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Localizable entanglement as a 
necessary resource of controlled 
quantum teleportation
Artur Barasiński1,2, Ievgen I. Arkhipov1 & Jiří Svozilík1,3,4

We analyze the controlled teleportation protocol through three-qubit mixed states. In particular, 
we investigate the relation between the faithfulness of the controlled teleportation scheme and 
entanglement. While our knowledge concerning controlled teleportation and entanglement in pure 
states is well established, for mixed states it is considerably much harder task and very little has been 
done in this field. Here, we present counterintuitive results that provide a new light on controlled 
teleportation protocol. It is shown that even mixed biseparable states are useful for this protocol along 
with genuine entangled three-qubit states.

Quantum entanglement is one of the striking features of quantum systems that makes them different from their 
classical counterparts1,2. Entanglement plays a central role for numerous quantum information protocols that are 
used in one-way quantum computation3, quantum communication4 and quantum cryptography5, to name a few. 
The more a quantum state is entangled, the better it will perform in the information processing and communica-
tion tasks, compared to any unentangled state6,7. However, the question if entanglement is a necessary resource 
for quantum protocols remains still open.

One of the most important applications of entanglement is a process of quantum teleportation8. In a standard pro-
tocol of a single qubit state teleportation only two parties are involved8, namely, the sender and receiver who share a 
maximally entangled two-qubit Bell state (maximally entangled channel) in advance. In the first step, the sender per-
forms a two-qubit measurement in the Bell-state basis on one qubit from the teleportation channel and the additional 
qubit which state wishes to be teleported. Based on the measurement outcome, the receiver uses appropriate unitary 
operations on the remaining qubit from the Bell pair to perfectly reconstruct the state to be teleported. In the ideal 
quantum teleportation procedure, the state can be recovered with fidelity F = 1, while the faithfulness of the teleporta-
tion attainable by a purely classical channel cannot exceed =F 2

3
9,10. In general, the lower and upper bound of telepor-

tation fidelity for a single copy of a two-qubit (mixed) channel with a given amount of entanglement writes as11

  + +
≤ ≤

+{ } Fmax 3
6

, 1 2
3

2
3

,
(1)

where  stands for the bipartite concurrence12 and the upper bound is reached by pure two-qubit states. These 
relations also provide a clear manifestation of quantum entanglement as a necessary resource to execute the 
standard teleportation protocol within the quantum limit faithfulness. Naturally, the inverse relation is not true, 
since not every mixed entangled state can reach quantum fidelity13.

Over time, quantum teleportation has been studied and developed in numbers of ways such as multipartite sys-
tems14,15. In particular, a tripartite variant of quantum teleportation called controlled quantum teleportation (CQT) has 
been proposed by Karlsson and Bourennane16. For this scenario, the success or failure of teleportation process is deter-
mined by a controller, i.e. an unknown state of a single qubit can be teleported from sender to receiver with fidelity 

≥FCQT
2
3
 only with the permission of the controller. Without controller’s participation the teleportation fidelity (hence-

forth referred to as the non-conditioned fidelity FNC) is no better than the fidelity of a classical channel, ≤FNC
2
3

17,18. 
Here, the question whether entanglement is a necessary resource for CQT is much more sophisticated. From one hand, 
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it is because the tripartite scenario offers a richer variety of different types of entanglement distinguished with respect 
to stochastic local operations and classical communication (SLOCC). Specifically, a pure three-qubit state can either be 
completely separable, biseparable or tripartite entangled19. Furthermore, there are two locally inequivalent classes of 
tripartite entanglement, namely the GHZ-class and the W-class. On the other hand, the analysis of the relation between 
entanglement and CQT protocol should be restricted to such classes of states which provide the controller’s authority.

In a pure-state regime a direct relation between entanglement and the maximal fidelity of tripartite CQT is 
given by20


ψ

τ ψ ψ
=

+ +
F ( )

2 ( ) ( )
3

, (2)CQT
S R,
2

where |ψ〉 is an arbitrary three-qubit pure state, τ(ψ) denotes the three-tangle21 (a tripartite entanglement monot-
ony) and ψ ρ=( ) ( )S R S R, ,   is the bipartite concurrence for ρS,R = TrC|ψ〉 〈ψ|. The subscripts C, R and S represent the 
qubits of controller, receiver and sender, respectively. Based on the above-mentioned concept of CQT, the telepor-
tation fidelity FCQT in Eq. (2) is meaningful if and only if the non-conditioned fidelity ρ ≤F ( )NC S R,

2
3
 what implies 

immediately that none of pure separable and pure biseparable states are useful for CQT. The CQT protocol has been 
successfully investigated via several classes of partially tripartite entangled pure states16–18, in particular the general-
ized GHZ states. Therefore, the tripartite entanglement can be considered as a necessary resource of CQT15,18,22,23.

Nevertheless, in any realistic implementation of the protocol, various kinds of noise are inherently present 
and such conditions result in the reduction of entanglement of the quantum channels. Although a considerable 
research has been devoted to analyze tripartite teleportation through noisy channels24–27, much less attention has 
been paid to discuss the relation between noisy CQT protocol and entanglement (especially the entanglement 
classification). Therefore, there are several important questions that emerge: What kind of entanglement, classi-
fied with respect to SLOCC, is truly needed for CQT? What kind of mixed three-qubit states is useful for CQT? Is 
every mixed state that can be expressed as a mixture of product or biseparable states unsuitable for CQT?

We recall that the entanglement classification of pure states can be extended to mixed states by considering the 
classes of all pure states in the convex decomposition of state under consideration28. From the operational point 
of view the mixed state entanglement classes can be distinguished by various entanglement measures: A state is 
GHZ-type entangled iff the three-tangle21 does not vanish, τ > 0. A state is W-type entangled iff the genuine mul-
tipartite concurrence GME

29,30 does not vanish, but the three-tangle does, τ = 0 and > 0GME . For biseparability, 
an appropriate measure is the convex roof of the square root of the global entanglement31. For unentangled states 
all entanglement measures vanish.

