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Gene coexpression network 
analysis combined with 
metabonomics reveals the 
resistance responses to powdery 
mildew in Tibetan hulless barley
Hongjun Yuan1,2, Xingquan Zeng1,2, Qiaofeng Yang3, Qijun Xu1,2, Yulin Wang1,2, 
Dunzhu Jabu1,2, Zha Sang1,2 & Nyima Tashi1,4

Powdery mildew is a fungal disease that represents a ubiquitous threat to crop plants. Transcriptomic 
and metabolomic analyses were used to identify molecular and physiological changes in Tibetan hulless 
barley in response to powdery mildew. There were 3418 genes and 405 metabolites differentially 
expressed between the complete resistance cultivar G7 and the sensitive cultivar Z13. Weighted gene 
coexpression network analysis was carried out, and the differentially expressed genes were enriched 
in five and four major network modules in G7 and Z13, respectively. Further analyses showed that 
phytohormones, photosynthesis, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways 
were altered during Qingke-Blumeria graminis (DC.) f.sp. hordei (Bgh) interaction. Comparative analyses 
showed a correspondence between gene expression and metabolite profiles, and the activated defenses 
resulted in changes of metabolites involved in plant defense response, such as phytohormones, lipids, 
flavone and flavonoids, phenolamides, and phenylpropanoids. This study enabled the identification of 
Bgh responsive genes and provided new insights into the dynamic physiological changes that occur in 
Qingke during response to powdery mildew. These findings greatly improve our understanding of the 
mechanisms of induced defense response in Qingke and will provide new clues for the development of 
resistant Tibetan hulless barley varieties.

Powdery mildew is a fungal disease that affects more than 10,000 plant species worldwide and significantly 
reduces the grain yields and quality of agricultural crops1,2. Powdery mildew caused by the obligate biotrophic 
ascomycete fungus Blumeria graminis (DC.) f.sp. hordei (Bgh) is a serious disease of wheat crops and can decrease 
grain yield by up to 30% depending on the severity of infestation.

Many plant species such as Arabidopsis thaliana3, wheat (Triticum spp.)2,4, rice (Oryza sativa)5, tomato 
(Solanum lycopersicum)6 and barley (Hordeum vulgare)7, have been frequently used for investigating the molec-
ular mechanisms of plant resistance to fungal pathogens including the powdery mildews. It is now clear that 
plants mainly exploit a complex, two-tiered immune system to defend against pathogens1,8,9. Genome-wide tran-
scriptome profiling has shown that a set of genes are significantly differentially expressed after attack by powdery 
mildew. In Arabidopsis, it has been estimated that approximately 14% of all annotated genes may be directly asso-
ciated with pathogen defense10. In barley, a recent study identified 96 genes involved in resistance to non-adapted 
or adapted powdery mildew fungi7. Obviously, many genes participate in resistance signaling and defense pro-
cesses against powdery mildew, and these genes may interact and be regulated in a complex manner.
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Multi-omics techniques including genomics, transcriptomics, proteomics and metabolomics can be used to 
generate massive and complex data sets11. In combination, a systems biology approach has the potential to com-
prehensively investigate the complex biological processes that occur when plants respond to powdery mildew 
and define how these components dynamically interact. Therefore, a better understanding of the reconstruction 
of biochemical networks12 and complex signaling pathways can be obtained by the integration and analysis of 
omics data13.

Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called “Qingke” in Chinese and “Ne” in Tibetan, 
with highland adaptation to extreme environmental conditions, is the principal food for Tibetans and an impor-
tant crop in the Tibetan Plateau14. One of the major diseases of Tibetan hulless barley is powdery mildew caused 
by Bgh, and the cultivation of Bgh-resistant crop cultivars is the most economical method for controlling the 
damage. A previous study showed that Qingke varieties exhibited different responses to powdery mildew, sug-
gesting that there is extensive genetic variation to explore15. Our limited understanding of Tibetan hulless barley 
genetics seriously hindered the systematical investigation of genes and molecular mechanisms underlying its 
resistance response to powdery mildew. Fortunately, using a whole-genome shotgun strategy, we built a 3.89-Gb 
draft genome of Tibetan hulless barley and predicted 36,151 protein-coding genes to better understand its adap-
tation to various stressful environments on highland and to facilitate crop improvement14. Furthermore, a set 
of genes involved in plant environmental responses and adaptation, such as plant hormone signal transduction 
and plant-pathogen interaction, were found to be positively selected in Qingke. However, the gene networks and 
molecular interactions involved in Tibetan hulless barley resistance to Bgh remain largely unknown. To efficiently 
breed resistant varieties, it is necessary to better understand how this plant responds to powdery mildew and then 
use this knowledge to improve the ability to cope with it.

An important object of gene expression studies is to reveal the underlying transcriptional networks, genes and 
pathways that are mediating a physiological process16. Gene coexpression network (GCN) analysis is a powerful 
systems biology approach whereby modules of highly coexpressed or connected genes can be identified and pro-
vide a meaningful way to examine the correlations in gene expression generated from complex RNA-seq datasets 
across developmental stages, treatments and time courses. A GCN is a set of relationships between genes where 
a node is defined as a gene connected to other genes by edges based on pairwise similarities16. A weighted gene 
coexpression network approach (WGCNA) assigns weights to the edges based on the strength of the correlation 
and can be used for finding modules of highly correlated genes, for summarizing clusters using the module eigen-
gene or an intramodular hub gene17. WGCNA analysis of 10 Arabidopsis ecotypes following cold, heat, high-light, 
salt and flagellin treatment either separately or in combination identified several stress regulatory modules as 
important mediators of the regulatory response18. One of the important goals of network analysis is to connect 
gene expression data to the trait or stress response phenotype. Hub nodes have been found to play vital roles in 
many networks. Highly connected hub genes are expected to play an important role in biology but not always 
be significantly associated with the trait of interest19. It has been suggested that intramodular hub genes that are 
highly connected within a module are more likely to be biologically significant if that module is associated with 
the trait19,20.

