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Towards improvement in prediction 
of iodine value in edible oil system 
based on chemometric analysis of 
portable vibrational spectroscopic 
data
Hong Yan, Jixiong Zhang, Jingxian Gao, Yangming Huang, Yanmei Xiong & Shungeng Min

Iodine value (IV) is a significant parameter to illustrate the quality of edible oil. In this study, three 
portable spectroscopy devices were employed to determine IV in mixed edible oil system, a new 
Micro-Electro-Mechanical-System (MEMS) Fourier Transform Infrared Spectrometer (MEMS-FTIR), 
a MicroNIRTM1700 and an i-Raman Plus-785S. Quantitative model was built by Partial least squares 
(PLS) regression model and four variable selection methods were applied before PLS model, which are 
Monte Carlo uninformative variables elimination (MCUVE), competitive reweighted sampling (CARS), 
bootstrapping soft shrinkage approach (BOSS) and variable combination population analysis (VCPA). 
The coefficient of determination (R2), and the root mean square error prediction (RMSEP) were used as 
indicators for the predictability of the PLS models. In MicroNIRTM1700 dataset, MCUVE gave the lowest 
RMSEP (2.3440), in MEMS-FTIR dataset, CARS showed the best performance with RMSEP (2.2185), in 
i-Raman Plus-785S dataset, BOSS gave the lowest RMSEP (2.5058). They all had great improvements 
than full spectrum PLS model. Four variable selection methods take a smaller number of variables and 
perform significant superiority in prediction accuracy. It was demonstrated that three new portable 
instruments would be suitable for the on-site determination of edible oil quality in infrared and Raman 
field.

Edible oil has been widely used for making dishes such as salad or fried food. It can provide essential nutrients 
and energy. Some kinds of valuable edible oil are quite expensive, such as olive oil, sesame oil and perilla oil, 
which makes industries trying to adulterate with cheaper vegetable oils. The chemical and physical properties of 
edible oil are correlated to the properties of the corresponding feedstocks. For example, the degree of oil unsatu-
ration, defined as the iodine value (IV), which is important to assess quality and grade of oil, and authentication 
test for both the consumers and food industries.

The official testing methods of IV are developed by the American Oil Chemists’ Society (AOCS) and the asso-
ciation of analytical communities (AOAC)1. However, the conventional method of titration in determining IV is 
ineffective since it uses highly toxic chemicals that are environmentally unfriendly, and the method is complex 
and time-consuming. Meanwhile, although GC and HPLC have been widely used for the quality control of edible 
oil, they still can’t meet the demand of detecting large sums of samples in short time.

Rapid, non-invasive and chemical free methods have been proposed for the determination of physical and 
chemical properties of edible oil, such as Fourier transform mid infrared (FT-MIR), Fourier transform near infra-
red (FT-NIR) and Raman (RS) spectroscopy2,3. The total degree of unsaturation was evaluated from the quantita-
tive measurement of the v(C=C) band intensity and its relation to the intensity of the band related to the (CH2) 
scissoring. Chemometrics approaches supported all these methods, Partial least squares-discriminant analysis 
(PLS-DA), Decision tree, Random Forest and Artificial neural network (ANN). etc are commonly used methods 
for classification. Moreover, for multivariate regression calibration, as we know, partial least squares (PLS) is the 
most popular method until now.
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The theory of FT-NIR is relied on the absorption of electromagnetic radiation which wavenumbers range 
from 800 to 2500 nm. The spectra produced by FT-NIR mainly corresponds to overtones and combinations of 
vibrational modes referring to C-H, C=C, C=O and N-H chemical bonds which arises from overlapping absorp-
tions2,4,5. And it has proved to be a dependable tool for measurement of biological and chemical systems on 
account of wide range overtone bands. The main limitation of FT-NIR is its dependence on reference methods, 
its low sensitivity to minor constituents and its dependency on intricate calibration procedures6,7. So aiming to 
predict indirectly, appropriate chemometric tools should be used for multivariate calibration which are highly 
indispensable for the advanced technology of spectroscopy. Some computational approaches such as PCA and 
PLS, which allow the processing of abundant variables that then need data reduction process.

Raman spectroscopic technique is also based on the vibrational transitions occurring. Raman scattering 
depends on the change of the molecular polarizability and is useful for the in vivo or on-site study8,9. It is also 
widely used to analyze food components such as proteins, lipids, and water in food science.

