.793 4.3877 0.3889 0.6970 −0.7461

DBLP 0.6324 8 0.813 1.8607 0.6689 0.8850 −0.5242

Table 3.  The properties of each network.
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Figure 4.  The dynamic evolutions of average clustering, average path length, and modularity.
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degree node decreases. This result is consistent with previous research36. Both the HP and PS models are able to 
generate networks that are similar to real social networks.

The plots of the degree distributions show little difference when the degrees of the nodes are small; however, 
the tails of the degree distributions have different patterns. To quantitatively measure the differences between the 
tails of two different degree distributions, we focus on the nodes with large degrees. Given a degree distribution, 
we compute a degree q that is the minimum value in which =p q p d( ) min{ ( )} in the degree distribution. We then 
compute the skewness37 of the nodes with the degrees no fewer than q as a proxy of the relative length of the tail 
of the degree distribution. For example, in Fig. 5(g), we select all the nodes whose degrees are no smaller than the 
degree of the black dotted line to compute the skewness of the tail of the degree distribution of YouTube. 
Intuitively, the larger this skewness value is, the longer the tail of the degree distribution is. Table 3 shows the 
skewness (SK) of the tail of the degree distribution for each network.

Degree Correlation.  Since the size of a real social network is finite, the direct evaluation of the degree correla-
tion will lead to extremely noisy results34. Thus, this correlation is usually measured by knn, the average degree of 
the nearest neighbours of nodes with degree k. We plot the distribution of knn in Fig. 6.

As shown in Fig. 6(a), the network generated by the HP model with the “low” distribution is disassortative. In the 
real world, many online social networks such as Myspace38 and YouTube39 exhibit disassortative mixing patterns. In 
Fig. 6(b), the network generated by the PH model with the “uniform” distribution seems to be mixed, similar to the 
real social networks Cyworld38 and Twitter shown in Fig. 6(h). In Fig. 6(b), the network generated by the HP model 
with the “high” distribution is assortative, similar to the real social networks Flickr39 and DBLP shown in Fig. 6(i).

Figure 6(d–f) shows that neither the BA nor the PS model were able to generate networks with the assortative 
mixing patterns that many real social networks exhibit.

To quantitatively measure the connection tendency, Li et al.40 proposed the S-Metric. They proved that there is 
an inherent relationship between the structural metric S and the degree correlation. The values of S range between 
0 and 1. A large S value means that high-degree nodes tend to connect to other high-degree nodes. A small S value 
means that high-degree nodes tend to connect to low-degree nodes. The S-Metric also functions as an index to 
measure the extent to which the graph has a hub-like core. For graph G = (V, E), |V| = n, they define the metric

Figure 5.  Degree distributions for (a–c) HP, (d–f) PS and BA, (g) YouTube, (h) Twitter and (i) DBLP.
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where di denotes the degree of node i and D = {d1, d2,…, dn} is the degree sequence for G. Here, Smax is the maxi-
mum possible S-metric of the graph with degree sequence D. The S-metric for each network is listed in Table 3.

Community Sizes.  The community sizes are shown in Fig. 7. The abscissa (horizontal) axis represents the com-
munities as percentages with respect to the whole network, and the ordinate (vertical) axis represents the size 
of each community as a percentage with respect to the whole network size. In Fig. 7(a), the community size 

Figure 6.  knm for (a–c) HP, (d–f) PS and BA, (g) YouTube, (h) Twitter and (i) DBLP.

Figure 7.  Community sizes for (a) HP, (b) PS and BA, (c) YouTube, Twitter and DBLP.



www.nature.com/scientificreports/

1 0Scientific REPOrTS |  (2018) 8:15431  | DOI:10.1038/s41598-018-33409-8

distribution has a long tail, which means that most communities are small and only a few are large. This phenom-
enon can also be observed in real social networks as shown in Fig. 7(c).