Motivated by all these remarks, here we investigate the performance of CQT through mixed-state channels 
and discuss its relation with various kind of entanglement. In particular, we calculate CQT for two representative 
tripartite mixed states, namely the GHZ-symmetric and X–matrix states. We show that (in contrast to pure-state 
channels) tripartite entanglement is not a necessary resource of CQT for mixed states and classical correlation 
are sufficient to ensure the ability to control the teleportation protocol. We find the upper and lower bounds of 
FCQT which are satisfied by any state useful for CQT, for a general n-qubit state. The boundaries presented in this 
paper are directly analogous to the two-qubit fidelity-entanglement relationship given by Eq. (1). We also discuss 
further interesting properties of FCQT based on the convex decomposition of the tripartite mixed state.

Controlled Teleportation Protocol
We first review the protocol of CQT which is a variation of the splitting and reconstruction of quantum informa-
tion over the GHZ state proposed by Hillery et al.32 and present its extension to n-qubit state.

For this purpose, let ρ be a tripartite state (channel) with distinct parties C, R, S = {1, 2, 3}, respectively. Then, 
the teleportation scheme over such three-qubit state can be described as follows: (i) The controller makes a 
one-qubit orthogonal measurement on the subsystem C with an outcome t; (ii) The sender prepares an arbitrary 
one-qubit state, and then makes a two-qubit orthogonal measurement on the one qubit and the subsystem S; (iii) 
The receiver applies on the subsystem R proper unitary operations related to the 3-bit classical information of the 
two above measurement results. For such scenario the total fidelity FCQT of tripartite state ρ can be written as an 
average value over the teleportation fidelity through the reduced state ρSR

t  what can be expressed in a general form20
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is the resulting state of the joined subsystem SR after the local measurement on the subsystem C with the meas-
urement outcome t and ρ〈 | | 〉†t U U tC C C  denotes the probability of receiving the outcome t within one-qubit meas-
urement. Here, UC is a 2 × 2 unitary matrix, 114 stands for an 4 × 4 identity matrix and ρC = TrSR(ρ) is a reduce 
one-qubit state. Finally, the quantity ρF( )SR

t  corresponds to the faithfulness of the two-qubit teleportation through 
the resulting state ρSR

t . It is known that for a standard teleportation protocol the maximal achievable fidelity is 
given by ρ = ρ +F( ) f2 ( ) 1

3
, where f(ρ) = maxe 〈e|ρ|e〉 is the fully entangled fraction33,34. Using this expression, one 

can express both fidelities in a compact form as
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It is worth mentioning that for an arbitrary pure state, ρ = |ψ〉 〈ψ|, Eq. (6) can be further simplify and written 
in the form given by Eq. (2) 20.

Finally, we note that the CQT protocol can also be extended to n-qubit case. Then, the conditional  
fidelity in Eq. (3) takes almost identical form of ρ ρ ρ= ∑ 〈 | | 〉=

†F t U U t F( ) max [ ( )]CQT U t
k

C C C SR
t

0C
, where k = 2n−2 − 1 

and UC is a 2n−2 × 2n−2 unitary matrix. The shape of matrix UC depends on the strategy chosen by the  
controller. In particular, when the controller’s strategy is based on n − 2 local measurement the unitary  
matrix = ⊗ ⊗ ⊗ −

U U U UC C
j

C
j

C
jn1 2 2 , where UC

j  corresponds to 2 ×  2 unitary matrix and indices 
… ⊂ …−j j n{ , , } {1, , }n1 2 . In the same way one should interpret the Eq. (4).

Results
Controlled teleportation via GHZ-symmetric states. Let us first consider a particular family of mixed 
states which have recently received a lot of attention, namely GHZ-symmetric states35,36. This family contains all 
tripartite mixed states, invariant under the following symmetries  : qubit permutation, application of 
σ σ σ⊗ ⊗x x x (i.e. simultaneous three-qubit flips) and simultaneous (local) phase rotations of the form

ϕ ϕ = ⊗ ⊗ϕ σ ϕ σ ϕ ϕ σ− +U e e e( , ) , (7)GS i i i
1 2

( )z z z1 2 1 2

where σx and σz are the Pauli operators. The general form of three qubits GHZ-symmetric states can be written as

ρ = + | 〉〈 | + − | 〉〈 | ++ + − − −( ) ( )x y x GHZ GHZ x GHZ GHZ( , ) 11 , (8)
GS y y y2

3
2

3
3 4
8 3 8

where | 〉 ≡± | 〉± | 〉GHZ 000 111
2

 and 118 stands for an 8 × 8 identity matrix. In order to satisfy the positive semidefi-
nite requirement, ρGS(x, y) ≥ 0, the coordinates x and y are limited by − ≤ ≤y1

4 3
3

4
 and | | ≤ +x y1

8
3

2
. Any 

point inside this triangle represents a GHZ-symmetric state. For this family several entanglement classes with 
respect to SLOCC can be distinguished35,36. Specifically, the GHZ-class which is limited from the bottom by the 
parametrized curve = +

−

− −

−{ }x y{ , } ,W W v v
v

v v
v

8
8(4 )

3
4

4
4

5 3

2

2 4

2
, where −1 ≤ v ≤ 1 and turns into the W-class (cf. Fig. 1). 

Such parametrized curve is often referred to as the GHZ-W line. The lower bound of the W-class is certified by 
vanishing of  ρ = − + | | +{ }x y x y( ( , )) max 0, 2 3GME

GS 3
4

. This line separates W-class and the biseparable 
states (hereafter the W-B line). Finally, the biseparable states are restricted by = − | |y x2 33

4
.