Plants can biosynthesize specialized metabolites to adapt to various stresses such as biotic and abiotic 
stresses21. It has been suggested that indole metabolite, jasmonic acid (JA)22, salicylic acid (SA)23, callose3, phy-
toalexins, resveratrol and phenolic metabolites24, polyamine25, phenylpropanoids and flavonoids are all impor-
tant compounds associated with plant responses to powdery mildew. To understand the underlying mechanism 
of crops’ stress responses and resistances, researchers have focused on the signaling perception, transcriptional 
regulation, functional protein expression and biosynthesis of specialized products in plants. Multi-omics analysis 
has become a powerful approach to identify gene-to-metabolite correlations26. The integration of modern omics 
technologies provides a great opportunity for better understanding plant defense mechanisms against powdery 
mildew at molecular and cellular levels. Previous studies have suggested that plant response to powdery mildew 
is a dynamic process, and that gene expression and metabolite accumulation are temporally regulated7. This 
information suggests that it is essential to investigate the dynamic changes at transcriptional, proteomic and 
metabolic levels during the plant response to powdery mildew. Transcriptomic studies can predict changes in 
gene expression, while metabolomic studies can investigate altered functions triggered by these genes or proteins. 
Therefore, the combination of transcriptomic and metabolic approaches is essential for a deeper understanding 
of plant responses to powdery mildew.

Here, to identify the changes that occur in the crop Tibetan hulless barley in responses to powdery mildew at 
molecular and physiological levels, we applied a transcriptomic coexpression network approach combined with 
metabolic analysis to associate gene expression with physiological responses. Coupled analysis of transcriptome 
and metabonomic parameters was performed over a long-time course (168 h) in a complete resistance cultivar 
Gannongda7 (G7) and a sensitive cultivar Zangqing13 (Z13). There were 3418 genes and 405 metabolites dif-
ferently regulated during the plants’ interactions with Bgh between the two cultivars. WGCNA analysis showed 
that the differentially expressed genes were enriched in five and four major network modules in G7 and Z13, 
respectively. Further analyses showed that phytohormones, photosynthesis, phenylpropanoid biosynthesis and 
flavonoid biosynthesis pathways were altered during Qingke-powdery mildew interaction. Comparative analyses 
showed a correspondence between gene expression patterns and metabolite profiles, and the activated defenses 
resulted in changes of metabolites involved in plant defense response, including phytohormones, lipids, flavone 
and flavonoids, phenolamides, and phenylpropanoids. In addition, characterization of the transcription factors 
demonstrated that the WRKY transcription factor family exhibited a different regulation mechanism in the two 
cultivars and may play an important role in the response to powdery mildew. Gene coexpression network analysis 
combined with metabonomics in this study enabled the identification of powdery mildew responsive genes based 
on their differential expression profiles and provided new insights into the dynamic physiological changes that 
occur during the continuous process of Tibetan hulless barley response to powdery mildew.
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Results
RNA sequencing and differential expression analysis. Powdery mildew can be observed as small 
grayish patches of fluffy fungal growth on the upper surface of the leaves. These spots resemble small cushions 
of white powder. The fungus only infects the epidermal layer of the leaf, and the tissue on the opposite side of an 
infected leaf turns pale green to yellow. Leaves remain green and active for some time following infection and 
then gradually become chlorotic and die off. G7 is a Qingke cultivar with complete resistance to powdery mildew, 
while Z13 is a sensitive cultivar. At the two-leaf and one needle stage, the well-developed seedlings were selected 
and inoculated with Bgh. Subsequently, leaves from each individual plant were collected at 0, 6, 36, 72 and 168 h 
post inoculation (hpi).

Subsequently, RNA-sequencing was conducted for the two Qingke cultivars G7 and Z13. RNA samples 
extracted from the leaves were collected at 0 (harvested prior to Bgh inoculation), 6, 36, 72, and 168 hpi, respec-
tively. After adaptor sequence trimming and low-quality read filtering, a total of 2,035,104,484 high-quality 
reads were obtained for all Qingke samples, which have been deposited in the SRA database (accession number: 
SRR7177893, SRR7177910, SRR7177903, SRR7177904, SRR7177905, SRR7177906, SRR7177901, SRR7177902, 
SRR7177895, SRR7177884, SRR7177883, SRR7177886, SRR7177885, SRR7177888, SRR7177887, SRR7177890, 
SRR7177896, SRR7177897, SRR7177898, SRR7177899, SRR7177892, SRR7177891, SRR7177900, SRR7177881, 
SRR7177882, SRR7177889, SRR7177909, SRR7177908, SRR7177907, SRR7177894). For all 30 Qingke libraries, 
approximately 71.4% of the clean reads could be mapped to the Tibetan hulless barley reference genome sequence 
(http://show.genebang.com/project/download?n=barley) (Table S1).

In Qingke G7, 2520 genes were differentially expressed in the plant-pathogen interaction process (at 6, 36, 72, 
and 168 hpi) as compared with 0 hpi, and 165 genes were detected in all four time-points. Specifically, 872, 1018, 
1160, and 285 genes were significantly upregulated and 473, 660, 613, and 247 genes significantly downregulated 
at 6, 36, 72, and 168 hpi, respectively (Fig. 1A).

