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Diagnostic value of plasma 
tryptophan and symmetric 
dimethylarginine levels for acute 
kidney injury among tacrolimus-
treated kidney transplant patients 
by targeted metabolomics analysis
Feng Zhang1, Qinghua Wang2,3, Tianyi Xia1, Shangxi Fu4, Xia Tao1, Yan Wen1, Shen’an Chan5, 
Shouhong Gao1, Xiaojuan Xiong2 & Wansheng Chen1

Few literatures have evaluated the exact role of metabolomics in the identification process of potential 
biomarkers for acute kidney injury among the patients receiving renal transplantation. On top of this, 
the success of metabolomics in biomarker translation seems to lie in the robust quantitative method. As 
such, a single-center retrospective observational study was conducted enrolling 42 patients underwent 
renal transplantation with/without acute kidney injury, as well as 24 healthy volunteers, in Shanghai 
Changzheng Hospital. Plasma amino acid metabolic patterns for the participants were investigated by 
targeted UHPLC-MS/MS metabolic profiling. The most significant changes of the explored metabolites 
were related to the disturbance of tryptophan metabolism and arginine metabolism. Abnormal 
circulating tryptophan and symmetric dimethylarginine were identified to be potential biomarkers 
of acute kidney injury, combination of which showed a higher area under receiver-operator curve 
value (AUC = 0.901), improved sensitivity (0.889) and specificity (0.831) compared with creatinine 
only. Overall, these results revealed that targeted metabolomics analysis would be a potent and 
promising strategy for identification and pre-validation of biomarkers of acute kidney injury in renal 
transplantation patients.

Acute kidney injury (AKI) is increasingly common and associated with transplant failure and death in renal 
transplantation patients. Its causes are multiple and include rejection, infections, ischemia-reperfusion injury, 
and drug toxicity and etc1. Early detection has proved to be the key to limit the potential damage to transplanted 
organs and improve long-term prognosis of these receiving kidney transplantation. In addition to kidney biopsy, 
serum creatinine (SCr) is widely applied as the indicator to monitor the renal function, which is of significant 
heterogeneity and observed only after substantial kidney injury. While kidney biopsy, an invasive option, could 
be costly and impractical in multiple sampling. Failure to early diagnosis of AKI often leads to disastrous or even 
life-threatening episodes of renal dysfunction, thus it is desirable to discover ideal biomarkers, which should be 
non-invasive and identify AKI in renal transplantation patients.

Metabolomics, an approach for precision medicine, has been yielding important insights into the underlying 
reasons for acute kidney injury, as well as the biomarker identification. Nevertheless, few metabolomics studies 
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have been conducted in the renal transplantation patients2. Of note, the success of metabolomics in biomarker 
translation seems to lie in the fact that the underlying instrumentation is robust, quantitative, easily adapted 
to new assays and already located in many clinical testing laboratories3, and the clinical merit of potential bio-
markers needs to be validated in a well-planned separate targeted study4. As a result, the targeted metabolomics 
approach is reckoned to be preferable for assessment of specific pathways with focus of interest recently, for 
instance, the newborn screening of inborn errors of metabolism would facilitate doctors to prevent or reduce 
significant morbidity and mortality in the early stage, by analyzing metabolic patterns of vitamins, amino acids, 
acylcarnitines, and so on5–7.

Plasma free amino acids (PFAAs) played a fundamental role in the metabolism realm as the direct response of 
metabolic flux, and kidney was shown to play a central role in modulation of AA metabolism. Abnormal plasma 
AA concentrations had been confirmed to be associated with renal diseases. Once renal dysfunction occurs, both 
the lost control of AA metabolism by kidney as well as the impact of renal failure and acidosis on whole-body 
nitrogen metabolism would contribute to the disturbed plasma AA levels8. Data from previous researches had 
shown promising evidence of AA analytics in monitoring the progress of kidney diseases9. AA profile in patients’ 
plasma and urine were of relevance with their clinical evaluation not only in different stages of chronic kidney 
disease10, but also in the AKIs11,12. In spite of the established association between plasma AA concentrations with 
estimated glomerular filtration rate (eGFR) in transplantation patients13, little information was available about 
the value of AA profile in prediction of AKI among patients receiving the renal transplantation. Furthermore, our 
previous research revealed that concentrations of total AAs and many AAs, such as alanine, lysine, aspartic acid, 
serine, and methionine, were significantly altered in renal transplantation patients when compared to the healthy 
volunteers14. This finding shed light on the meaning of the AA profile in renal transplantation patients, charac-
terization of which would be necessary for understanding AKI process and identifying potential biomarkers for 
kidney dysfunction.

