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Competition and dual users in 
complex contagion processes
Byungjoon Min1,2 & Maxi San Miguel2

We study the competition of two spreading entities, for example innovations, in complex contagion 
processes in complex networks. We develop an analytical framework and examine the role of dual users, 
i.e. agents using both technologies. Searching for the spreading transition of the new innovation and 
the extinction transition of a preexisting one, we identify different phases depending on network mean 
degree, prevalence of preexisting technology, and thresholds of the contagion process. Competition 
with the preexisting technology effectively suppresses the spread of the new innovation, but it also 
allows for phases of coexistence. The existence of dual users largely modifies the transient dynamics 
creating new phases that promote the spread of a new innovation and extinction of a preexisting one. It 
enables the global spread of the new innovation even if the old one has the first-mover advantage.

The spread of rumors, fads, innovations or new technologies in a global scale occurs more frequently than before 
due to the intensive use of new information and communications technologies1,2. In order to model and under-
stand the mechanisms of spreading phenomena3–11, quantitative approaches to contagion processes have become 
important. A pioneer work about diffusion of collective behavior4 and its variant adapted for the spread on com-
plex networks5 proposed a model of “complex contagion”12–15 incorporating a threshold mechanism. This is often 
called the threshold model in which each agent requires a sufficiently large fraction of neighbors that have already 
adopted a spreading new technology to adopt it. Therefore, neighbors affect collectively (group interaction) the 
probability of adoption rather than independently as in the “simple contagion” of well known epidemic models16. 
Research on spreading by complex contagion sheds light on fundamental aspects of collective phenomena, non-
linearity in diffusion, cascading dynamics, and first order phase transitions in complex networks. It has focused 
on aspects such as seed effect17, clustering18, modularity6,19–21, multiplexity22,23, multi-stage contagion24, and inter-
action with simple contagion25 or coordination processes26.

Models of complex contagion typically assume that there exists no preexisting technology that competes with 
a new one, so that the new technology spreads in a system of susceptible agents2,5,6. However, it is common that 
a preexisting technology is used by some fraction of the agents in the system. Therefore, the spread of a new 
competing technology involves the decline, coexistence or extinction of the actual predominant technology27–29. 
Competition between ideas or products30–33 is an essential ingredient in the modeling of contagion process. While 
there exist several studies of simple contagion with cooperative epidemics34–36, competing epidemics37,38, and 
interacting epidemics on multi-layer networks39–41, complex contagion with interactions among multiple spread-
ing entities has not been, so far, addressed in detail.

A most clear example of competition in technology spreading is that of new social networking services in top 
of a preexisting technology27,28. A new service competes with preexisting ones in the market share. The initial 
technology can take first-mover advantage such as preemption, technological leadership, and switching cost to 
other ones, and thus the spread of the new technology is effectively hindered. Therefore, one might expect that 
when an existing product occupies a dominant position in the market, the global spread of a newly launched 
product of similar characteristics is hardly successful. However, it is not rarely observed that a late technology 
successfully spreads into population, such as the success of new online social networking services28. These obser-
vations call for an understanding of the competition dynamics in complex contagion processes. In this paper 
we address this question considering the spreading of a new technology competing with a preexistent one. An 
important fact in this context is that some agents use multiple technologies at the same time. For instance, it is 
reported that 52% of people use multiple different social networking services because different neighbors use 
different software28. We thus explore the role of the agents using at the same time the old and new technologies. 
The consideration of these “dual users” is also motivated by analogy with bilingual agents on problems of language 
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competition42–44 where they modify in essential ways the competition dynamics. Within a rich phenomenology 
of spreading and extinction transitions, as well as phases of coexistence, we find that the existence of dual users 
facilitates the spread of a new technology and the decline of the preexisting one. Dual users act as catalysts of 
extinction transitions and coexistence phases. Therefore, the conflict between the first-mover advantage and suc-
cess of a late mover can be resolved by introducing “dual users” which promote the spread of a late mover.