It is well-known that in a pure-state regime the generalized GHZ state and a group of W-class states19 are 
useful for controlled teleportation18. In order to verify whether mixed states which belong to GHZ-class and 
W-class are also suitable for CQT both fidelities, given by Eqs (5) and (6), need to be determined. In order to do 
this, we use the Horodecki theorem13 and apply the general form of 2 × 2 unitary matrix UC in Eq. (6). Then, after 
straightforward optimization we have found that

Figure 1. The diagram of the SLOCC entanglement classes of the GHZ-symmetric states36: separable class 
(Sep), biseparable class (Bisep), W class and GHZ class. The dashed-dotted line represents Eq. (11), i.e. the lower 
border of ρGS states useful for CQT. The upper corners depict the pure states GHZ+ and GHZ− and the dashed 
line corresponds to the Werner states (ρWS).
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where our calculations are restricted to the three-qubit configuration C = 1, S = 2 and R = 3 as mentioned before. 
Note that such assumption can be done without loss of generality, since all GHZ-symmetric states and hence, Eqs (9) 
and (10) are invariant under qubit permutation.

Based on Eq. (9) and the limitation of coordinate y, it is clear that ρ≤ ≤F ( )NC
GS5

9
2
3
 in the entire range of {x, y} 

and hence the faithfulness of teleportation performed without controller permission cannot exceed the classical 
limit which fulfills the first criterion of CQT. This result can be easily explained since ρ ρ= TrS R

GS
C

GS
,  is a diagonal 

matrix and hence, it can be decomposed into a convex combination of product states, i.e. ρ =( ) 0S R S R
GS

, , . On the 
other hand, from Eq. (10) one can find that ρ >F ( )CQT

GS 2
3
 if

> = − | |.y y x x( ) 3
4

3 (11)Q

In other words, any state ρGS(x, y) with given x and y > yQ(x) is suitable for CQT within the quantum limit. By 
comparing yQ with the borders of the SLOCC entanglement classes one can find that CQT can be perform not 
only through the mixed states that belong to the GHZ- and W-class but, surprisingly, also via the mixed bisepara-
ble states. As we see in Fig. 1, the yQ curve is below the W-B line. This result is very intriguing because there is no 
pure biseparable state useful for CQT and therefore, this implies several consequences. First, since CQT can be 
performed without any type of tripartite entanglement, it cannot be considered as a necessary resource of this 
protocol and the controller’s capability is not ensured by the tripartite entanglement as it is commonly thought22. 
Furthermore, the usefulness of biseparable GHZ-symmetric states for CQT clearly shows that one cannot esti-
mate FCQT of mixed states based on the “predefined” entanglement properties such as τ(ρ) and ρ( )S R, . In order to 
emphasize this fact, we note that outside the GHZ- and W-class both τ ρ ρ= =( ) ( ) 0GS

GME
GS  and the bipartite 

concurrence   ρ= =( ) 0S R S R
GS

, , . As a result of Eq. (2) one should expect =FCQT
2
3
 while the maximal fidelity for 

the biseparable GHZ-symmetric states is equal to 13
18

. Finally, it is known that entanglement, in particular tripar-
tite entanglement, vanishes in the presence of noise. Therefore, the performance of CQT through biseparable 
states suggests that the controlled teleportation can be less fragile against noise than for the tripartite entangle-
ment. In order to illustrate this, let us discuss a special case of GHZ-symmetric family, namely the three-qubit 
Werner states (WS) which can be considered as a global depolarizing noise that brings the GHZ state to the 
completely unpolarized state

ρ ρ= = − | 〉〈 | +− − + +( )p p GHZ GHZ( ) , (1 ) 11 , (12)
WS GS p p p(1 )

2
3 (1 )

4 8 8

where 0 ≤ p ≤ 1 is a probability of replacing the GHZ state with a completely mixed state 11 /88 . The three-qubit 
Werner states can be considered as an imperfect preparation of the quantum channel. In this case, the fidelity is 
given by ρ = −F ( )CQT

WS p2
2

 while the genuine tripartite concurrence ρ = −{ }p( ) max 0, 1GME
WS 7

4
 . From these 

two expressions it is easy to find that the FCQT(ρWS) falls into the classical teleportation limit when =pF
2
3
 while 

the tripartite entanglement vanishes for = >p pT F
4
7

. Interestingly, when the regime of biseparable states is 
entered then the corresponding fidelity FCQT(ρWS(pT)) ≈ 0.71. This value is around 4% greater than the classical 
protocol limit. The last remark has a particular experimental meaning, where the measured results can be masked 
by the statistical fluctuations which are naturally present in any physical implementation of the protocol. 
Consequently, the difference between FCQT and the classical protocol limit around 2–3% is required to be notice-
able in the laboratory37,38.

As we see in Fig. 1, the line yQ does not overlap with the lower bound of the biseparable states and hence not 
every biseparable mixed state can yield the quantum fidelity for CQT. In order to explain the nature of the “quan-
tum” teleportation line in Eq. (11), let us (by analogy to Eq. (6)) determine the average concurrence between the 
sender and receiver after the optimal one-qubit orthogonal measurement on the subsystem C

∑ρ ρ ρ=




 〈 | | 〉





.

=

†t U U t( ) max ( )
(13)

L
U t

C C C SR
t

0

1

C

 

where ρSR
t  has the same form as Eq. (4),  ρ( )SR

t  stands for bipartite concurrence of ρSR
t  and the optimization is 

performed over all 2 × 2 unitary matrices UC. Such quantity is known as a localizable concurrence39,40 (restricted 
to the projective von Neuman measurements) and in general the optimal matrix UC in Eqs (6) and (13) is not the 
same one. We note that ρ( )L  in Eq. (13) can be easily extanded to n-qubit system in the same way as we discussed 
for FCQT

39,40.
Applying the localizable concurrence to the GHZ-symmetric states one can find that the optimal one-qubit 

orthogonal measurement on the subsystem C (i.e for UC that maximize Eq. (13)) implies the reduction of the state 
ρGS, with the probability ρ〈 | | 〉 =†t U U tC C C

1
2

, to one of two channels,
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where t = 0, 1. Then, the average bipartite concurrence of ρGS is given by  ρ = − + | | +{ }x( ) 2max 0,L
GS y1

4 3
. 