In Qingke Z13, a total of 4147 genes were differentially expressed in the plant-pathogen interaction process (at 
6, 36, 72, and 168 hpi) as compared with 0 hpi, and 411 genes were detected in all four time-points. In particular, 
1234, 1100, 1010, and 2618 genes were significantly upregulated at 6, 36, 72 and 168 hpi, respectively; in contrast, 
312, 594, 676, and 281 genes were significantly downregulated (Fig. 1A).

The overall number of differentially expressed genes in Qingke G7 increased at 6, 36, and 72 hpi over time but 
suddenly reduced at 168 hpi (Fig. 1A). The pattern of differential gene expression in Qingke Z13 was strikingly 
different with the G7 cultivar, especially at 6 and 168 hpi. Taking the time-point of 168 hpi for example, 2618 and 
281 genes were significantly up or down-regulated in Z13, respectively, while only 285 and 247 genes were signif-
icantly up or down-regulated in G7.

Significantly different responses to Bgh in Qingke between G7 and Z13 cultivars were observed in the heatmap 
depicting hierarchical clustering of the gene expression data (Fig. 1B,C). In Qingke G7, the expression level of the 
majority of differentially expressed genes at 168 hpi was much similar with these genes at 0 hpi (Fig. 1B); while in 
Z13, the directionality of gene differential expression at 168 hpi differed strikingly with that at 0 hpi (Fig. 1C). The 
similarity between G7 and Z13 in response to Bgh can also be seen in the heatmap that a set of genes are expressed 
similarly at 36 hpi and 72 hpi.

A set of genes with similar expression patterns are often functionally correlated. The trends of all the differen-
tially expressed genes in G7 and Z13 were analyzed respectively by Short Time-series Expression Miner software 
(STEM). A total of 20 trends were obtained from the expression data (Fig. 1D,E), and 3 trends were enriched in 
G7, and 5 trends were enriched in Z13. Interestingly, there were 900 genes enriched in G7 (Fig. 1D) and 555 genes 
enriched in Z13 (Fig. 1E) in profile18, while 568 genes enriched in G7 (Fig. 1D) and 513 genes enriched in Z13 
(Fig. 1E) in profile1 (Fig. 1E). Surprisingly, 372 genes and 335 genes were further found in common in profile18 
and profile1 in G7 and Z13, respectively. This result indicated that a great number of common genes (accounting 
for a large proportion) with similar expression patterns were involved in the process of Qingke-powdery mildew 
interaction in the two different Qingke varieties.

In the G7 response to Bgh, 1664 genes were upregulated during at least one time-point and 913 were down-
regulated (Fig. 2A,B). Seventy-seven genes (4.6%) were upregulated at all time-points, while 466 genes (28.0%) 
were upregulated at 6, 36, and 72 hpi; 121 genes (7.3%) were upregulated only at 168 hpi (Fig. 2A). In addition, 
74 genes (8.1%) were downregulated at all time-points, and 291 genes (31.9%) were downregulated at 6, 36, and 
72 hpi (Fig. 2B). Interestingly, up regulated and down regulated genes were 1160 and 613 respectively at 72 hpi, 
while much fewer genes (285 up regulated and 247 down regulated genes) were identified at 168 hpi. This result 
might suggest that Qingke G7 had develop better adaptation and/or acquired stronger resistance to powdery 
mildew at 168 hpi.

In the Z13 response to Bgh, 3353 genes were upregulated during at least one time-point, and 865 were down-
regulated (Fig. 2E,F). Specifically, 301 genes (9%) were upregulated at all time points, while 534 genes (15.9.0%) 
were upregulated at 6, 36, and 72 hpi; surprisingly, 1648 genes (49.2%) were upregulated specifically at 168 hpi 
(Fig. 2E), which probably related to the severe disease development. Further, 83 genes (9.6%) were downregulated 
at all time points, and 201 genes (23.6%) were downregulated at 6, 36, and 72 hpi, while 121 were downregulated 
uniquely at 168 hpi (Fig. 2F).

Interestingly, 1199 (31.4%) up-regulated genes were in common between G7 and Z13 in their response to pow-
dery mildew (Fig. 2C), and 526 (42%) down-regulated genes (account for 57.6% and 60.8% of the down-regulated 
genes in G7 and Z13, respectively) were in common between the two varieties (Fig. 2D). This result indicated that 
the two Qingke varieties triggered many of the same sets of genes and might have a similar resistant mechanism 
during the process of plant-powdery mildew interaction.

Coexpression Network Analysis of Tibetan hulless barley in response to powdery mildew. To 
further analyze the systematic transcriptional responses of Tibetan hulless barley to Bgh over time, we performed 