Therefore, we herein present a quantitative method of 25 AAs in plasma samples by ultra-high performance 
liquid chromatography-tandem mass spectrometry (UHPLC–MS/MS)14, which was based on modification of 
our previously published method. Furthermore, the targeted metabolomics study was conducted in 42 patients 
underwent renal transplantation with/without acute kidney injury and 24 healthy volunteers, in a single-center 
retrospective observational study. In this pre-validation study, the diagnostic accuracy of potential AA biomark-
ers was investigated using receiver operating characteristic (ROC) analysis.

Results
Clinical Features of participants. Characteristics of the recruited participants were summarized (Table 1), 
enrolling 24 healthy volunteers (HV group), 12 patients without AKI (NA group) and 30 patients suffering from 
AKI (NB group). No significant differences of body mass index (BMI) were found among the data sets. Compared 
with the NA group, patients in the NB group had higher FK506 D0/C0 (ng/ng/mL), SCr (μmol/L), BUN (mmol/L), 
UA (μmol/L) and LDH (U/L). However, eGFR (mL/min/1.73 m2), HGB (g/L), RBC (10^12/L), LYM (10^9/L), 
T-BIL (μmol/L) and ALT (U/L) were significantly lower in the NB group. There were no significant differences in 
other characteristics.

Validation of the UHPLC-MS/MS analytical method for AAs. Mixed solutions of 25 AAs were 
employed for method validation (SI, Text S1). L-alanine-d4 (L-Ala-d4), L-methionine-d3 (L-Met-d3) and 
L-phenylalanine-d5 (L-Phe-d5) were applied as internal standards (SI, Text S2). Preparation for the standards and 
quality control (QC) samples was described in SI, Text S2. The developed UHPLC-MS/MS method was validated 
for linearity, precision, accuracy, matrix effect, recovery, incurred sample reanalysis (ISR) and stability, according 
to recommendations published by FDA (US Food and Drug Administration, 2013)15 (SI, Text S3). Linear equa-
tions were obtained with acceptable linear correlation coefficients (r ≥ 0.99) (SI, Table S1). Three different levels 
of QC were employed for the inter- and intra-day precision analysis, with coefficient of variation (CV%) ranged 
from 3.0% to 4.1%, and from 1.7% to 2.8%, respectively. Accuracy for the above samples was expressed as rela-
tive error (RE%), which was in the range of −14.52% to 14.92% (SI, Table S2). Matrix effect and recovery results 
turned out to be stable and repeatable for all the analytes, with the values of 89.96% (range 80.01−107.19%, except 
Oxo) and mean recovery was 94.02% (range 81.01–110.38%), respectively (SI, Table S3). RE for the ISR was cal-
culated within 20%. QC samples were found to be stable (RE ≤ 20%) in the stability tests, including short-term 
stability, post-preparation stability, three freeze-thaw cycle stability and long-term stability (SI, Table S4).