In addition, Fig. 7(c) shows that the size of the largest community on YouTube is larger than that on Twitter 
and that the size of the largest community on DBLP is the smallest. The popularity mechanism dominates 
YouTube, while the homophily mechanism dominates DBLP. Generally, the stronger the popularity effect is, the 
larger the size of the largest community is. We use the HP model with the ‘high’, ‘uniform’, and ‘low’ distributions 
to generate three synthetic networks. The results of t-tests indicate that the difference in the largest commu-
nity size is always significant with respect to the ‘high’, ‘uniform’ and ‘low’ distributions used by the HP model. 
Figure 8 shows the graphs plotted for the three synthetic networks generated by the HP model.

Clustering Coefficient.  Figure 9 shows the average value of the clustering coefficient for degree-k nodes as a 
function of k for the 10 networks.

Figure 9(g–i) shows the clustering coefficients of the three real social networks. The distributions of the clus-
tering coefficients vary on different networks. As shown in Fig. 9(d–f), for the PS model, no correlation exists 
between the clustering coefficient and the model parameter η. The clustering coefficients fit to a straight line in 
the double logarithmic scale. As shown in Fig. 9(a–c), the HP model can yield different distributions, but these 
may be significantly different from real social network distributions. One possible reason is that the evolutionary 
mechanisms in real social networks are much more complicated than those in either the PS or HP models.

Quantitative Comparison of Models.  We measure the average clustering coefficient (C), 90% effective diameter 
(D), and modularity (M) for each network. The qualitative results of the degree distribution, community size, and 
clustering coefficient are shown in Figs 5–9.

To quantitatively compare the generated synthetic networks and the real networks, we collect several addi-
tional quantitative metrics. For the degree distribution, we choose skewness(SK)37 as a quantitative metric. For 
the degree correlation, we choose the S-metric40. Regarding community structure, Fig. 7 shows that many small 
communities exist in the real networks. Therefore, we calculate the number of communities whose size is less than 
1% of the network’s size (i.e., the number of nodes in the community is less than 0.01 N) and then use the ratio of 
these small communities to the total number of communities R as a quantitative metric for community structure.

As shown in Fig. 9, no known distribution function precisely fits the distribution of the clustering coefficients 
for real networks. We choose a linear function to fit the data points in double logarithmic coordinates and use 
the slope (SL) of the fitted function as another quantitative indicator of the clustering coefficient. Generally, SL 
measures the trend of the average clustering coefficient as the degree increases.

The results of the aforementioned metrics are listed in Table 3.
We describe each synthetic network and real network with a vector I = (C, D, M, SK, S, R, SL). This vector 

enables us to quantitatively measure the similarity between a synthetic network and a real network. It is reason-
able to assume that a higher similarity between Isynthetic and Ireal represents the increased accuracy with which the 
synthetic network models the real network. We employ four popular similarity measures: cosine similarity, cor-
relation coefficient, normalized Euclidean distance, and Mahalanobis distance. The results are shown in Table 4, 
where many of the cosine similarity and correlation coefficient values are larger than 0.9. These results indicate 
that the synthetic networks model real networks relatively well. However, it also indicates that the cosine similar-
ity and correlation coefficient metrics are not sufficient to significantly differentiate different models. The reason 
is that the scales of all the metrics are not the same. The normalized Euclidean distance and Mahalanobis distance 
are able to overcome this problem and provide a better means of differentiating between different models. The 
results are shown in Table 4.

The PS model with η = 3 fits DBLP the best for both the normalized Euclidean distance and Mahalanobis dis-
tance, but the BA model fits DBLP the best for both cosine similarity and the correlation coefficient.

Because this phenomenon may be the result of failing to calibrate the models for real networks, we conduct 
additional experiments in which we first calibrate the PS and HP models to real networks and then compare all 
the models.