As we see,  ρ ≥( ) 0L
GS  if and only if y > yQ for a given x what is consistent with Eq. (11). This means that ρGS is 

useful for CQT in the quantum limit if there exists the non-zero localizable entanglement between sender and 
receiver. Based on this observation, the fidelity FCQT(ρGS) can be written as


ρ

ρ
≤

+F ( ) 2 ( )
3

, (14)CQT
GS L

GS

with the equality for y > yQ (equivalently, for  ρ >( ) 0L
GS ). This result can be further generalize as follows.

Proposition 1. Given a mixed state of n qubits ρ with localizable concurrence ρ( )L , then its fidelity of controlled 
teleportation FCQT is bounded by

ρ ρ
ρ

ρ




+ + 
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6
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3

( ) 2 ( )
3 (15)

L L
CQT

L  

and the localizable concurrence is a necessary resource for controlled teleportation.

Proof. Suppose that there is an unitary matrix ∼UC which maximizes Eq. (3) (k = 1) or its n-partite extension 
(k = 2n−2 − 1) and ρ

SR
t  is an optimal two-qubit state given by Eq. (4) when =

∼U UC C. From Eq. (1) it is apparent that 
one can always expect 

ρ ≤
ρ+



F( )SR
t 2 ( )

3
SR
t

, where ρ


( )SR
t  is the bipartite concurrence of ρ
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t . Then, Eq. (3) yields
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Further simplification of the right-hand side of Eq. (16) provides ρ ρ ρ≤ + ∑ 〈 | | 〉=
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where we have used ρ ρ∑ 〈 | | 〉 = ==
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. Moreover, the second term of this 

expression corresponds to the localizable concurrence given by Eq. (13). Therefore, Eq. (16) can be expressed as 
ρ ≤ ρ+F ( )CQT

2 ( )
3

L .

Similarly, let us assume that there is an unitary matrix ∼UC which maximizes the localizable concurrence Eq. (13). 
Then, Eq. (1) implies that ρ
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Based on Eq. (13) and the fact that =X Y Z XY XZmax [ max { , }] max {max [ ], max [ ]}U U UC C C
 the most left-hand 

side of Eq. (17) can be written as ρ≤ρ ρ+ +{ } Fmax , ( )CQT
3 ( )

6
1 2 ( )

3
L L  . 

It should be highlighted that Eq. (15) has a similar form as Eq. (1) what implies that the localizable concur-
rence plays the same role in CQT as bipartite concurrence in the standard teleportation protocol. In fact, if ρ is 
biseparable with respect to controller’s qubit (i.e. of the form ρ = ρSR⊗ρC) then ρ ρ=( ) (Tr )L C   and Eq. (15) 
becomes equivalent to Eq. (1).
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Controlled teleportation via triqubit X-matrices. In this section, we investigate the existence of other 
mixed biseparable states suitable for CQT. In particular, we verify what is the maximal attainable fidelity FCQT for 
such states. For this purpose we analyze the X-matrices of Yu and Eberly41 represented by a density matrix of three 
qubits, written in an orthonormal product basis, whose nonzero elements are only diagonal or antidiagonal. The 
X–matrix can be written than as

ρ =







⋅ ⋅
⋅ ⋅

⋅ ⋅

⋅ ⋅
⋅ ⋅

⋅ ⋅







⁎

⁎

a z

a z
z b

z b

X

1 1

4 4

4 4

1 1

where | | ≤z a bj j j  and ∑ + =a b( ) 1j j j  to ensure the positivity and normalization of ρX. For the triqubit 
X-matrices the border between tripartite entangled and biseparable classes is determined by disappearance of 

ρ ω= | | −C z( ) 2max {0, }GME X j j , where ω = ∑ ≠ a bj k j k k  and 1 ≤ k ≤ 4. We note that the GHZ-symmetric states 
discussed in the previous sect ion are  specia l  examples  of  ρ X,  i .e .  = = +a b y(1 4 3 )1 1

1
8

, 
= = = +a b y(3 4 3 )2 4

1
24

 and z1 = x, z2 = z3 = z4 = 0.
Performing appropriate optimizations, one can find that both fidelities of triqubit X-matrices are given by

ρ =
+ |Δ |F ( ) 3

6
, (18)NC X

1

ρ =F F F F F( ) max { , , , }, (19)CQT X CQT CQT CQT CQT
(1) (2) (3) (4)

where Δ1 = a1 − a2 − a3 + a4 + b1 − b2 − b3 + b4 and

= =

= =

+ |Δ | + | | + | | + |Δ | + | | + | |

+ Δ + | | + | | + Δ + | | + | |

F F

F F

, ,

, , (20)

CQT
z z

CQT
z z

CQT
z z

CQT
z z

(1) 3 4( )
6

(2) 3 4( )
6

(3) 3 16( )
6

(4) 3 16( )
6

1 1 4 1 2 3

2
2

1 4
2

2
2

2 3
2

with Δ2 = (a1 − a2 + a3 − a4 − b1 + b2 − b3 + b4). Based on these results one can easily construct various mixed 
biseparable states useful for CQT.
Example 1

Let ρ1(x) be the one parameter X–matrix state described by = = = −a b z x1 1 1
1
2

, a4 = b4 = z4 = x with 
0 ≤ x ≤ 1/2 and aj = bj = zj = 0 otherwise. In other words, the state ρ1(x) is just a statistical mixture of GHZ states, 
ρ 1(x)  =  2x |GHZ 1〉  〈GHZ 1|  +  (1  −  2x)  |GHZ 3〉  〈GHZ 3| ,  where  | 〉 = | 〉 + | 〉GHZ ( 000 111 )(1) 1

2
 and 

| 〉 = | 〉 + | 〉GHZ ( 011 100 )(4) 1
2

. For such state one has ρ =F x( ( ))NC 1
2
3
 and ρ = ={ }F x( ( )) max 1, , , 1CQT 1

2
3

5
6

1
2

. 
This means that perfect CQT can be performed regardless of the value x. On the other hand, the genuine  
concurrence CGME(ρ1(x)) = |4x − 1|. For the boundary cases = { }x 0, 1