Metabolic profiling of healthy volunteers and kidney transplantation patients. Figure 1 inter-
preted the investigated AA metabolic pathways, as well as the fold-changes of the potential biomarkers in NB 
group when compared with those in NA group16. Effective quantification of plasma AAs was achieved using 
the validated method in plasma samples from 24 healthy volunteers and 42 patients. Multi-group comparisons 
through ANOVA analysis (p < 0.05) indicated a different metabolic pattern for most studied AA. To be specific, 
NA and NB patients had a lower level of AA profile, such as Cys, HA, Arg, His, Trp, Gln/Glug, Arg/Phe, Ser/Gly, 
Val/Gly, compared with those from HV subjects (p < 0.05) (Table 2). Furthermore, NB patients had much lower 
concentrations of Trp and ratios of in Leu/Ile, Pro/Cit and SDMA/SCr, but higher levels of SDMA, Phe and Kyn/
Trp, compared with those from NA patients (p < 0.05). In detail, AKI patients showed increased levels of SDMA, 
Phe and Kyn/Trp ratio, with values of 0.2547~0.4962 μg/mL, 10.7692~23.9799 μg/mL and 0.0364~0.1093, respec-
tively, but decreased levels of Trp and SDMA/SCr ratio, with values of 6.7584~13.8741 μg/mL and 0.9510~3.1014, 
respectively. Among the above mentioned, the levels of Ser and Lys in our study were lower than those reported 
in other studies17,18, which might be derived from different AKI status of patients or others.
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Correlation between clinical features and AA profile. Correlation between clinical features and AAs 
as well as their ratios in NB group was analyzed using Pearson (r) or Spearman (ρ) Rank test, and displayed in 
a heat-map (Fig. 2). Detailed data were listed in Tables S5a and S5b (SI). The input data was then evaluated by 
hierarchical clustering analysis, allowing the visualization of the clinical data across multiple subjects with many 
analytes19. Of note, SDMA, Trp and SDMA/SCr showed the most significant negative correlations with BUN, SCr 
and UA, and the most positive correlations with eGFR. Considering that SCr level was widely applied to assess 
eGFR for kidney function diagnosis and used as an index of kidney function in clinical, the correlation analysis 
showed that levels of SDMA, Trp and SDMA/SCr ratio had significant association with kidney function, which 
was shown in Fig. S1, Tables S6a and S6b (SI) for HV group, and in Fig. S2, Tables S7a and S7b (SI) for NA group.

Prediction performance by the area under receiver operating characteristic (AUROC) curve 
analysis. ROC curves were applied to evaluate the diagnostic effectiveness of both potential AA biomarkers, 
and to find an optimal cut-off value based on Youden index. Therefore, the AUC of ROC curve was computed 
in the prediction mode. Five indexes, including SDMA, SDMA/SCr, Trp, Cys and Kyn/Trp, were employed as 
diagnostic biomarkers, which showed AUC values greater than 0.7 in ROC analysis20,21 (Fig. 3). When compar-
isons were made between patients with and without AKI, the AUCs were calculated as 0.820 (95% CI, 0.732 to 
0.908; p = 0.000), 0.738 (95% CI, 0.588 to 0.889; p = 0.005), 0.724 (95% CI, 0.608 to 0.840; p = 0.009), 0.785 (95% 
CI, 0.679 to 0.891; p = 0.001), and 0.709 (95% CI, 0.616 to 0.802; p = 0.015), for levels of SDMA, Trp, Cys, and 
SDMA/SCr and Kyn/Trp ratios, respectively (SI, Table S8). The AUCs for assessing AKI diagnostic accuracy were 
found to be 0.820 and 0.738 for SDMA and Trp, respectively, which was the highest among all markers. Moreover, 
a larger AUC (0.901) was obtained by combination of SDMA and Trp, with a sensitivity of 0.889 and specificity of 
0.831 for the diagnosis of AKI (SI, Fig. S3).

Clinical features HV group (n = 24) NA group (n = 30) NB group (n = 12)

Gender (man/woman) 24 (13/11) 30 (15/15) 12 (8/4)