http://show.genebang.com/project/download?n=barley
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Figure 1. Differential gene expression of Tibetan hulless barley in response to powdery mildew. (A) Numbers 
of genes up-regulated (red) and down-regulated (green) in G7 and Z13 after inoculation with powdery mildew 
over time. (B) Heatmap of differentially expressed genes in G7. The columns show the 15 samples G7-0 hpi_1, 
G7-0 hpi_2, G7-0 hpi_3, G7-168 hpi_1, G7-168 hpi_2, G7-168 hpi_3, G7-6 hpi_1, G7-6 hpi_2, G7-6 hpi_3, 
G7-72 hpi_1, G7-72 hpi_2, G7-72 hpi_3, G7-36 hpi_1, G7-36 hpi_2, G7-36 hpi_3; while the rows show the TPM 
values scaled by the z-score algorithm. (C) Heatmap of differentially expressed genes in Z13. The columns show 
the 15 samples Z13-0 hpi_1, Z13-0 hpi_2, Z13-0 hpi_3, Z13-6 hpi_1, Z13-6 hpi_2, Z13-6 hpi_3, Z13-72 hpi_1, 
Z13-72 hpi_2, Z13-72 hpi_3, Z13-36 hpi_1, Z13-36 hpi_2, Z13-36 hpi_3, Z13-168 hpi_1, Z13-168 hpi_2, Z13-
168 hpi_3; while the rows show the TPM values scaled by the z-score algorithm. Hierarchical clustering of 
expression pattern for genes in was shown at the left of the heatmap figure. (D) Clustering and classification 
of differentially expressed genes of G7 in response to Bgh over time (0, 6, 36, 72, 168 hpi). Twenty trends were 
determined, and the profiles of genes significantly enriched (P-value < 0.05) are colored. The number of genes 
in the trend is shown above each profile. (E) Clustering and classification of differentially expressed genes of 
Z13 in response to Bgh over time (0, 6, 36, 72, 168 hpi). Twenty trends were determined, and the profiles of 
genes significantly enriched (P-value < 0.05) are colored. The number of genes in the trend is shown above each 
profile.
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WGCNA based on data collected on the 2520 (G7) and 4147 (Z13) differentially expressed genes, respectively. 
GCNs are composed of genes that have similar profiles and are highly correlated with each other. The weighted 
interaction network is shown in Fig. 3A,B (Data S1). Nodes (genes) are connected by edges (coexpression rela-
tionships). The connection between two nodes was determined by the correlation between the expression levels 
of the genes those nodes represent across all experiments used in the analysis.

This analysis resulted in a network of G7 that grouped 2520 genes into 8 modules (Fig. S1), the most strongly 
interconnected of which are shown in Fig. 3A. Here, 5 unique modules were identified, with each module 
depicted with a different color. The module’s gene expression profile was represented by its eigengene (Fig. 3C), 
its most notable component. Notably, MEbrown comprised genes that were highly expressed (upregulated) at 

Figure 2. Venn diagram showing overlap of up-regulated and down-regulated genes of Tibetan hulless barley 
in response to powdery mildew. (A) Venn diagram showing overlap of up-regulated genes of G7 in response to 
powdery mildew. (B) Down-regulated genes of G7 in response to powdery mildew. (C) Venn diagram of the up-
regulated genes of G7 and Z13 in response to powdery mildew. (D) Venn diagram of the down-regulated genes 
of G7 and Z13 in response to powdery mildew. (E) Venn diagram depicting intersections of up-regulated genes 
of Z13 in response to powdery mildew. (F) Down-regulated genes of Z13 in response to powdery mildew. Area 
of overlap is not proportional to the degree of overlap. The numbers of genes and their percentage in each region 
of the diagram are indicated.
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0 hpi and 168 hpi, and MEblue included highly expressed genes at 36 and 72 hpi. MEblack were highly expressed 
uniquely at 168 hpi. For example, 164 genes involved in the MEblack module were highly expressed specifically 
at 168 hpi, which might indicate that this set of genes might be responsible for the process of resistance/adaption 
of G7 to powdery mildew. A total of 795 genes involved in the MEblue module were highly accumulated, specif-
ically at 6, 36, and 72 hpi, which showed that this set of genes in the MEblue module might be responsible for the 
process of the early resistance/adaption of G7 to powdery mildew.

In Z13, a network that grouped 4147 genes into 4 modules (Fig. 3B) were identified, with each module 
depicted with a different color. The module’s gene expression profile was represented by its eigengene (Fig. 3D). 
Notably, MEgreen comprised genes that were highly expressed only at 0 hpi, with those of MEblue uniquely 
expressed at 168 hpi. Interestingly, a total of 1848 genes involved in the MEblue module were significantly upreg-
ulated specifically at 168 hpi, which might indicate that this group of genes might play important roles in the 
responses of Z13 to powdery mildew.

Functional annotation. The integration of the functional annotations of genes comprising these modules 
with their expression profiles elucidate how the plant response to powdery mildew. AgriGO (http://bioinfo.cau.
edu.cn/agriGO/analysis.php)27 was used to perform the function analysis and assign functions to the modules 
using the module gene lists. A collection of the GO-terms enriched in each module along with the relevant statis-
tics is shown in Tables S2 and S3.

Figure 3. Weighted gene coexpression network of differentially expressed genes of G7 and Z13 in response 
to powdery mildew. (A) Weighted gene coexpression network of DEGs of G7 in response to powdery mildew. 
(B) Weighted gene coexpression network of DEGs of Z13 in response to powdery mildew. All adjacency 
values plotted are greater than 0.35. (C) Cluster of gene dendrogram in G7. Gene dendrogram and heatmap 
of the DEGs, showing 5 modules depicted with different colors. (D) Cluster of gene dendrogram in Z13. Gene 
dendrogram and heatmap of the DEGs, showing 4 modules depicted with different colors.

http://bioinfo.cau.edu.cn/agriGO/analysis.php
http://bioinfo.cau.edu.cn/agriGO/analysis.php
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Investigation of major modules correlated with Tibetan hulless barley response to powdery 
mildew. As seen in the dendrogram on Fig. 3, each module’s gene expression profile is represented by its 
eigengene. In G7, the five resulting eigengenes correlate with the time points due to their gene expression pro-
files (Fig. 4A). Notably, 3 modules have similar expression patterns in the three time points (6 h, 36 h, and 72 h), 
including MEyellow, MEblue and MEpink. While MEblack was upregulated at 168 hpi, and MEbrown comprised 
genes that were upregulated at both 0 hpi and 168 hpi. Therefore, each of these modules identifies a set of genes of 
G7 in response to powdery mildew at specific time points.