2
 the genuine concurrence  

CGME(ρ1(x)) = 1 since the state ρ1(x) = |GHZ(1)〉 and ρ1(x) = |GHZ(4)〉, respectively. However, when =x 1
4
 the state 

ρ1(x) belongs to the biseparable class and it can be decomposed as ρ ψ ψ ψ ψ= | 〉〈 | + | 〉〈 |+ + − −x( ) ( )1
1
2

, where 
ψ| 〉 = ±| 〉 + | 〉 ⊗ | 〉 ± | 〉± ( 0 1 ) ( 00 11 )C C SR SR

1
2

. This outcome implies that the maximal faithfulness of CQT per-
form via biseparable state is equal to 1. In order to explain this fact, let us consider the above decomposition in 
more details. As we see, regardless of the outcome of von Neumann measurement performed in the orthogonal 
basis {(|0〉C + |1〉C), (−|0〉C + |1〉C)} the state ρ1(x) is reduced with equal probability to one of two maximally 
entangled states. However, without classical information from the controller’s side one cannot encode which Bell 
state it is and hence, the quantum teleportation becomes impossible. This means that the classical correlation 
between controller and joined “sender-receiver” subsystem is sufficient in order to either allow or forbid the con-
trolled teleportation and no entanglement is needed. We note that the above observation can be extended to 
n-qubit channels if one defines | 〉 = | … 〉 + | … 〉GHZ ( 0 0 1 1 )n

(1) 1
2

 and | 〉GHZn
(4)  likewise. All these calculations 

are summarized as follows.

Proposition 2. For n-qubit mixed states ρ, perfect controlled teleportation (FCQT(ρ) = 1) can be reached even if ρ 
is a statistical mixture of biseparable pure states.
Example 2

Let ρ2 be a mixture of W-class states ψ θ θ| 〉 = | 〉 − | 〉 − | 〉θ θGHZ e GHZ e GHZ( , ) [ ]W
i i

1 2
1
3

(2) (3) (4)1 2 42, where all 
GHZ states are defined as before:
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ρ θ θ ψ π π ψ π π

ψ π π ψ π π
ψ π π ψ π π
ψ π π ψ π π

= | 〉〈 |

+| 〉〈 |
+| 〉〈 |
+| 〉〈 |
+ .

( , ) 1
8

[ ( /3, 2 /3) ( /3, 2 /3)

(5 /3, 4 /3) (5 /3, 4 /3)
( /3, 5 /3) ( /3, 5 /3)
(2 /3, 4 /3) (2 /3, 4 /3)

terms with exchanged arguments] (21)

W W

W W

W W

W W

2 1 2

Note that ρ2 belongs to the X–matrix states and hence, one can easily find ρ =F ( )NC 2
5
9

 and ρ =F ( )CQT 2
7
9

. In 
the same time, CGME(ρ2) = 0 what confirms that the biseparable states useful for CQT can be constructed starting 
from the W-states.

Estimation of controlled teleportation faithfulness. Due to the variational definition of FCQT in Eq. (6)  
it is evident that the estimation of controlled teleportation faithfulness for general mixed state remains a difficult 
problem which requires an optimization over all unitary transformation UC and all maximally entangled states |e〉.  
It would be therefore interesting to derive a tight upper bound for the FCQT solely based on the convex decom-
position of the state under considerations. For this purpose, we introduce a convex-roof extension of Eq. (2) on 
pure states

∑ρ ρ
τ ϕ ϕ

= =
+ +

ϕ ϕ

⁎ p( ) min ( ) min
2 ( ) ( )

3
,

(22)
CQT

p
CQT

p j

m

j

j
S R

j

{ , } { , }

( )
,

2 ( )

j
j

j
j( ) ( )

F F
C

where the maximum is taken over all possible pure state convex decompositions ϕp{ , }j
j( )  of ρ, i.e. 

ρ ϕ ϕ= ∑ | 〉〈 |pj
m

j
j j( ) ( ) , ∑ =p 1j

m
j  and pj > 0. By the very definition it is obvious that  ρ≤ ≤⁎ ( ) 1CQT

2
3

 for any 
decomposition of ρ. Based on Eq. (22) one can derive the following proposition.

Proposition 3. For a given tripartite mixed state ρ the fidelity of controlled teleportation is smaller than or equal 
to the average conditional fidelity of any convex decomposition ρ ϕ ϕ= ∑ | 〉〈 |pj

m
j

j j( ) ( ) ,

ρ ρ ρ≤ ≤ .⁎F ( ) ( ) ( ) (23)CQT CQT CQT 

Proof. Suppose that one has an optimal convex decomposition ρ ϕ ϕ= ∑ | 〉〈 |pj
m

j
j j( ) ( )  which minimize ρ⁎ ( )CQT . 

Then, the reduced state ρSR
t  given by Eq. (4) can be rewritten as

∑ ∑ρ ϕ ϕ= = = | 〉〈 |
ϕ ϕ

ρ

ϕ ϕ

ρ







∑ | 〉〈 |






〈 | | 〉

| 〉〈 |

〈 | | 〉

ˆ ˆ
ˆ ˆ

† †p p
(24)

SR
t

P p P

t U U t
j

m

j
P P

t U U t
j

m

j SR
t j

SR
t j

Tr
Tr [ ] ( , ) ( , )C C

t
j
m

j
j j

C
t

C C C

C C
t j j

C
t

C C C

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

where = | 〉〈 | ⊗ˆ †P U t t U 11C
t

C C
( )

4 and the last equality comes from the fact that ϕ ϕ| 〉〈 |SR
t j

SR
t j( , ) ( , )  is the resulting state after the 

orthogonal measurements performed on ϕ ϕ| 〉〈 |j j  and hence it must be a pure state. Based on this observation and the 
convexity of the fully entanglement fraction (i.e. e p ek k kσ∑ f p( ) maxk k k eσ∑ =  ≤ σ σ∑ 〈 | | 〉 = ∑p e e p fmax ( )k k e k k k k ) 
one achieves from Eq. (6) that