The application of vibratory spectroscopy and chemometrics in oil has been reported by many researchers. 
Lucyna Dymińska et al.10 used infrared and Raman methods to determine the iodine values of unsaturated plant 
oil. Cleiton A. Nunes11 assessed quality parameters, adulteration and authenticity of edible oils and fats by vibra-
tional method and chemometrics. Nor Fazila Rasaruddin et al.12 also tested the IV of palm oils by FT-NIR. Li 
et al.13,14 reported the use of FT-NIR for rapid measurement of iodine value, saponification number and cis and 
trans content of edible oil. However, fewer investigations about portable vibrational spectroscopy methods appli-
cation were reported and influence of variable selection on Raman spectroscopy was rarely systematic studied. In 
our study, both BOSS and VCPA were first applied in Raman spectra.

Variable selection methods are well recognized in chemometrics and industrial applications. The elimination 
of variables which do not contribute to any inference is highly desirable for several reasons. For example, in NIR, 
absorption bands of fundamental frequency vibrations and combination of vibrations make it possible for quan-
titative analysis. Generally, NIR doesn’t need sample preparation. Several properties can be predicted according 
to a single spectrum simultaneously. However, adverse issues are also inevitable, as absorption bands are usually 
overlapping. Moreover, spectroscopy characterizes a chemical sample with thousands of wavelength variables, 
which may include lots of irrelevant information for calibrations like noise or background, often resulting in a 
negative effect to the whole modeling. Therefore, suitable chemometrics algorithm is necessary to deal with NIR 
spectrum, with the purpose to eliminate the uninformative variables effectively by using variable selections.

Vibrational spectroscopy has been proved to be a reliable method of rapidly determining the physical and 
chemical properties in edible oil. It has provided a responsive alternative for the commonly used methods applied 
in the industries. However, more applications of on-site test should be developed. This study has three proposes. 
First is to investigate the feasibility of using MEMS-FTIR, MicroNIRTM1700 and i-Raman Plus-785S to quantify 
IV of edible oil based on PLS regression models. Second is to investigate the influence of variable selection meth-
ods especially BOSS and VCPA on the robustness and predictability of calibration models developed by PLS. Last 
one is to demonstrate the potential of three portable devices for the on-site analysis of edible oils in the view of IV.

Materials and Methods
Agents and reagents. Potassiumiodide (AR, Sinopharm Chemical Reagent Co., Led. China), Sodium 
thiosulfate pentahydrate (AR, Sinopharm Chemical Reagent Co., Led. China), Cyclohexane (CP, Sinopharm 
Chemical Reagent Co., Led. China), glacial acetic acid (AR, Sinopharm Chemical Reagent Co., Led. China).

Sample preparation. Soybean oil, olive oil, peanut oil and blend oil products were obtained from local 
supermarket. Iodine value were operated by the standard titration method which is based on the official methods 
introduced in the method for animal and vegetable fats and oils-determination of iodine value (ISO 3961:1996, 
MOD). 59 samples were prepared by mixing the four kinds of oil with the concentration of soybean oil, olive oil, 
peanut oil, blend oil from 0% to 85.46%, 0% to 69.34%, 0% to 88.35%, 0% to 85.46%, respectively.

Instruments. MicroNIR1700. MicroNIR1700 is a micro NIR spectrometer developed and manufactured 
by JDSU. The instrument uses a Linear Variable Filter (LVF) as a light-splitting element. The LVF is a special 
band-pass filter, which is specially fabricated into a wedge-shaped coating in a specific direction. Since the center 
wavelength of the passband and the film Layer thickness, the wavelength of the filter penetrates linearly in the 
wedge direction, which plays a role of spectroscopy. LVF is coupled to a linear array detector (128-pixel uncooled 
InGaAs photodiode array). Dual integrated vacuum tungsten light source, 16-bit A/D converter.

MEMS-FTIR. MEMS-FTIR is a long wavelength near infrared spectrometry machine developed by 
HAMAMATSU in Japan. The MEMS-FTIR is a Fourier transform infrared spectrometer which is compact and 
with low cost. A Michelson interferometer and an infrared detector are grouped together in a small space. The 
MEMS-FTIR is formed by a fingertip size FT-IR engine, a control board, a photo-detector, input/output fibers, 
etc. Its size is 75 × 100 × 27 mm. Spectral measurement or absorption measurement can be done simply by con-
necting to a PC via USB. It is very suitable for on-set in-situ test analysis.

i-Raman Plus-785S. i-Raman Plus is a portable raman instrument developed by B&W Tek, Inc Company. It uses 
innovative intelligent spectral processing technology, high efficiency thin back-illuminated CCD detector, lower 
cooling temperature, resulting in better signal to noise ratio and higher dynamic range. The i-Raman® Plus-785S 
has a maximum integration time of up to 30 minutes and has the unique advantage of detecting weak Raman sig-
nals. It combines both high resolution and wide spectral range with spectral ranges up to 3200 cm−1 and optimal 
resolutions up to 4.5 cm−1.
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Spectral Data Acquisition. MicroNIRTM1700. Measurement wavelength range was 900–1700 nm, the res-
olution was 6–10 nm, integration time was 8 ms, background and dark current were calibrated every 30 minutes.