For example, the MEbrown module had the highest correlation with G7, in which 350 genes were highly 
specifically expressed in G7 at 0 hpi and 168 hpi, which indicated that this set of genes might be responsible 
for the resistance of G7 to powdery mildew. KEGG pathway enrichment analysis showed that these genes were 
significantly enriched in phenylalanine metabolism, terpenoid backbone biosynthesis, sesquiterpenoid and 

Figure 4. (A) Module-trait correlation of G7 in response to powdery mildew. Each row corresponds to 
a module. Each column corresponds to a specific time point. The color of each box at the row-column 
intersection indicates the correlation coefficient between the module and the time point. A high degree 
of correlation between a specific module and the time point is indicated by dark red or dark blue. (B–F) 
Scatterplots of gene significance versus each module membership.
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triterpenoid biosynthesis, flavonoid biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, circa-
dian rhythm-plant, zeatin biosynthesis, isoflavonoid biosynthesis and so on (Table S4).

As seen in the dendrogram on Fig. 5A, each of these modules (MEturquoise, MEgreen, MEblue and 
MEyellow) identifies a set of genes in Z13 at specific time points. Notably, the MEturquoise module comprising 
genes that were upregulated in Z13 at 6, 36 and 72 hpi, had the highest correlation (cor = 0.41, P = 3.1e-56) with 
Z13 in response to powdery mildew. MEblue and MEyellow comprised genes that were upregulated in Z13 at 
168 hpi, while the MEgreen module comprised genes that were upregulated at the 0 hpi and 168 hpi.

As an example, 679 genes in the MEturquoise module were specifically enriched in photosynthesis, phenyl-
propanoid biosynthesis, circadian rhythm-plant, monoterpenoid biosynthesis, plant-pathogen interaction, plant 
hormone signal transduction, starch and sucrose metabolism, and flavonoid biosynthesis (Table S5), which 

Figure 5. (A) Module-trait correlation of Z13 in response to powdery mildew. Each row corresponds to 
a module. Each column corresponds to a specific time point. The color of each box at the row-column 
intersection indicates the correlation coefficient between the module and the time point. A high degree 
of correlation between a specific module and the time point is indicated by dark red or dark blue. (B–E) 
Scatterplots of gene significance versus each module membership.
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indicated that this group of genes might be responsible for the responses of Z13 to powdery mildew. A set of 
genes involved in the MEblue and MEyellow modules were specifically upregulated at 168 hpi and enriched in 
proteasome, protein processing in endoplasmic reticulum, ABC transporters, pyruvate metabolism, citrate cycle 
(TCA cycle), glutathione metabolism and ribosome-related biological processes, indicating that these groups of 
genes might be involved in the later process of powdery mildew infection.

Identification of differentially expressed Transcription factors (TFs). In consideration of the 
important regulatory function of TFs in response to various stresses, we analyzed TFs-encoding genes by blast 
against the Plant Transcription Factor Database (PlnTFDB,V3.0) (http://plntfdb.bio.uni-potsdam.de/v3.0/)28. As 
a result, 275 differentially expressed TFs distributed in 39 families were identified (Table S6). These TFs mainly 
include the following families: MYB-related (24 genes), bZIP (basic region/leucine zipper motif) (23 genes), NAC 
(NAM, ATAF1-2, and CUC2) (22 genes), WRKY (18 genes), bHLH (basic helix-loop-helix) (17 genes), MYB 
(myeloblastosis) (17 genes), and Co-like (14 genes). More details of the identified differentially expressed TFs are 
provided in Table S6. The genes belonging to WRKY families were further analyzed because of their important 
roles in plant resistant response to pathogenic bacteria. As a result, 10 KRKY genes were differentially expressed 
in G7 and Z13, most of which were highly induced in G7 at 36 hpi, while in Z13 they were highly induced at 
168 hpi. This result reveals the different transcriptomic regulation mechanism in Qingke varieties in response to 
powdery mildew.

Widely targeted metabolome analysis. To further analyze the dynamic changes at the metabolite level 
of Tibetan hulless barley caused by gene expression regulation, widely targeted metabolome analysis was carried 
out. As a result, a total of 568 known and unknown metabolites were detected and quantified in Tibetan hulless 
barley during the interaction between plants and powdery mildew (Table S7). By mapping the Metware metabo-
lite database (local database) and the general biochemical pathways based on KEGG, the metabolites were divided 
into several classes, including amino acids and their derivatives, lipids, nucleotides and their derivates, organic 
acid and its derivatives, flavone and flavonoids, phenolamides, phenylpropanoids, terpenoids, and phytohor-
mones. (Table S7).