∑

∑ ∑

∑ ∑

∑ ∑

ρ ρ ρ

ρ ϕ ϕ

ρ ϕ ϕ

ρ ϕ ϕ

=




 〈 | | 〉







=








〈 | | 〉





| 〉〈 |















≤








〈 | | 〉 | 〉〈 |








≤




 〈 | | 〉 | 〉〈 |







=

=

=

=

†

†

†

†

f t U U t f

t U U t f p

p t U U t f

p t U U t f

( ) max ( )

max

max ( )

max ( )
(25)

CQT U t
C C C SR

t

U t
C C C

j

m

j SR
t j

SR
t j

U j

m

j
t

C C C SR
t j

SR
t j

j

m

j U t
C C C SR

t j
SR

t j

0

1

0

1
( , ) ( , )

0

1
( , ) ( , )

0

1
( , ) ( , )

C

C

C

C

Now, following the calculations presented in ref.20 we have

∑ ∑

∑

ρ ρ ϕ ϕ

τ ϕ ϕ

≤




 〈 | | 〉 | 〉〈 |







=






+ +





.

=

†f p t U U t f

p

( ) max ( )

1
2

1
2

( ) ( )
(26)

CQT
j

m

j U t
C C C SR

t j
SR

t j

j

m

j
j

S R
j

0

1
( , ) ( , )

( )
,

2 ( )

C
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Substituting this inequality into ρ =
ρ +

F ( )CQT
f2 ( ) 1

3
CQT  one obtains ρ ρ≤F ( ) ( )CQT CQT . Now, if an ensemble {pj, 

ϕ(j)} is chosen arbitrarily the second inequality in Eq. (26) becomes straightforward. Finally, the equality in Eq. (26) 
is provided (for instance) by the mixture of the GHZ states ρ1(x) discussed in Example 1, what ends the proof. 

As an example of Proposition 3, let us consider the eigendecomposition of GHZ-symmetric states. Based on 
Eq. (8) one can notice that the spectral decomposition of ρGS is given by two GHZ states ϕ = | 〉±GHZ1,2  with the 
probability = ± +p x y[1 8 4 3 ]1,2

1
8

 and six product states with =…
−p y

3, ,8
3 4
8 3

. Then, Eq. (10) and the 
right-hand side of Eq. (23) yield

ρ = 


+ | | + 


≤ × + × + ×

= +

+ + − + −

F x y

y

( ) 3 4

1 1 6

, (27)

CQT
GS

x y x y y

1
6

4 3
3

1 8 4 3
8

1 8 4 3
8

3 4
8 3

2
3

3
4

3
3

which is in line with Proposition 3. Naturally, for other decompositions various upper bounds of FCQT are estimated. 
In particular, one can take an optimal decomposition ϕp{ , }j

opt
opt

j( )  which minimizes the three-tangle i.e. 
τ ρ τ ϕ= ∑ p( ) ( )GS

j
m

j
opt

opt
j( ) . Then, for any state beyond GHZ-class τ(ρGS) = 0 what is equivalent to τ ϕ =( ) 0opt

j( ) . 
However, such decomposition does not entails ϕ =( ) 0S R opt

j
,

2 ( )  what can be easily verified by applying the optimal 
decomposition of GHZ-symmetric states reported in ref.36. This observation clearly explains the failure of the FCQT 
estimation based on “predefined” properties. From these conclusions, an important question arises whether for a tri-
partite mixed state there exists such an optimal ensemble {pi, ϕ(i)} which provides ρ ρ=F ( ) ( )CQT CQT . Following 
ref.43, we expect that such optimal decomposition truly exists however, not for all tripartite mixed states.

Proposition 4. Given a tripartite mixed state ρ ϕ ϕ= ∑ | 〉〈 |pj
m

j
i i( ) ( ) , where ϕ ϕ αβγ| 〉 = ∑ | 〉α β γ αβγ=

j j( )
, , 0

1 ( ) , then 
ρ ρ=F ( ) ( )CQT CQT  if and only if (i) there exist unitary matrices MC

j( ), MS
j( ) and MR

j( ) such that ϕ⊗ ⊗ | 〉M M MC
j

S
j

R
j j( ) ( ) ( ) ( )   

= λ λ| 〉 + | 〉θe000 100j j i
0
( )

1
( ) j  + λ λ λ| 〉 + | 〉 + | 〉101 110 111j j j

2
( )

3
( )

4
( )  with λk ≥ 0, 0 ≤ θj ≤ π and the following constraint 

is satisfied: =T M T MC
j

C
j

C
k

C
k( ) ( ) ( ) ( ), where =







− 





α β α γ

α γ α β− −
T

e e

e e

cos sin

sin cos
C

l
i i

i i
( ) 2 2

2 2

l l l l

l l l l

 and α = λ λ

λ λ β γ θ λ λ β γ+ − − +l cos( ) cos( )

l l

l l
l l l

l l
l l

0
( )

4
( )

1
( )

4
( )

2
( )

3
( )

 

with 0 ≤ βl,γl ≤ 2π, (ii) for the modified state φ ϕ ϕ βγ| 〉 = ∑ 〈 | | 〉 + 〈 | | 〉 | 〉β γ βγ βγ= t U t U{ 0 1 }SR
t j

C
j

C
j( , )

, 0
1

0
( )

1
( ) , where 

= 〈 | | 〉u k T M lkl
j

C
j

C
j( ) ( ) ( )  and t = {0, 1}, there exist unitary matrices DS

t j( , ), DR
t j( , ) which bring ϕ⊗ | 〉D D( )S

t j
R

t j
SR

t j( , ) ( , ) ( , )  to the 
Schmidt form and = Ω† ⁎ † ⁎D D e D D( ) ( ) ( ) ( )S

t j
R

t j i
S

t k
R

t k( , ) ( , ) ( , ) ( , )kj
t( )

, where π≤ Ω ≤0 2kj
t( ) .