MEMS-FTIR. NIR spectra were collected with 5 mm quartz cuvette. The spectra were acquired over the range 
1100~2100 nm (middle gain resolution, 2000 ms scans) at room temperature. Between each spectrum, the quartz 
cuvette was rinsed by the next sample.

i Raman Plus-785S. Raman spectra were acquired with 5 mm quartz cuvette over the range 175~3200 cm−1 at 
room temperature. The resolution is 4.5 cm−1. Dark current was calibrated every 30 minutes and background was 
collected by the next sample.

Software. All the program codes and datasets computations were edited and applied in Matlab (V2016a, 
Mathworks, USA) with my computer (SSD) with the configuration Intel Core i5-4210U 2.4 GHz CPU, 8 GB RAM 
for analysis. The codes of CARS15, BOSS16, VCPA17 can be downloaded from the link of references, others are 
in-house codes.

Theory
MCUVE. UVE-PLS is developed based upon the analysis of the regression coefficient vector18. The stability 
criterion c is defined by
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Where cj is utilized on the conjunction of the addition of the original data and random variables, βj is on half of 
the regression coefficients of the jth variable when ignore the ith calibration sample, and n is the calibration sam-
ples number. βj denote the mean value, and s(βj) stands for the standard deviation of all βij for the jth variable, and 
βij is obtained through leave-one-out approach.

The criterion of eliminating redundant variables is achieved as the equation below:
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Here c( )j  stands for stability criterion of the jth variable in the dataset originally; and cmax( )artif  stands for the 
absolute value of the maximum value for c( )j  from the added random variables.

In MCUVE, Monte Carlo sampling strategy is brought in the UVE instead of leave-one-out method: random 
choosing M samples from all the calibration samples to set up PLS models to calculate the regression coefficient 
β, then repeating the process for N times. So Eq. (2) convert into the following equation:
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Here, βij denotes the regression coefficient of the jth wavelength in partial regression model, which is estab-
lished by the ith M random chosen samples.

CARS. CARS is proposed also based on absolute value of regression coefficients with the purpose evaluating 
the significance of variables15. Monte Carlo is employed for sampling. To carry out feature selection and leaving 
out variables with small absolute regression coefficients in compulsive way, the exponentially decreasing function 
(EDF) is adopted. Through an EDF run, the ratio of wavelengths retained is processing in the ith sampling run 
follows the equation:

= −r ae (5)i
ki

where a and k are two constants. They can be computed as:

= −a p( /2) (6)N1/( 1)

= −k p Nln( /2)/( 1) (7)

Adaptive reweighted sampling (ARS) is adopted to realize a competitive feature selection in the view of the 
regression coefficients. This step follows the principle ‘survival of the fittest’ which is the basic theory of Darwin’s 
Evolution Theory19.

In the end, cross validation is employed to select the subsets according to the lowest RMSECV.

BOSS. BOSS (The bootstrapping soft shrinkage) was developed by Baichuan Deng16 in 2016. This method is 
supposed to select informative variables with the existence of colinearity20. The steps are listed here:
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 (1) K subsets are generated by using BSS, all the variables are assigned with equal weights (w).
 (2) Build K PLS sub-models with all the subsets and pick out best models with the lowest RMSECV.
 (3) Add up all the normalized regression vector to acquire new weights for variables.

∑=
=

w b
(8)i

k

K

i k
1

,

 (4) new subsets are generated by WBS according to new weights. This way guarantees that we have larger 
probabilities to select the variables which have larger absolute value of regression coefficients.

The subset which has the lowest RMSECV during the iteration is selected as the optimal variable subset by 
repeating step (2–4).

VCPA. The optimizing variable subset is selected rely on binary matrix sampling (BMS) and EDF. In each 
iteration run, BMS and model population analysis (MPA) are carried out for once. After N EDF runs, 14 variables 
are remained which are considered be the most significant. Then RMSECV of all the combinations is calculated 
and the lowest RMSECV is recorded. In the end, the optimal subset with the lowest RMSECV is selected in the 
final run17.