Model calibration.  The process for calibrating the model parameters are as follows:

Figure 8.  The graphs plotted for three synthetic networks generated by the HP model.
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The PS model has three parameters: m, η and N, where N is the number of nodes, and m is the number of new 
links added in each time step. The PS model assumes that when a new node enters the network, it will connect 
to m old nodes, where m is a constant. Thus, for the PS model, the relationship between the number of nodes Nt 
and the number of links Mt is Mt = mNt. In real social networks, the number of nodes and the number of links 
are known. Hence, we compute the corresponding m and use that as the parameter value in the PS model. The 
parameter η works with respect to the parameter β′, which controls the relative contributions of popularity and 
similarity, where η = 1 + 1/β′. Papadopoulos et al.4 showed that the power-law exponent of the degree distribution 
of the PS simulation network is η. We estimate the power exponent for each real network using the MLE method 
and use the value as the value of η in the PS model.

Figure 9.  Clustering coefficients for (a–c) HP, (d–f) PS and BA, (g) YouTube, (h). Twitter and (i) DBLP.

methods networks HP, low HP, uniform HP, high BA PS, η = 2.1 PS, η = 2.5 PS, η = 3

Cosine Similarity

YouTube 0.9487 0.8292 0.5760 0.6666 0.9239 0.8633 0.7341

Twitter 0.9950 0.9589 0.8023 0.8641 0.9867 0.9762 0.9154

DBLP 0.8497 0.9544 0.9864 0.9904 0.8466 0.9186 0.9790

Correlation Coefficient

YouTube 0.9311 0.7525 0.3892 0.5453 0.8928 0.8065 0.6297

Twitter 0.9920 0.9335 0.6945 0.8130 0.9828 0.9667 0.8804

DBLP 0.7747 0.9370 0.9805 0.9892 0.7772 0.8817 0.9707

Standardized Euclidean 
Distance

YouTube 3.5469 4.3079 5.2944 5.1290 4.7167 4.5589 4.6780

Twitter 2.2340 2.4275 3.5235 3.4609 2.6436 2.3882 2.3571

DBLP 4.3033 3.5833 3.3946 5.0420 4.8061 4.1326 3.2649

Mahalanobis Distance

YouTube 4.1783 3.5138 3.9157 4.1972 4.1911 3.7273 3.8089

Twitter 4.1129 3.3717 3.9403 4.2148 4.0978 3.9284 3.5707

DBLP 3.9560 3.8325 3.5273 4.2298 4.0650 3.8620 3.4794

Table 4.  The similarity between different synthetic networks and real networks.
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There are three important parameters in the HP model correspond to those in the PS model: the parameter k 
controls the relation between the number of nodes and the number of links; the parameter β controls the relative 
contributions of popularity and similarity; and the parameter N controls the number of nodes in the network. 
Without loss of generality, we assume that the other parameters of the HP model are fixed and are identical to the 
initial settings described at the beginning of this section.

The relationship between the number of nodes and the number of links in the HP model is =M Nt t
k. Hence, 

we are able to calculate the parameter k by substituting the number of nodes and links in the real network datasets 
for Nt and Mt, respectively. The three different distributions of β correspond to the three cases (‘high’, ‘uniform’ 
and ‘low’) of the HP model. The previous experiments show that the degree correlation is closely related to β: the 
synthetic networks generated by the HP model with the ‘low’ distribution are disassortative, and the synthetic 
networks generated by the HP model with the ‘high’ distribution are assortative. Hence, we calculate the S-Metric 
for each real network. When the value is significantly smaller than 0.5 (i.e., from 0–0.35), the HP model selects the 
‘low’ distribution to model the corresponding real network, and when the value is significantly larger than 0.5 
(i.e., from 0.65–1), the HP model selects the ‘high’ distribution to model the network. Otherwise, the HP model 
selects the ‘uniform’ distribution to model the network.

We use four real social networks to calibrate the parameters of the PS and HP models. The basic information 
of the real networks and the corresponding parameters of the PS and HP models are shown in Table 2.

The number of nodes of the Facebook dataset is 4,309. We set the corresponding number of nodes for both the 
PS and HP models to be 4,309. For other datasets, we set N = 5,000.