Proof. In order to prove the above proposal, one has to derive sufficient conditions which provide saturation of 
both inequalities in Eq. (25). To do this, let us first assume that a given state ρ is pure, ρ ϕ ϕ= | 〉〈 |(1) (1) , and ϕ| 〉(1)  
writes in the canonical form28,44 as ϕ λ λ| 〉 = | 〉 + | 〉θe000 100can

i(1)
0
(1)

1
(1) 1  + λ λ λ| 〉 + | 〉 + | 〉101 110 1112

(1)
3
(1)

4
(1) , 

where λk ≥ 0, λ∑ = 1k k
2  and 0 ≤ θ1 ≤ π. According to Eq. (36) the fully entanglement fraction is given by

ρ ϕ ψ

ϕ ψ

=





|〈 | ⊗ | 〉|

+ |〈 | ⊗ | 〉|





+

+

f M V M

M V M

( ) max max ( ) 11

max ( ) 11 ,
(28)

CQT U V
SR S R

T

V
SR S R

T

(1) (0,1) (1)
0

(1)
2

2

(1,1) (1)
1

(1)
2

2

C 0

1

w h e r e  ϕ λ λ| 〉 = + | 〉θu e u( ) 00SR
t

t
i

t
( ,1)

0
(1)

0 1
(1)

1
1  +  λ λ λ| 〉 + | 〉 + | 〉u u u01 10 11t t t2

(1)
1 3

(1)
1 4

(1)
1 ,  = 〈 | | 〉†u l M U tlt C C

(1)   
and the unitary matrices M satisfy ϕ ϕ| 〉 = ⊗ ⊗ | 〉M M Mcan C S R

(1) (1) (1) (1) (1) . Based on the analysis presented  
in ref.20,  it  is  known that for each term in Eq. (28) one can f ind such matrices Vt that 

ϕ ψ|〈 | ⊗ | 〉|+M V Mmax ( ) 11V SR
t

S t R
T( ,1) (1) (1)

2
2

t
 = ρ〈 | | 〉

ρ+†t U U tC C C
1 ( )

2
SR

t( ,1) , where ρ =
ϕ ϕ

ρ

| 〉〈 |

〈 | | 〉†SR
t

t U U t
( ,1) SR

t
SR
t

C C C

( ,1) ( ,1)

. Substituting this 

equality into Eq. (28) and performing a straightforward maximization over UC one can find that the global max-
imum of ρf ( )CQT

(1)  occurs iff =† †M U T( )C C C
(1) (1) , where TC

(1) is given above. Fulfillment of all these conditions implies 

ρ τ ϕ ϕ= 

 + + 


f ( ) 1 ( ) ( ) /2CQT S R

(1) (1)
,

2 (1) . We note that the same result ca be found for standard form of |ϕ(1)〉, 

however in a much complicated form. In such case, the maximum of ρf ( )CQT
(1)  is reached if and only if 

=U T MC C C
(1) (1).

Now, we are in the position to prove the main result. For this purpose, let ρ ϕ ϕ= ∑ | 〉〈 |pj
m

j
j j( ) ( ) , where 

ϕ ϕ αβγ| 〉 = ∑ | 〉α β γ αβγ=
j j( )

, , 0
1 ( )  and m > 1. Then, the fully entanglement fraction writes ρ =f ( ) maxCQT UC

 
φ ψ∑ ∑ |〈 | ⊗ | 〉|=

+{ }p Vmax 11t V j
m

j SR
t j

t0
1 ( , )

2
2

t
, where the modified two-qubit state φ ϕ| 〉 = ∑ 〈 | | 〉β γ βγ= t U{ 0SR

t j
C

j( , )
, 0

1
0
( )  

ϕ βγ+〈 | | 〉 | 〉βγt U 1 }C
j

1
( )  (see Eq. (34)) and, in general, φ φ= 〈 | 〉 ≠ 1SR

t j
SR

t j
SR

t j( , ) ( , ) ( , ) . By the Schmidt decomposition, 
there exist unitary matrices DS

j( ), DR
j( ) such that φ φ| 〉 = ⊗ | 〉 = ∑ | 〉 D D a ll[ / ]SR

t j
S

t j
R

t j
SR

t j
SR
t j

l l
t j

SR
t j( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )   where 

≥a 0l
t j( , )  and ∑ =a( / ) 1l l

t j
SR
t j( , ) ( , ) 2 . For this decomposition fCQT(ρ) can further be simplified by means of 

w φ ψ|〈 | ⊗ | 〉|+V 11SR
t j

t
( , )

2
2 = φ ψ|〈 | ⊗ | 〉|+

 D V DSR
t j

S
t j

t R
t j( , ) ( , ) ( , ) 2 = φ ψ|〈 | ⊗ | 〉|+

 D V D( ) 11SR
t j

S
t j

t R
t j T( , ) ( , ) ( , )

2
2, where the last equal-

ity is caused by the property ψ ψ⊗ | 〉 = ⊗ | 〉+ +A A11 11 T
2 2

45. As a result one obtains
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∑ ∑ρ φ ψ=







|〈 | ⊗ | 〉|







.
=

+
f p D V D( ) max max ( ) 11

(29)
CQT U t V j

m

j SR
t j

S
t j

t R
t j T

0

1 ( , ) ( , ) ( , )
2

2

C t

Now, the first inequalities in Eq. (25) is saturated if and only if ρ ρ= ⁎f f( ) ( )CQT CQT , where

∑ ∑ρ φ ψ=





|〈 | ⊗ | 〉|





.
=

+


⁎f p D V D( ) max max ( ) 11
(30)

CQT U j

m

j
t V

SR
t j

S
t j

t j R
t j T

0

1 ( , ) ( , )
( , )

( , )
2

2

C t j( , )

Following ref.46 it is known that ρ⁎f ( )CQT  is maximized with respect to V(t,j) when = ΩD V D e( ) 11S
t j

t j R
t j T i( , )