Principal component analysis (PCA) was further used to preliminary understand the overall metabolic dif-
ferences between samples and variation between groups. The results show that there were differences among 
the Tibetan hulless barley samples at different time points and that there was an obvious variation tendency 
among the two Qingke groups, especially in Z13-0 hpi (Mcw01, Mcw02, Mcw03), Z13-168 hpi (Mcw13, Mcw14, 
Mcw15), G7-0 hpi (Mcw16, Mcw17, Mcw18), and G7-168 hpi (Mcw28, Mcw29, Mcw30) (Fig. S2). Interestingly, 
metabolic analyses showed that the levels of most amino acids, phenolamides, and lipids including glycerophos-
pholipid and fatty acid were much higher in G7 than those in Z13 at the 0 hpi time-point. However, at the 168 hpi 
time-point, the levels of amino acids, amino acid derivatives, and phenolamides were much lower in G7 than 
those in Z13. The flavone and flavonoids were differentially accumulated at 0 hpi and 168 hpi in G7 and in Z13. 
The heatmap of metabolites detected in G7 and Z13 are shown in Fig. S3.

Jasmonates are critical components in mediating plant stress-induced systemic signals to activate 
defense-related genes. We found that differential expression of genes induced by Bgh in Qingke were correlated 
with changes at the physiological level. Our data showed that a set of JA-related genes were induced by Bgh at 
different time points, leading to the metabolite changes of jasmonates in G7 and Z13. (Fig. 6B).

At 0 hpi (un-inoculated control), the JA and JA-ILE levels were significantly higher in G7 (1.69 ng/mL and 
1.47 ng/mL, respectively) than those in Z13 (0.64 ng/mL and 0.39 ng/mL, respectively), while MEJA was almost 
the same in the two cultivars. After inoculation with Bgh, endogenous JAs accumulated rapidly in G7 and reached 
the maxima at 6 hpi (2.78 ng/mL). Then, the JA content recovered to almost the same as that of the un-inoculated 
control at 36 hpi and 72 hpi and later decreased rapidly to 0.72 ng/mL at 168 hpi. However, in Z13, the concen-
tration of JA accumulated to 1.11 ng/mL at 6 hpi and then changed slightly at 36, 72 and 168 hpi. Interestingly, 
the concentration of JA-ILE decreased gradually during the interaction in G7 with Bgh, from 1.47 ng/mL at 0 hpi 
to 0.58 ng/mL at 168 hpi, while in Z13, JA-ILE accumulated gradually from 0.39 ng/mL at 0 hpi to 1.49 ng/mL at 
168 hpi.

Integrated analyses of the transcriptomic and metabolic datasets. To gain a deep understanding 
of the resistant mechanism of G7 and Z13 based on their obvious resistance ability, we further analyzed the gene 
expression profile combined with the metabolomics analysis at the 0 hpi time point. We found that 412 and 348 
genes were lower or higher expressed in Z13 compared with those in G7, and 71 and 59 compounds were differ-
entially accumulated at the metabolic level. The enrichment analysis indicated that these DEGs were significantly 
enriched in glyoxylate and dicarboxylate metabolism, phenylpropanoid biosynthesis, monoterpenoid biosynthe-
sis, alpha-linolenic acid metabolism, photosynthesis - antenna proteins, flavonoid biosynthesis, and starch and 
sucrose metabolism, among others (Table S8). The metabolite profiling showed that the differential metabolites 
mainly included phenylpropanoids and their derivatives, phenolamides, flavonoids, lipids, terpenoids and so 
on. Further correlation analysis of differential metabolites and DEGs at 0, 6, 36, 72, 168 hpi were carried out. The 
results showed that a great number of metabolites accumulated differentially during the process of Qingke-Bgh 
interaction, which were synchronous with the expression of the differentially expressed genes. 443 DEGs were 
identified to be related to the differential accumulation of 110 metabolites in the process of qingke response to 
powdery mildew (Table S9). This result indicated that the alteration in gene expression induced by powdery mil-
dew was correlated with the metabolic changes at the physiological level during the process of Qingke-powdery 
mildew interaction.

http://plntfdb.bio.uni-potsdam.de/v3.0/
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Discussion
To promote sustainability and productivity of plants in the face of powdery mildew, we must more efficiently 
develop resistant crops through gene modification, molecular breeding, or novel genetic-editing technologies. 
To effectively utilize these strategies to produce the next generation of crops, the multi-omics datasets should be 
appropriately exploited. The present study reports the first effort to integrate transcriptomic and metabolic tech-
niques for the comparative analyses of the genes and the metabolites involved in responses of Qingke plants to 
powdery mildew. The results enhance our understanding of the mechanisms underlying the responses of Tibetan 
hulless barley to powdery mildew.

The knowledge of the plant-powdery mildew interaction ranges from well-defined pathways to a set of 
genes responsible for the resistance to Bgh29. A number of components of the plant-pathogen interaction path-
way (ko04626) have been identified including pathogenesis-related protein 1 (PR1), LRR receptor-like serine/
threonine-protein kinase (FLS2) (HVUL0H01543.2, HVUL0H00527.2, HVUL6H03320.2), mitogen-activated 
protein kinase kinase 1 (HVUL5H30208.2, HVUL5H06590.2), WRKY25/33 (HVUL7H41078.2, 
HVUL1H35549.2), disease resistance protein RPM1 (HVUL6H17646.2, HVUL7H06808.2, HVUL7H13517.2, 
HVUL1H07932.2, HVUL0H24172.2, HVUL6H27875.2, HVUL6H00968.2) and HSP90 (HVUL5H23218.2, 
HVUL7H37354.2). Interestingly, the overexpression of CABPR1 in tobacco has recently been found to enhance 
resistance to pathogen stresses30. The characterization of 23 PR-1-like genes in hexaploid wheat suggested 
the diversity and conservation of PR-1 gene functions in monocot plants, and revealed that 12 TaPr-1 genes 
were induced or upregulated upon pathogen challenge31. In this study, the PR1 genes (HVUL5H11228.2, 
HVUL0H09210.2, HVUL7H00882.2) were significantly induced (upregulated) in Z13, especially at the 168 hpi 
but were not differentially expressed in G7 at any time point, which might suggest that PR1 plays an important 
role in Z13 when susceptible plants interact with powdery mildew.