Quantitative comparison after calibrating.  To further verify whether this parameter adjustment process is 
appropriate, we use the ‘high’, ‘uniform’ and ‘low’ distributions to fit the four real networks. The properties of the 
real networks and generated synthetic networks are shown in Table 5. In Table 5, PS_YouTube refers to the PS 
synthetic network for YouTube, HP_YouTube_H refers to the HP synthetic network for YouTube with the ‘high’ 
distribution, and so on.

Table 6 shows the normalized Euclidean and Mahalanobis distances between the real networks and the syn-
thetic networks generated by the calibrated models.

Under the two distance metrics, the optimal fittings for YouTube, DBLP and Facebook are HP_
YouTube_L, HP_DBLP_H and HP_Facebook_U, respectively, which are consistent with the results of the 
parameter-calibrating process shown in Table 2. For Twitter, in Table 2, we select the ‘uniform’ case. However, the 
optimal fitting is the case ‘low’ under the two distance metrics. The primary reason is that the S-metric of Twitter 
is 0.3889, which is close to the threshold of 0.35 used to differentiate between the ‘low’ and ‘uniform’ cases.

In summary, the HP model is capable of modelling a variety of real social networks.

Sensitivity analysis.  To verify the sensitivity of the networks generated by the HP model to the network size N 
and the threshold T t

2, we conduct the following sensitivity analysis experiments. We use the degree distribution to 
verify the sensitivity of the network generated by the HP model with respect to the network size N. Figure 10 
shows the degree distribution for the networks generated by the HP model with the ‘high’, ‘uniform’, and ‘low’ 
distributions for N = 2,000 and N = 5,000. As the network grows, the shape of the degree distribution does not 
change significantly. Hence, the degree distribution of the HP model is not sensitive to the network size.

C D M SK S-Metric R SL

YouTube 0.0808 6.5 0.687 12.8101 0.0159 0.9973 −0.8805

PS_YouTube 0.817 3.91 0.844 5.6875 0.0196 0.0400 −0.9677

HP_YouTube_H 0.013 7.84 0.639 0.8795 0.6070 0.7549 0.6438

HP _YouTube_U 0.012 7.34 0.623 1.5134 0.5192 0.8370 0.4020

HP _YouTube_L 0.015 6.84 0.609 3.2060 0.2197 0.7303 −0.1101

Twitter 0.383 4.5 0.793 4.3877 0.3889 0.6970 −0.7461

PS_Twitter 0.824 2.04 0.737 6.5272 0.0459 0 −0.8860

HP _Twitter_H 0.104 5.02 0.499 0.8316 0.6866 0.8889 0.2423

HP _Twitter_U 0.121 4.64 0.5 2.3294 0.5377 0.8571 0.0905

HP _Twitter_L 0.154 3.90 0.551 5.8476 0.1760 0.75 −0.2019

DBLP 0.6324 8 0.813 1.8607 0.6689 0.8850 −0.5242

PS_DBLP 0.704 6.7 0.939 2.2737 0.3244 0 −0.9415

HP _DBLP_H 0.014 7.51 0.641 1.7318 0.5858 0.8345 0.6693

HP _DBLP_U 0.012 7.22 0.585 2.7413 0.4868 0.34 0.4783

HP _DBLP_L 0.016 6.88 0.588 5.3917 0.2075 0.5424 0.1431

Facebook 0.6055 4.7 0.834 7.7495 0.4882 0.1875 −0.144

PS_Facebook 0.852 1.9 0.669 5.9330 0.0318 0 −0.8974

HP _Facebook_H 0.211 4.4 0.514 1.0271 0.7595 0.8438 0.2439

HP _Facebook_U 0.261 3.77 0.544 4.4871 0.4287 0.5455 −0.0035

HP _Facebook_L 0.353 2.97 0.48 4.0048 0.1858 0.6154 −0.2660

Table 5.  The properties of each network (after calibrating).
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The threshold T t
2 affects the size of the candidate set during the link-connecting process at time t. The larger 

the candidate set is, the greater the uncertainty is that a given candidate edge will be selected, = ⋅T l tmax(200, )t
2

2 . 
Figure 11 shows the changes in network properties such as the average clustering coefficient (C), average path 
length (L), and modularity (M) as T t

2 changes when l is between 0.01 and 0.05. As shown in Fig. 11, when l 
increases, the randomness of the edge connection increases, which causes C, L, and M to decrease slowly.