Age (year) 24.51 ± 3.16 36.27 ± 8.86 40.25 ± 14.40

FK506 C0 (ng/mL) — 10.98 ± 1.63 11.77 ± 5.57

FK506 D0/C0 (ng/ng/mL) — 208.37 ± 69.51 268.05 ± 76.71*

eGFR (mL/min/1.73 m2) 99.42 ± 11.61 108.4 ± 19.34 35.92 ± 18.94*

SCr (μmol/L) 83.04 ± 14.82 83.7 ± 15.01 250.58 ± 88.76*

BUN (mmol/L) 4.47 ± 1.23 5.49 ± 0.96 17.18 ± 5.82*

UA (μmol/L) 295.75 ± 78.94 308.50 ± 68.26 476.27 ± 93.47*

GLU (mmol/L) 4.82 ± 0.28 4.88 ± 0.74 4.88 ± 0.80

TP (g/L) 73.98 ± 3.65 66.64 ± 5.74 64.80 ± 7.93

ALB (g/L) 48.22 ± 2.13 42.82 ± 4.91 41.90 ± 6.15

GLB (g/L) 25.76 ± 2.68 23.82 ± 4.85 23.20 ± 3.80

A/G (g/g) 1.89 ± 0.21 1.88 ± 0.45 1.84 ± 0.33

WBC (10^9/L) 6.03 ± 1.53 7.50 ± 2.90 7.05 ± 3.65

HGB (g/L) 139.04 ± 10.88 105.96 ± 20.19 91.20 ± 9.46*

RBC (10^12/L) 5.09 ± 0.45 3.52 ± 0.65 2.97 ± 0.36*

LYM (10^9/L) 2.39 ± 0.78 1.73 ± 0.84 1.00 ± 0.49*

PLT (10^9/L) 224.12 ± 38.58 229.26 ± 73.16 258.30 ± 86.66

T-BIL (μmol/L) 9.69 ± 2.51 9.96 ± 2.18 8.00 ± 2.54*

AST (U/L) 22.52 ± 5.04 24.52 ± 19.27 20.70 ± 6.15

ALT (U/L) 15.75 ± 6.52 37.38 ± 45.52 15.00 ± 4.97*

LDH (U/L) 202.57 ± 45.01 169.92 ± 30.26 249.86 ± 83.98*

U-WBC (/μL) 16.42 ± 6.07 18.56 ± 26.05 8.29 ± 4.44

U-RBC (/μL) 17.53 ± 5.49 21.75 ± 58.28 5.69 ± 5.14

Body weight (kg) 62.57 ± 11.96 55.33 ± 12.50 54.63 ± 12.86

Clinical history (renal dysplasia, year) — 10.06 ± 7.80 8.75 ± 5.85

Table 1. The characters and biochemical indicators of HV, NA and NB patients. *NB group VS. HV group 
in Tukey test. Data was presented as mean ± standard deviation. Renal function indexes examined included 
serum creatinine (SCr), blood urea nitrogen (BUN), estimated glomerular filtration rate (eGFR) and uric acid 
(UA). Blood routine indexes examined included total protein (TP), albumin (ALB), globulin (GLOB), albumin/
globulin (A/G), white blood cell (WBC), hemoglobin (HGB), red blood cell (RBC), lymphocyte (LYM), blood 
platelet (PLT) and glucose (GLU). Liver function indexes examined included total bilirubin (TBIL), alanine 
aminotransferase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH). Urine routine indexes 
examined included urine white blood cell count (U-WBC), urine red blood cell count (U-RBC), pH and specific 
gravity. FK506 dose (D0), FK506 trough concentration (FK506 C0), and their ration FK506 D0/C0 for each 
kidney transplantation patient were recorded.
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Discussion
Early diagnosis of kidney injury could improve the appropriate drug regime control, resulting in decreased develop-
ment costs and promising long-term survival rate of such patients. In this single-center retrospective study, we estab-
lished and validated a UHPLC–MS/MS method for 25 plasma AA determination among three independent groups.

AA profile analysis revealed the perturbed Arg cycle in both NA and NB groups. Arg was degraded to Cit by 
nitric oxide synthase (NOS), but Arg could be synthesized from Cit via the urea cycle enzymes argininosuccinate 
synthetase (ASS) and argininosuccinatelyase (ASL), which were mainly located in the proximal tubular cells22. In 
this study, Cit/Arg ratio showed no significant difference between NA and NB groups, although Cit and Arg levels 
were higher in NB than those in NA group, which might be derived from the potential bidirectional conversion. 
Similar trends of Cit and Arg level change could also be found in many pathological conditions23. In NB group, 
Cit level increased (about 180%, 1.8 fold-change) compared with NA group, supported its potential role as an early 
marker for kidney injury, which was in agreement with a previous report24. Although both SDMA and ADMA could 
affect the endogenous deficiency of NO, ADMA was often recognized as an indicator of cardiovascular events and 
death in different populations. In contrast to ADMA, SDMA was barely catabolized, but excreted exclusively by 
the kidney, implying that its accumulation could only occur due to the decreased excretion in patients with renal 
diseases. SDMA was therefore identified as a promising marker of renal function25 (Fig. 4). In NB group, levels of 
Arg and SDMA increased significantly to about 150% (1.5 fold-change) and 170% (1.7 fold-change) in comparison 
with those of NA group. This was in consistent with the report of a renal ischemia/reperfusion (I/R) in rat model, 
which indicated that SDMA might contribute to the dysfunction of endothelial cells in such ischemic AKI model26. 
In our experiment, SDMA showed a significant increase in the kidney transplantation patients when compared 
with that of healthy subjects (0.10 ± 0.02 μg/mL). Furthermore, its plasma level was elevated in patients with AKI 
(0.37 ± 0.08 μg/mL) in comparison to those without (0.22 ± 0.07 μg/mL). These findings were in accordance with 
the results derived from much larger populations27,28. Convincingly, both SDMA level and SDMA/SCr ratio showed 
strong correlations with plasma levels of SCr, eGFR, BUN and UA. However, SDMA level showed little correlation 
with levels of SCr, eGFR, BUN and UA in both HV and NB groups. Similar correlation coefficients were also uncov-
ered by many reports, including meta-analysis and metabolomics studies29–32. Additionally, SDMA was reported to 
be independently associated with graft loss and mortality after adjusting for eGFR in human as well as in rodents26,33. 
To this end, our data firstly presented the promising value of SDMA or SDMA/SCr for prediction of AKI in patients 
receiving renal transplantation, and revealed that plasma SDMA levels increased in parallel with the rise of SCr, 
BUN and UA when such patients developed renal injury.