Partial Least Squares Regression (PLS). PLS is a two-block regression method which is aimed to model 
the relationship between measured spectrum matrix X and a response vector y. Eqs (9) and (10) illustrate the PLS 
model21.

= +X TP E (9)T
A

= +y Tq f (10)
T

A

Here T is score matrix, P is the loading matrix. q as a y-loading vector, EA and fA are residual matrix of X and 
y-vector.

Model Validation. To assess the performance of four promising variable selection approaches, namely 
CARS, SCARS, BOSS and SBOSS. Mean-centered was applied before modeling, and the optimal number of latent 
variables was determined by 5-fold cross validation. RMSEC (Root mean square error of calibration), RMSEP, Qcv

2  
and Qtest

2  were used to evaluate model performance. Standard deviation (SD) in 50 runs was employed to evaluate 
the robustness of PLS model. Simultaneously, the number of optimal latent variables (nLVs) and variables selected 
number (nVAR) were also reported.
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While yi is the experimental of the predicted properties, and ŷi and yi  represent predicted and average respec-
tively. Ncal is the number of calibration samples of the training set. RMSEP and Qtest

2  hold the equation following 
the same as RMSEC and Qcv
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Each method was repeated for 50 times to assess the stability. The standard derivation (SD) was employed to 
calculate stability with Eq. (11). Where Xi and X  are predicted and average value, separately. n stands for the 
number of all samples. The smaller the value of the stability, the more stable is the method.

Results and Discussion
The dataset was separated into Calibration set (36 samples) and independent test set (23 samples) by K-Stone 
sampling22,23. For preprocessing, centering was employed in all datasets before modeling. For MCUVE, the Monte 
Carlo sampling number is set to 500. The regression coefficients of every variable were recorded. A coefficient 
matrix was developed after 500 iterations. Then, all the variables were ranked in accordance with their reliabil-
ity index. In our study, 5-fold cross validation was employed to decide the number of variables. With all these 
settings, we ran MCUVE to estimate its predictive performance. For CARS run, the number of Monte Carlo 
sampling runs was 100. In BOSS, the bootstrap number was set to 1000. Several parameters also influence VCPA 
strategy, EDF runs (50 times), BMS sampling runs (1000), ω, the number of the left variables in the final run of 
EDF (14), σ, the ratio of best models of k sub-models (10%). We ran VCPA with the settings as in the parenthe-
ses. All the four variables selection methods were repeated for 50 times to assess the prediction accuracy and 
robustness.

Infrared spectra features. Fig. 1 showed the raw spectra of mixed edible samples on MicroNIR1700, 
MEMS-FTIR and iRaman Plus-985S. MEMS-FTIR has wider spectrum range than.
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MicroNIR1700 (1700~2100 nm). There are five absorption regions in MEMS-FTIR spectrum, which are in 
accordance with the studies that described the position of near infrared regions for edible oils. The two peaks 
which were centered around 1168 and 1210 nm linked to the second overtone of CH stretching vibration. The 
combination of the C-H stretching and vibration with other vibration modes of the concerned molecule associ-
ated with the regions around 1392 and 1414 nm. And two peaks centered 1726 nm and 1761 nm linked to the first 
overtone of the CH stretching vibration.

Raman spectra features. Four selected raw Raman spectra of mixed edible oil samples (IV = 86, 105, 113, 
126) (Sample Number = 01, 20, 40, 58) were presented in Fig. 2. The Raman spectra assignment was provided 
in Table 1. The figure demonstrates that an increase at 1264, 970, 1296, 1128 and 1061 cm−1 as the IV increases.

Quantitation of IV by variable selection and PLS. Table 2, Figs 3, 4 and 5 demonstrated the results of 
IV of edible oil. Both the mean and standard deviation were given in Table 2.

As for MicroNIR1700, the four variable selection methods didn’t give great improvements compared to the 
full spectra PLS model. MCUVE gave the best performance with RMSEP (2.3440), it increased 1.86% than full 

Figure 1. The raw spectrum of MicroNIR1700, MEMS-FTIR and iRaman Plus-985S.

Figure 2. Selected raw Raman spectra (2190–678 cm−1) of mixed edible oil with different iodine values 
(IV = 86, 105, 113, 126) (Sample Number = 01, 20, 40, 58). The band assignment numbers correspond to the 
assignments provided in Table 1.
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spectrum PLS model. Compared to MCUVE, CARS, BOSS and VCPA choose much fewer variables (Fig. 5 and 
Table 2).