Discussion
Because the homophily and popularity effects are known to be two important evolutionary mechanisms in many 
real social networks, we develop the HP model for generating social networks. The HP model is capable of repro-
ducing many of the important structural properties found in real social networks.

Our experiments show that although the networks generated by different evolutionary mechanisms are simi-
lar along aspects such as high average clustering coefficients, small average path lengths, and significant commu-
nity structures, they can vary in other aspects. Particularly, for both artificial networks generated by HP models 
and real-world social networks such as YouTube and DBLP, when the homophily mechanism is dominant during 
the network growth process, the resulting network will be assortative, and when the popularity mechanism is 
dominant during the network growth process, the resulting network will be disassortative.

In addition to generating synthetic networks, the HP model provides a new framework for studying social 
network evolution. For example, in this paper, the probability density function for each node denoting the favour 
of homophily is simply assumed to be monotonically increasing, uniform, or monotonically decreasing. With 

methods networks PS HP _H HP_U HP_L

Standardized Euclidean Distance

YouTube 4.3395 4.0624 3.5815 2.6202

Twitter 3.5877 3.6358 3.0428 2.4703

DBLP 3.6503 2.8582 4.0894 4.1343

Facebook 3.8478 4.4572 3.0492 3.7747

Mahalanobis Distance

YouTube 4.4552 4.9408 4.4197 4.0599

Twitter 4.0477 3.7353 3.6808 3.2023

DBLP 5.0214 4.4695 5.9735 5.3657

Facebook 4.1591 4.1077 3.4225 4.6469

Table 6.  The similarity between different synthetic networks and real networks (after calibrating).

Figure 10.  Degree distributions for N = 2,000 and N = 5,000.

Figure 11.  C, L, M for the networks under different l.
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further enrichment from related studies of popularity and homophily, the HP model may incorporate other prob-
ability density functions that may more accurately model the real social network evolution.

This paper also provides several managerial implications for social marketing. Our study suggests that the 
degree correlation can distinguish whether the homophily or the popularity effect is dominant during network 
generation. Both the homophily and popularity effects can explain the phenomenon that consumers tend to make 
similar purchase decisions as their friends but can also result in different marketing and promotion strategies15. 
When the homophily effect is the main reason for network generation, people who are connected will be more 
likely to have similar product tastes. In this case, retailing companies should target an existing consumer’s friends 
directly. When popularity is the main effect, then a consumer’s purchase decision may be altered by that custom-
er’s friends through their communications. In this case, retailing companies should target existing consumers 
and incite them to persuade their friends to make purchases. Hence, when a retailing company wishes to promote 
their products on a social network, they can use the degree correlation of the network to determine which pro-
motion strategy to use.

Our study has some limitations that provide avenues for future research. First, the HP model has several input 
parameters. In future work, we will investigate the effectiveness of each of these parameters to develop new robust 
models with fewer parameters. Second, similar to other models, the HP model does not perform particularly well 
with respect to the clustering coefficient. We plan to conduct more research to address this issue.

Methods
Data Availability.  To determine the power exponent k, we calculated the power exponent of 9 real social 
networks acquired from http://snap.stanford.edu/data/index.html. We selected four real-world representative 
social networks with distinct characteristics for our experiments: YouTube, DBLP, Twitter and Facebook (all 
acquired from http://snap.stanford.edu/data/index.html). YouTube is a popular video-sharing social network to 
which users can upload original videos, follow interesting users, and watch videos posted by other users. DBLP 
is a comprehensive database of research papers in computer science. Two authors are connected on DBLP if they 
have co-authored at least one paper. Twitter is a microblogging social network where users post and interact with 
others through messages. Facebook is an online social media where users can share news and pictures with oth-
ers. YouTube, DBLP, and Facebook are undirected networks, while Twitter is a directed network. Table 2 shows 
the basic information for these four types of networks.
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