Trp metabolism was highlighted in recent metabolomics researches in patients with kidney cancer34. In our 
study, NB group was elucidated with a marked decrease of Trp (P < 0.01) and slight rise of Kyn, indicating a dis-
turbed Trp metabolism. Enzyme indoleamine 2,3 dioxygenase 1 (IDO1) was the key and rate-limiting enzyme of 
Trp metabolism, therefore plasma Kyn/Trp ratio was applied as an indicator of the enzymatic function of IDO1 
(Fig. 5)35,36. In rat and human, renal insufficiency would lead to Trp level reduction and Kyn level accumulation 
in blood37, and the activity of IDO and serum Kyn level increased with the severity of chronic kidney disease 
(CKD)38–40. Likewise, our experiment demonstrated that Trp level significantly decreased from 12.28 ± 2.36 μg/
mL in NA group to 9.94 ± 2.30 μg/mL in NB group (0.8 fold-change), accompanied by a rise trend of Kyn level, 
from 0.50 ± 0.27 μg/mL to 0.59 ± 0.22 μg/mL. In parallel of this, Kyn/Trp ratio was significantly increased from 
0.04 ± 0.03 to 0.06 ± 0.02 during episodes of kidney injury.

Figure 1. Investigated AA metabolic pathways and the potential biomarkers with their fold-changes in NA and 
NB groups. Red arrow and blue arrow means the AA change in the NB group compared with the NA group.
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Parameters
HV group 
(n = 24)

NA group 
(n = 30)

NB group 
(n = 12)