CARS achieved a good prediction with the least variables, we can see that from both Figs 4 and 5. the reason 
may be that variables are heavily collinear and therefore the model’s variance could be reduced with fewer varia-
bles. BOSS and VCPA also had fewer variables, but they retained variables around 700 nm and 800 nm which were 
uninformative, that was the reason why the model of BOSS and VCPA performed worse. There were no absorp-
tion peaks around 700 nm and 800 nm, so it didn’t have any information. Figure 2 (3) in Supplementary Materials 
showed the regression coefficient path of each variable from one run of CARS with the100 runs of sampling. We 
can see that in the first sampling run, the absolute value of regression coefficient of each variable was very small. 
However, with the number of sampling runs increased, the coefficients of some variables became larger and larger 
while others got smaller and smaller. Especially, the regression coefficients even decreased to zero if the relevant 
variables were knocked out by CARS. Therefore, the corresponding variable has more chances to survive if the 
absolute regression coefficient performs larger. It is also essential to analyze the regression coefficient path of each 
wavelength as shown in Fig. 2 (2)(3) of MEMS-FTIR dataset (Supplementary Materials). As previously men-
tioned, each line reflected the changing of regression coefficient of one variable. During CARS iteration, some 
significant variables were chosen while other ineligible ones were ignored.

Band 
number

Band 
position

Chemical 
group Mode of vibration

1 1745 C=O Stretch

2 1655 C=C Stretch

3 1438 >CH2 Symmetric deformation (Scissor)

4 1301 >CH2 Twisting (All-in-phase)

5 1266 =C-H Symmetric rock cis isomer

6 1125 C-C Aliphatic in-phase stretch

7 1080 C-C Aliphatic stretch

8 1068 C-C Aliphatic out-of-phase stretch

9 970 =C-H Out-of-plane bend cis isomer

10 868 C-C Stretch

Table 1. Assignment of the most common bands in Raman spectra of oil. The band numbers correspond to 
bands in Fig. 2.