Previous studies had shown that pathogens cause changes in gene expression that fluctuate over time. To 
investigate this further, WGCNA analyses were performed in the present study and revealed extensive temporal 
regulation of transcript levels in Tibetan hulless barley in response to powdery mildew.

Plant defenses to biotrophic pathogens include an inherent defense system and an induced system that is 
activated after plants detect the attack. The former mainly includes cutin, waxy and lignin of plant cell walls, and 
small molecule disease-resistant compounds (e.g. fatty acids, phenolic substances, terpenoids and flavonoids). 

Figure 6. Expression patterns of genes and metabolites involved in the biosynthesis of jasmonates. (A) 
Schematic pathway. Uppercase letters indicate genes that encode enzymes. Solid arrows represent established 
biosynthesis steps, while broken arrows indicate the involvement of multiple enzymatic reactions. (B) 
Metabolite accumulation after Bgh inoculation; values are the means ± SE. The asterisk (*) indicates a 
significant difference in G7 versus Z13 (p < 0.05).
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In the WGCNA of G7, the MEbrown module has the highest correlation, in which 350 genes were significantly 
enriched in phenylalanine metabolism, terpenoid backbone biosynthesis, sesquiterpenoid and triterpenoid bio-
synthesis, flavonoid biosynthesis, zeatin biosynthesis, isoflavonoid biosynthesis and so on, indicating that this set 
of genes might be responsible for the resistance of G7 in response to powdery mildew. For example, 12 genes were 
identified in the phenylalanine metabolic pathway; most of these genes were highly expressed at 0 hpi and 168 hpi 
in both G7 and Z13, and these genes had similar expression patterns in both cultivars (Fig. S4). These results 
showed that the plants might trigger similar gene regulation mechanisms and response processes to cope with the 
infection of powdery mildew. Therefore, it can be proposed that plants employ the same set of genes in defense 
pathways during the process of this plant-pathogen interaction and that the sequentially differential expression of 
these genes contributes to the defense performance of the plant-pathogen interactions.

The plant cell wall is impermeable to water and pathogens and is dramatically affected by cutin, suberine and 
wax deposition32. The cutin-wax barrier plays a crucial role in the interaction and adaptation of plants to various 
stresses, particularly by providing the first barrier to many pathogens33. In the MEblue module of G7, four genes 
were identified to be involved in cutin, suberine and wax biosynthesis (HVUL0H23092.2; HVUL4H38244.2; 
HVUL4H27323.2; HVUL1H15328.2, Fig. S5) encoding fatty acid omega-hydroxylase, omega-hydroxypalmitate 
O-feruloyl transferase, peroxygenase and aldehyde decarbonylase, respectively. In G7, these genes were expressed 
at a low level at 0 hpi, were upregulated at 6, 36, and 72 hpi, and returned to the 0 hpi level at 168 h. However, in 
Z13, three genes were expressed at very low levels and were not differentially expressed throughout the process 
of interaction with Bgh. Interestingly, further metabolomics analysis showed that the primary substrates of cutin, 
suberine and wax biosynthesis, lipids including glycerophospholipids and fatty acids accumulated more in G7 at 
all time points. These results might suggest that these genes and metabolites play important roles in the complete 
resistance of G7 to powdery mildew.

Phytohormones play crucial roles in a complex regulatory network that is essential for pathogen-induced 
responses. Interestingly, our results showed that the content of jasmonic acid (JA) was much higher in G7 than 
that in Z13 at 0 hpi, and the expression of genes associated with JA biosynthesis was also further examined. The 
data showed that several JA related genes, such as OPR, ACX, MPF2 and FADI, were more highly expressed in 
G7 at 0 hpi than they were in Z13 (Fig. 6A). Many studies have reported that JA plays an important role in defense 
responses against biotrophic pathogens34; our findings are consistent with the conclusion that the accumulation 
of JA can have systematic effects on the resistance of powdery mildew in plants22.

Previous studies have suggested that the expression levels of PR are mediated through pathogen-induced 
signal-transduction pathways that are well regulated by phytohormones such as JA and MeJA35. The 
expression levels of 17 PRs were further analyzed in G7 and Z13 during the Qingke-Bgh interaction. Six 
genes (HVUL0H09210.2, HVUL3H06540.2, HVUL3H36018.2, HVUL5H11228.2, HVUL5H45926.2, 
HVUL7H00882.2) were induced by powdery mildew in G7 (Fig. S6), and the expression level of the PRs reached 
the maximum at 6 to 36 hpi. In the susceptive cultivar Z13, all 17 PRs were induced by powdery mildew (Fig. S6), 
and the expression level of the PRs reached the maximum at 168 hpi. The degree to which each PR gene was 
induced by Bgh differed in the two varieties. The result showed that the induced expression of PR genes was 
significantly different in G7 and Z13. The induced expression of PRs play more important roles in the resistant 
variety than in the susceptible one. These results indicated that powdery mildew infection had different effects 
on the 17 PRs, and the increased fold-changes in expression and the interval (response time) from inoculation to 
expression maxima were also different.