Gly 8.55 ± 0.98 12.42 ± 5.43a 12.93 ± 4.50b

Ala 36.22 ± 7.70 48.28 ± 19.18a 50.30 ± 20.41b

Ser 3.20 ± 0.49 3.09 ± 1.46 3.60 ± 1.61

Pro 35.42 ± 11.90 32.08 ± 23.66 38.36 ± 24.40

Val 21.48 ± 3.78 21.22 ± 2.95 21.05 ± 3.61

Thr 5.00 ± 1.03 7.65 ± 3.51a 8.11 ± 4.78b

Oxo 9.34 ± 1.28 21.27 ± 11.83a 18.02 ± 8.30b

Leu 16.24 ± 3.08 18.06 ± 3.18 18.12 ± 3.07

Iso 9.05 ± 1.79 9.57 ± 2.07 10.73 ± 2.29

Asp 1.66 ± 0.16 1.24 ± 0.94 0.76 ± 0.34b

Gln 11.18 ± 1.36 9.16 ± 5.96a 12.43 ± 5.71b

Lys 0.14 ± 0.06 0.22 ± 0.07a 0.37 ± 0.08b,c

Glu 1.14 ± 0.34 6.72 ± 4.22a 6.65 ± 5.40b

Met 4.75 ± 0.81 3.64 ± 0.85a 4.52 ± 2.22

His 3.45 ± 0.51 1.85 ± 0.55a 2.03 ± 0.57b

Phe 11.42 ± 1.32 13.54 ± 2.33a 14.80 ± 3.77b,c

Arg 2.88 ± 0.97 1.11 ± 0.94a 1.65± 0.79b,c

Cit 10.17 ± 1.68 6.85 ± 7.97a 12.39 ± 8.30c

HA 0.58 ± 0.75 0.15 ± 0.16a 0.17 ± 0.17b,c

Tyr 10.60 ± 1.27 9.60 ± 2.11 9.65 ± 2.70

SDMA 0.10 ± 0.02 0.22 ± 0.07a 0.37 ± 0.08b,c

Trp 14.10 ± 2.59 12.28 ± 2.36a 9.94 ± 2.30b,c

Kyn 0.42 ± 0.09 0.50 ± 0.27 0.59 ± 0.22a

Cys 0.64 ± 0.18 0.10 ± 0.10a 0.30 ± 0.28b,c

Leu/Iso 1.80 ± 0.14 1.92 ± 0.22 1.71 ± 0.23c

Gln/Glu 10.39 ± 2.65 1.89 ± 1.19a 2.77 ± 2.12b

ALB/Leu 3.04 ± 0.55 2.42 ± 0.41a 2.38 ± 0.34b

ALB/Iso 5.48 ± 1.14 4.68 ± 1.23a 4.07 ± 0.40b

ALB/Val 2.28 ± 0.38 2.04 ± 0.33 2.09 ± 0.34

Pro/Cit 3.57 ± 1.29 14.14 ± 17.20 3.27 ± 1.74c

Phe/Tyr 1.08 ± 0.10 1.48 ± 0.40a 1.62 ± 0.50b

Kyn/Trp 0.03 ± 0.01 0.04 ± 0.03 0.06 ± 0.02c

Arg/Phe 0.25 ± 0.09 0.08 ± 0.08a 0.12 ± 0.07b,c

SDMA/SCr 1.13 ± 0.18 2.65 ± 0.88a 1.65 ± 0.61b,c

Ser/Gly 0.37 ± 0.04 0.27 ± 0.13a 0.27 ± 0.07 b

Val/Gly 2.57 ± 0.66 2.01 ± 0.83 1.85 ± 0.80b

Arg/Cit 0.29 ± 0.10 0.37 ± 0.44 0.24 ± 0.25

TAA 222.81 ± 30.08 247.66 ± 61.84 263.84 ± 64.50

TEAA 87.22 ± 13.00 93.00 ± 10.04 95.62 ± 16.55

TNEAA 135.58 ± 18.41 154.66 ± 60.72 168.22 ± 58.37

TBCAA 46.77 ± 8.52 48.86 ± 7.24 49.91 ± 8.20

TAAA 36.11 ± 4.87 35.42 ± 4.48 34.38 ± 6.78

TGAA 144.00 ± 22.07 158.06 ± 44.74 171.15 ± 53.09

TKAA 71.60 ± 9.81 77.73 ± 9.83 79.70 ± 12.74

TGKAA 50.17 ± 6.64 52.65 ± 6.44 53.23 ± 8.24

TBCAA/Tyr 4.40 ± 0.50 5.37 ± 1.54a 5.54 ± 1.59b

ALB/TBAA 0.78 ± 0.13 1.04 ± 0.59 1.02 ± 0.45

TEAA/TNEAA 0.64 ± 0.05 0.66 ± 0.19 0.63 ± 0.22

Table 2. Quantification result of 25 amino acids and related ratios in three individuals. aNA group VS. HV 
group, p < 0.05; bNB group VS. HV group, p < 0.05; cNB group VS. NA group, p < 0.05 in Tukey test. Data was 
presented as mean ± standard deviation. Gly, glycine; Ala, alanine; Ser, serine; Pro, Proline; Val, valine; Thr, 
threonine; Oxo, oxoproline; Leu, leucine; Iso, isoleucine; Asp, aspartic acid; Gln, glutamine; Lys, lysine; Glu, 
glutamic acid; Met, methionine; His, histidine; Phe, phenylalanine; Arg, argnine; Cit, citrulline; HA, hippuric 
acid; Tyr, tyrosine; SDMA, symmetric dimethylarginine; Trp, tryptophan; Kyn, kynurenine; Cys, cystine; TAA, 
total amino acid; TEAA, total essential amino acid; TNEAA, total nonessential amino acid; TBCAA, total 
branched chain amino acid; TAAA, total aromatic amino acid; TGAA, total glucogenic amino acid; TKAA, 
total ketogenic amino acid; TGKAA, total glucgenic and ketogenic amino acid. AMA (aminomalonic acid) 
concentrations from subjects were below LLOD. AA concentrations were presented in μg/mL.
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Some limitations of this analysis demanded further discussion. Firstly, the observed perturbed AA biomarkers 
could not be substantiated to be associated with the donor and recipient pharmacogenetic factors for AKI in cur-
rent study. In view of this, further interpretation of the metabolomics, with pharmacogenetic and demographic 
characters, was still needed for a robust integrated biomarker system. Secondly, only some preselected AAs had 
been investigated and tested in our study. Because it was becoming increasingly clear that the signs of AA profile 
disorders would entail and/or accompany with a suite of altered metabolites, which could be analyzed in the 