Element Characteristics PLS MCUVE CARS BOSS VCPA

MicroNIR1700 Results SD Results SD Results SD Results SD

nVAR 125 53 ±28 4 ±1 4 ±1 7 ±2

nLV 3 3 ±0 2 ±0 2 ±0 3 ±0

Q2_CV 0.9580 0.9643 ±0.0016 0.9655 ±0.0009 0.9693 ±0.0009 0.9782 ±0.0009

Q2_test 0.9176 0.9038 ±0.0051 0.9031 ±0.0013 0.8953 ±0.0064 0.8976 ±0.0107

RMSEC 2.6344 2.2008 ±0.0474 2.1655 ±0.0277 2.0412 ±0.0285 1.7199 ±0.0354

RMSEP 2.3885 2.3440 ±0.0628 2.3537 ±0.0152 2.4455 ±0.0756 2.4170 ±0.1217

MEMS FT-NIR Results SD Results SD Results SD Results SD

nVAR 3108 731.8 ±557.808 216 ±107 24 ±6 11 ±1

nLV 3 2.36 ±0.484873 3 ±0 3 ±0 4 ±0

Q2_CV 0.9781 0.9604 ±0.0088 0.9724 ±0.0077 0.9856 ±0.0015 0.9899 ±0.0011

Q2_test 0.8993 0.9159 ±0.0103 0.9313 ±0.0071 0.8770 ±0.0174 0.8849 ±0.0194

RMSEC 1.6999 2.1683 ±0.2523 1.8038 ±0.2413 1.3141 ±0.0677 1.1019 ±0.0582

RMSEP 2.6271 2.4531 ±0.1489 2.2185 ±0.1144 2.9645 ±0.2097 2.8654 ±0.2359

iRaman Plus-985S Results SD Results SD Results SD Results SD

nVAR 3122 2194 ±856 54 ±39 6 ±1 9 ±2

nLV 3 3 ±0 3 ±0 2 ±0 3 ±0

Q2_CV 0.8317 0.8044 ±0.0136 0.8805 ±0.0202 0.9524 ±0.0023 0.9624 ±0.0033

Q2_test 0.8421 0.7940 ±0.0194 0.8886 ±0.0191 0.9508 ±0.0028 0.9439 ±0.0095

RMSEC 4.6722 4.2588 ±0.1583 3.3194 ±0.2703 2.1009 ±0.0499 1.8657 ±0.0854

RMSEP 3.9525 5.1221 ±0.2575 3.7598 ±0.3071 2.5058 ±0.0703 2.6664 ±0.2227

Table 2. The results on the MicroNIR1700, MEMS-FTIR and iRaman Plus-985S dataset of different variable 
selection methods. nVAR: The number of selected variables. nLVs: The number of selected latent variables 
of PLS. RMSEC: Root mean square error of calibration. RMSEP: Root mean square error of prediction. SD: 
Standard deviation in 50 runs.
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In MEMS-FTIR dataset, CARS performed the best with the lowest RMSEP (2.2185), followed by MCUVE, 
VCPA and BOSS. CARS also got the minimum standard deviation (0.1144). The reason why CARS presented 
the best may be that it selected most of the informative variables around 1392 nm, 1414 nm which corresponded 
to the combination of the C-H stretching and vibration with other vibration modes of the concerned molecule. 
Most strong absorption bands of the calibration samples were observed at CH and CH2 over-tones. These over-
tones occurred at 1207, 1391, around 1408, 1715 and 1734 nm together with minor absorption bands in the range 
between 2083 and 2202 nm (Fig. 5).

The absorption bands around 1207 nm comprised the second overtones of C-H, while those between 1612–
1818 nm were attributed to the first overtones of C-H which comprises CH3, CH2 and HC-CH. The reason why 
BOSS played the worst is that BOSS chose the variables with much noise (around 1100 and 2100 nm) and missed 
the informative variables (around 1715 nm).

As for Raman data, it is obvious to see that variable selection had a great influence to the PLS model. BOSS 
and VCPA improved a lot compared to the full spectrum PLS model, nevertheless MCUVE and CARS showed 
bad results. Figure 5 demonstrated selected variables of four variable selection methods. It is noticeable that both 
MCUVE and CARS retained the variables between 175 and 220 nm that are mainly noise. Variables belong to the 
region are uninformative, moreover, MCUVE missed the informative variables around 1745, 1655, 1438, 1301 
and 1068 nm, hence MCUVE had a bad result even worse than full spectrum PLS model. It should be noticed that 
denoising ability of MCUVE and CARS are weak (Fig. 4). VCPA ranked the second place in all the models with 
good stability. It retained informative variables efficiently on account of the employment of BMS and MPA. BMS 
is a sampling approach that each variable has the same opportunity to take part in the sampling process, which 
let it be a suitable sampling choice of variable selection. Moreover, the same with CARS, EDF makes VCPA select 
fewer variables. The RMSECV of every EDF run was presented in Supplementary Material. It was demonstrated 
that the trend of decreased RMSECV is accordance with the EDF. The RMSECV is decreasing with the shrinking 
variable space, which means that the remaining variables were gradually selected toward the optimal variable 
subset. At last, the optimal subset from all the combinations among 14 variables was found.

Figure 3. The Q2test and RMSEP of PLS, MCUVE, CARS, BOSS, and VCPA on MicroNIR1700, MEMS-FTIR 
and iRaman Plus-985S.

Figure 4. The boxplots of RMSEP and Q2test of 50 times run on MicroNIR1700, MEMS-FTIR and iRaman 
Plus-985S.
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In general, the results in Table 2 showed relatively good predictions which indicated that the calibration mod-
els are robust. It indicated that the predictions of MicroNIR1700, MEMS-FTIR and i-Raman-785s were compa-
rable to their corresponding reference methods for IV determination and therefore the three portable devices 
based on edible oil analysis is suitable for on-site measurement of IV for edible oil or other biodiesel production. 
Variable selection is necessary for quantitative model to improve the prediction results and ensure the reliability.

Conclusion
In our study, we discussed the influence that variable selection methods MCUVE, CARS, BOSS and VCPA has 
on the MicroNIR1700, MEMS-FTIR and i-Raman-785s PLS calibration modeling for the vibratory spectros-
copy analysis IV of edible oil. The results showed that the three portable spectroscopy devices were capable of 
providing a rapid and accurate measurement of IV of edible oil destined for biodiesel production with a proper 
calibration and a responsive model. Once the calibrations are in place, portable device is a fast and easy to use 
method for the IV measurement in an on-site environment. It drastically reduces the time from routine IV value 
quality control analysis and does not involve the use of any chemical reagents. Conclusively, it’s possible to use 
portable vibratory spectroscopy as an edible oil quality control tool for IV measurement and more robust PLS and 
prediction models can be obtained based on variable selection methods.

Data Availability
All data included in this study are available upon request by contact with the corresponding author.
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