In conclusion, the combined transcriptome and metabolome analyses generated a set of data reflecting the 
dynamic defense responses of Tibetan hulless barley to powdery mildew. The defense responses involved primary 
metabolisms such as amino acid metabolism, carbohydrate metabolism, and lipids metabolism, and secondary 
metabolisms, including the biosynthesis of phenylpropanoids, flavone and flavonoids, phenolamides, and phy-
tohormones. The gene expression and metabolic networks identified in this study provide new insights into the 
mechanisms of induced defense response in Qingke. The current findings will greatly improve our understanding 
of Qingke-Bgh interaction and provide clues for the development of resistant Tibetan hulless barley varieties.

Methods
Plant materials, Bgh inoculation and resistance. Two cultivated hulless barley G7 and Z13 were used 
in this study. G7 is a variety with complete Bgh resistance (showed complete penetration resistance to powdery 
mildew), while Z13 is sensitive to Bgh. In G7, after inoculated with Bgh, no significant changes in phenotype were 
observed during the long-time (168 h) process of Qingke-powdery mildew interaction. In Z13, the symptom of 
the disease is as follows: at 6 hpi, there was no significant changes; then at 36 hpi, there are tiny spots of fungal 
growth on the upper surface of the leaves. At 72 hpi, powdery mildew can be observed as little grayish spots and 
the spots become circular or irregular spots, which diameter reaches 1.0 mm. At 168 hpi, the patches connected 
into blocks and the spore density on the leaves were very thick with severe necrotic spots.

The hulless barley seedling cultivation and all experiments were carried out at the Tibet Academy of 
Agricultural and Animal Husbandry Sciences, Lhasa (Tibet, China). In the experiment, Qingke seedlings 
were grown in plant growth chambers under LD (18 h light:6 h dark) cycles (at 16–18 °C and a relative humid-
ity of 80%). At the two-leaf and one needle stage, 30 well-developed seedlings were inoculated with Bgh. The 
growth temperature was adjusted to 20 °C after inoculation. The reactions to Bgh inoculation were observed 
visually based on the presence (or absence) of powdery mildew colonies and necrotic spots on the leaf surface. 
Subsequently, leaves from each individual plant were collected at 0, 6, 36, 72 and 168 hpi.

RNA sequencing and preparation of high-quality transcriptomic reads. At each time point, 
Qingke leaf samples from five uniform seedlings were mixed for total RNA extraction using the Illumina TruSeq 
RNA Sample Prep Kit (Illumina, Inc., San Diego, USA). A total of 30 paired-end libraries were constructed and 
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sequenced on Illumina HiSeq X Ten platform. High-quality reads were generated for each library. Genome map-
ping of high-quality reads was carried out using the software TopHat2. The Tibetan hulless barley draft genome 
assembly (http://show.genebang.com/project/download?n=barley) was used as a reference for genome mapping 
of the 30 Qingke libraries.

Calculation of gene expression level and identification of differentially expressed genes. The 
expression levels of Tibetan hulless barley genes were measured using the TPM (transcripts per million) method, 
and low-expression genes with TPM <1 were filtered in all 30 samples by the Kallisto program36. The reference 
used was the coding sequence of 36,151 Tibetan hulless barley genes. Differentially expressed gene (DEG) analy-
sis between samples was performed using NOISeq37. The probability of 0.8 and [log2 (Fold change)] greater than 
1 were set as the thresholds for significant differential expression.

Gene expression pattern analysis was performed by Short Time-series Expression Miner software (STEM)38 
on the OmicShare tools platform (www.omicshare.com/tools). The parameters were set as follows: (1) Maximum 
Unit Change in model profiles between time points is 1; (2) Maximum output profile number is 20 (similar pro-
files will be merged); and (3) Minimum ratio of fold change of DEGs is no less than two.

WGCNA network analysis. The WGCNA R package was used to build GCNs, examine main network 
properties (hubs and modules), calculate the significance values of genes, and investigate the correlations between 
modules and powdery mildew resistance responses. The transcriptome datasets were filtered to remove any genes 
whose TMP value < 1 at any time point to remove these genes that introduce noise into the network analysis. Log2 
normalized TMP values were used to construct the coexpression networks using the WGCNA package17 in R. 
Independent signed networks were generated from each Tibetan hulless barley cultivar G7 or Z13. The process 
of WGCNA network analysis was according to https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/
Rpackages/WGCNA/.

Widely Targeted Metabolome detection and data analysis. The freeze-dried leaf was ground using 
a mixer mill (MM 400, Retsch) with zirconia beads for 1.5 min at 30 Hz. 100 mg powder was extracted overnight 
at 4 °C with 1.0 ml 70% aqueous methanol. After centrifugation at 10, 000 g for 10 min, the extracts were absorbed 
and filtrated before LC-MS analysis.

The sample extracts were analyzed using an LC-ESI-MS/MS system (HPLC, Shim-pack UFLC SHIMADZU 
CBM30A system; MS, Applied Biosystems 4500 Q TRAP). The quantification of metabolites was accomplished 
using multiple reaction monitoring (MRM) analysis of a triple quadrupole-linear ion trap mass spectrometer (Q 
TRAP), API 4500 Q TRAP LC/MS/MS System. The analytical conditions and detailed operation parameters were 
as published before39.

For statistical analysis, the relative abundances of each metabolite were log transformed before analysis to 
meet normality. Dunnett’s test was used to compare the abundance of each metabolite between different time 
points. Statistical analyses were performed using the SPSS 22.0 software package (IBM SPSS, Somers, NY, USA). 
Differentially expressed metabolites were identified using a combination of fold change and the VIP values of the 
OPLS-DA model. The VIP values ≥1 and [log2 (Fold change)] greater than 1 were set as the threshold.
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