future LC-MS/MS based targeted metabolomics method that covered more predefined metabolites. Besides, our 
results reinforced the concept that AA metabolism were important for the AKI episode. Thirdly, the diagnostic 
value of the potential AAs or the AA profile should be validated with larger sample volume in clinical practice, 
and whether the alteration in the plasma AA preceded changes in the classically used biomarkers or other estab-
lished ones needs to be confirmed. Importantly, future researches should attempt to differentiate the causes of 
AKI, which was not identified in this study, because it was our preliminary research to correlate the diagnostic 
performance of targeted AA metabolic profiling analysis with kidney injury.

In summary, we investigated the perturbed AA metabolic pattern in plasma from renal transplantation 
patients by using targeted metabolomics study, based on a validated UHPLC-MS/MS method. This strategy 
resulted in the discovery of Arg and Trp cycle disturbances in AKI, with SDMA and Trp as potential risk pre-
dictors. Furthermore, SDMA and Trp combination revealed a larger AUC over SCr and any other single AA 
biomarker. To our knowledge, this was the first study to report that SDMA and/or Trp may function as potential 
biomarkers for prediction of AKI in renal transplantation patients.

Figure 2. Heat-map and clustering analysis of amino acid concentrations and related ratios with clinical 
biochemical indexes in NB group. Variable in each row represents an amino acid or a ratio, and each column 
represents a clinical feature. The correlation coefficients were represented with red for positive correlation and 
green for negative ones as illustrated in the color key. Variables that showed similar correlation coefficients were 
clustered together.
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Methods
Study population. A retrospective review of a prospectively collected database of kidney transplants at 
Shanghai Changzheng Hospital from Nov. 2013 to Aug. 2014 revealed 42 hospitalized kidney transplantation 
patients suitable for the study. Each patient enrolled in this study received a kidney transplantation from a liv-
ing donor at our institution (Organ Transplantation Center, Changzheng Hospital, Second Military Medical 
University, Shanghai). Recipients of a deceased donor kidney were not included in this study and no organs were 
procured from (executed) prisoners. Patients who suffered from diabetes, hypoglycemia, inherited metabolic 

Figure 3. The ROC results of SDMA, SDMA/SCr, Trp, Cys, Phe, Arg, Leu/Iso and Kyn/Trp.

Figure 4. SDMA metabolic pathways. PRMT, protein arginine methyltransferase; NOS, nitric oxide synthase; 
DDAH, dimethylarginine dimethyl amino hydrolase; DMA, dimethylarginine; CAT, cationic amino acid 
transporter.
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diseases, and other metabolic disorders were excluded. All the clinical and research activities reported here were 
in accordance with the Declaration of Helsinki as well as other relevant guidelines and regulations, and approved 
by the ethical board of Shanghai Changzheng Hospital. Informed consent was retrieved from all the participants. 
They were treated with tacrolimus (FK506, 0.05 mg/kg), mycophenolate mofetil (1.0 g/d). Corticosteroids were 
given intravenously during the operation and over the next 2 days. From day 3 post-transplantation, prednisone 
(0.15 mg/kg) was prescribed with a dose reduced to 10 mg/d at the end of 4 months. Besides, patients were forbid-
den from any drug or food that could influence the FK506 concentrations. Blood samples for the determination of 
trough FK506 concentrations (C0) were taken immediately prior to the morning dose for therapeutic drug mon-
itoring (TDM), with C0 maintained at 10–12 ng/mL within the first three post-operative months, 8–10 ng/mL  
in the post-operative 3–6 months, 6–8 ng/mL in the post-operative 6–12 months, and 4–6 ng/mL thereafter. As a 
retrospective study, the plasma from the enrolled patients were from the sample after TDM.