( , )
( , )

2
t j( , )

 i.e. 
= Ω † ⁎V e D D( ) ( )t j

i
S

t j
R

t j
( , )

( , ) ( , )t j( , )
. Base on the result, ρ ρ= ⁎f f( ) ( )CQT CQT  iff for any 1 ≤ j, k ≤ m one has Vt = V(t,j) = V(t,k) 

what implies = Ω −Ω† ⁎ † ⁎D D e D D( ) ( ) ( ) ( )S
t j

R
t j i

S
t k

R
t k( , ) ( , ) ( ) ( , ) ( , )t k t j( , ) ( , )

. Similarly, the second inequalities in Eq. (25) is satu-
rated iff ρ ρ=⁎ ⁎⁎f f( ) ( )CQT CQT , where

∑ ∑ρ φ ψ=





|〈 | ⊗ | 〉|



=

+


⁎⁎f p D V D( ) max max ( ) 11 ,
(31)

CQT
j

m

j U t V
SR

t j
S

t j
t R

t j T

0

1 ( , ) ( , ) ( , )
2

2

C
j

t

As it is described above, the maximum of ρ⁎⁎f ( )CQT  occurs when =U T MC
j

C
j

C
j( ) ( ). Consequently, ρ ρ=⁎ ⁎⁎f f( ) ( )CQT CQT  iff 

for any 1 ≤ j, k ≤ m one has = =U U UC C
j

C
j i.e. when =T M T MC

j
C

j
C

k
C

k( ) ( ) ( ) ( ). Finally, for =U T MC C
j

C
j( ) ( ) the fully entangle-

ment fraction ρ = ∑
τ ϕ ϕ+ +⁎⁎f p( )CQT j

m
j
1 ( ) ( )

2
S R

(1)
,

2 (1)  and hence, from Eq. (6) one achieves ρ ρ=F ( ) ( )CQT CQT , what 
ends the proof. 

It is worth mentioning that Proposition 4 gives the condition when fCQT(ρ) and hence FCQT(ρ) fulfills the 
convex-roof measure. Furthermore, fCQT(ρ) in Eq. (31) is a special extension of the bipartite counterpart43. 
Following the interpretation of fully entanglement fraction as a distance between analyzed state and maximally 
entangled states, it is clear from Eq. (31) that the larger fCQT(ρ), the closer φ| 〉

SR
t j( , )

 and maximally entangled states are.

Conclusions
We have investigated the performance of the controlled quantum teleportation protocol via three-qubit mixed 
state channels. In particular, we have analyzed the nontrivial family of high-rank mixed states called the 
GHZ-symmetric states. For such states the detection of various entanglement classes can be carried out analyt-
ically. Therefore, the GHZ-symmetric states represent good candidates for the discussion on the usefulness of 
tripartite entanglement states as a necessary resource for quantum CQT protocol. For this purpose we have ana-
lyzed the fidelity of the CQT and shown that this protocol can be performed not only through mixed states that 
belong to the GHZ-class and W-class but also via mixed biseparable states. This suggests a counterintuitive fact 
since for pure-state channels there is no biseparable state suitable for CQT. As a consequence, none of the tripartite 
entanglement (neither GHZ-class nor W-class) can be considered as a necessary resource for controlled telepor-
tation protocol. The results given here also implies a conclusion that the faithfulness of controlled teleportation 
is more robustness against noise than the tripartite entanglement. This observation is illustrated by the analysis 
of three-qubit Werner states. Finally, we have proven that the necessary (but not sufficient) condition for CQT is 
the localizable entanglement. In particular, the localizable concurrence plays the same role in CQT as bipartite 
concurrence in the standard teleportation protocol. Further studies of the three-qubit X-states have revealed that 
our observations are non-negligible and also crucial for proper explanation of CQT protocol. Specifically, we have 
shown that a statistical mixture of biseparable states can be suitable for the perfect faithfulness of CQT. In this 
particular example no entanglement between controller’s qubit and the rest of the system exists. Despite of that the 
controller’s permission initiates the protocol what entails that the classical correlation are sufficient to authorized 
the controller’s power. Importantly, above results open new possible ways of implementation of CQT lowering 
requirements for a state preparation and preservation. A particular example of the CQT implementation based 
on the quantum dots system has been recently published in47. Finally, we have investigated the upper limitation 
of FCQT with respect to an arbitrary convex decomposition of the analyzed state. We have shown that for a given 
mixed state the teleportation fidelity is always smaller than or equal to the mean fidelity of its convex decomposi-
tion. Furthermore, we have establish sufficient conditions when the equality in this proposition takes place.

Even though we have analyzed the three-qubit system, it is of great importance to mention that the main 
results of the paper are extended to general N-qubit systems and hence, motivate further research directions. 
Specifically, it is known, that the localizable entanglement restricted to projective von Neuman measurements 
(PM), positive operator-valued measures (POVM) and general LOCC measures satisfies the relation 
  ρ ρ ρ≤ ≤( ) ( ) ( )L

PM
L
POVM

L
LOCC 40. For that reason, one may attempt to determine the amount the faithfulness of 

controlled teleportation through N-qubit channels when the controller is allowed to perform various kinds of 
measurements. For what types of N-qubit states are local measurements sufficient for CQT, and when more gen-
eral measurements can enhance the fidelity of teleportation.
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Method
Fully entanglement fraction for CQT. By the def init ion of the reduced state ρ =SR
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where we have used ρ ϕ ϕ= ∑ | 〉〈 |pj
m

j
j j( ) ( )  and the fact that ∑ 〈 | | 〉〈 | | 〉 ==
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1  for t = 0, 1. Let us now 

derive the fully entanglement fraction for CQT, fCQT(ρ), in two cases: standard and canonical parametrization of 
|ϕ(j)〉.
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t 2  with Vt being a unitary matrix and |ψ+〉 the Bell state33. Substituting Eqs (33) to 
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 (ii) On the other hand, any three-qubit pure state can also be written in a canonical form as 
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