Based on KDIGO (Kidney Disease: Improving Global Outcomes) criteria41,42, 12 patients were diagnosed with 
AKI, as there was an increase in SCr of more than 0.3 mg/dL (26.5 μmol/L) or at least a 50% increase of SCr over 
baseline values. As at least three independent groups were suggested for metabolite biomarkers identification 
study, healthy control (HV), disease group (NB), and an additional related-disease control group (NA) were 
investigated in our targeted metabolomics study4,43.

All patients were enrolled following the inclusion criteria: subjects were followed up in Shanghai Changzheng 
Hospital and were clinically stable at the time of the study. Subjects were excluded when any of the follow-
ing exclusion criteria was met: age under 18 or above 65, being a recipient of a multi-organ transplant, cancer 
patients, residing abroad, being pregnant, presence of obstructive uropathy which was ruled out by performing a 
renal ultrasound, and inability to give informed consent. Demographics and clinical data of subjects investigated 
were listed in Table S1. eGFRs were calculated with the abbreviated Modification of Diet in Renal Disease study 
(MDRD) equations44.

Sample collection and preparation. Blood samples were taken in the morning after an overnight fasting 
in EDTA-3K tubes, and centrifuged at 4000 × g for 10 min at 4 °C. Plasma samples were stored at −80 °C before 
analysis.

Thawed plasma sample (100 μl) was treated with acetonitrile (300 μl, containing 0.2% formic acid and 400 ng/ml  
ISs) in 1.5 ml Eppendorf tubes for sample preparation. The mixture was vortexed and then centrifuged at 
12,000 × g for 15 min at 4 °C. The supernatant was transferred to chromatography vials, prior to UHPLC–MS/
MS analysis.

Metabolic profiling analysis. Targeted AA metabolic profiling was obtained by a non-derivatization 
UHPLC–MS/MS method, applying heptafluorobutyric acid as ion-pair reagent. Analysis was performed on a 
UHPLC system (Agilent 1290 series, Waldbronn, Germany) coupled with a 6460 triple-quadrupole mass spec-
trometer (Agilent Inc., Singapore, Singapore), by an established method with an expanded assay ability. In brief, 
assay was studied on a Zorbax SB-C18 column (3.0 mm × 150 mm, 5 μm, Agilent) maintaining at 50 °C. A binary 
solvent system consisting of methanol (A) and water (B, formic acid and 0.2% heptafluorobutyric acid) was 
used for gradient elution. The following gradient program was used: 0 min, 2% elute A; 1−4 min, 15% elute A; 
4−5 min, 20% elute A; 9.5 min, 80% elute A; post time, 3.5 min. Flow rate was set at 0.4 mL/min and 2 μL of sam-
ples was injected. Data acquisition was carried out in the multiple reaction monitoring (MRM) mode (SI, Figs S4 
and S5). The electrospray ionization (ESI) voltage was set at 5 kV. The sheath gas flow rate was 12 L/min at 350 °C. 
The cone gas flow rate was 10 L/min and interface temperature was 325 °C.

Figure 5. Tryptophan metabolic pathways.
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Statistical analysis. The raw metabolomics data files were conducted on Agilent Quantitative Analysis ver-
sion B.06.00 analyst data processing software (Agilent Corporation, USA). Data were expressed as mean ± SD in 
normal distribution variables. Differential metabolites among three groups were identified by the use of ANOVA 
analysis with a threshold of p < 0.05. Multi-group comparisons were achieved by a strict Tukey’s post-hoc test in 
the SPSS 11.0 software (SPSS Inc., Chicago, IL, USA). Correlation analyses were performed using the Pearson or 
Spearman Rank test from the R package, illustrated by heat-map. Receiver operating characteristic (ROC) anal-
yses were performed to obtain the area under the ROC curve (AUC). Youden index was used to identify the best 
biomarkers cut-off level to distinguish between NA and NB patients.
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