Model
Here we consider a model of complex contagion of a new product B with threshold mechanism4,5 on a network 
with N nodes in which a preexisting technology A is prevalent. Initially, nodes can be either susceptible (S) or in 
the A state in which A has been adopted. We assume an initial fraction ρA of nodes in state A and an initial fraction 
ρS of nodes are in state S. To model the early adoption of a new technology B, we also select a small initial fraction 
ρB of nodes in state B as seeds to initiate the spreading of B. We consider three different models for the mechanism 
of spreading of B: independent [Fig. 1(a)], exclusive [Fig. 1(b)], and compatible [Fig. 1(c)] models. (i) In the inde-
pendent model, the preexisting technology A and the new technology B are independent and do not interact with 
each other. If a fraction of neighbors of node i in B state is larger than a threshold θB ( θ≥k k/B

i i
B) where kj

i is the 
number of neighbors of i in j state and ki is the total number of neighbors of node i (degree of node i), node i 
changes to state B state regardless of the initial state of node i, either susceptible S or A. Therefore, the independent 
model is essentially the same as the original threshold model for the spreading of a single technology4,5. (ii) In the 
exclusive model, A and B compete and additional requirements exist for a user of A to change its state adopting B. 
To be specific, if θ≥k k/B

i i
B, node i in state S adopts B, as the independent model. However, if node i is in state A, 

it changes to state B only if the fraction of B neighbors of i is larger than θB and at the same time the fraction of A 
neighbors is smaller than θA ( θ≥k k/B

i i
B and θ<k k/A

i i
A). (iii) In the compatible model, we introduce dual users in 

an intermediate state AB in the transition from A to B modeling agents that use both technologies A and B. Nodes 
in the susceptible state S change to state B as in the independent or exclusive model. However, a node i in state A 
becomes a dual user AB by adopting B when θ+ ≥k k k( )/B

i
AB
i i

B. A dual user i (AB state) changes into B state by 
discarding A, when the fraction of neighbors in A is less than the threshold for A θ<k k( / )A

i i
A . In all three models, 

dynamics proceeds from the initial state until a final frozen configuration is reached which depends on parameters 
such as threshold parameters θA, θB, initial fraction ρA, ρB, and network structure as well.

Theory
The general question addressed is about the conditions for the spreading of B, but in particular we ask about the 
possible coexistence of A and B and the role of dual users in the spreading of B. To compute the final fraction of 
nodes in each state we provide a general theory of complex contagion in which each node can be in n states. The 
initial fraction of nodes with state x is ρx where ∈ …x n{1, 2, , }. The final average fraction of nodes in state x, Rx, 
can be expressed as

∑ ρ ρ= −
=

R f y x f x y[ ( , ) ( , )],
(1)

x
y

n

y x
1

where f(x, y) is the transition probability from state x to y. On locally tree-like networks in the limit N → ∞, the 
transition probability from x to y can be computed as5,17,45,

∑ ∏ η=
→

→ =
f x y P k T k q x x y( , ) ( ) ( ) ( ) ( , )

(2)k w

n

w
k

0
1

w

where η(x, y) is a threshold function taking values 0 or 1 for the transition from state x to y defined by the adop-
tion rule for a pair of states (x, y), kx represents the degree of a node in a given state x, k is the degree of a node 

= ∑ ∈ …k kx n x{1,2, , } , P(k) is the degree distribution for nodes, the vector of degree for each state is 
→

= …k k k k{ , , , }n1 2 , and multinomial distribution of them is →
= ∏T k( ) k

k0
!

!
w w . Here, qx(y) is the probability that 

a node, connected to a node in state y, is in state x.
In order to obtain f(x, y), we first calculate qx(y) by introducing the transition probability g(x, y, z) from state x 

to y for a node connected to a node in state z:

Figure 1.  Schematic illustration of (a) independent, (b) exclusive, and (c) compatible models. Open circle, 
triangle, square, and filled circle respectively represent susceptible S, A, B, and dual user AB.
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∑ ρ ρ= − .
=

q y g w x y g x w y( ) [ ( , , ) ( , , )]
(3)x

w

n

w x
1

Next, we define the excess degree of a node for a given state x as κx. Considering g(x, y, z) where a node is 
connected to a node in state z ,  we can define the vector of excess degree for each state as 
κ→ = … − …k k k k{ , , , 1, , }z z n1 2 . Assuming locally-tree like structures, we can compute g(x, y, z) using the 
self-consistency equations5,17:

∑ ∏κ η=
〈 〉

→
κ

κ

→ =
g x y z kP k

k
T q x x y z( , , ) ( ) ( ) ( ) ( , , ),

(4)
z

w

n

w1
1z

w

where η(x, y, z) is a threshold function for the transition from state x to y for a node connected to a node in state 
z and κ→ =

κ∏
−

T ( )z k1
!

( 1) !
w w . The differences among possible threshold contagion models are encoded in the threshold 

functions η(x, y) and η(x, y, z) that account for different transition rules. Details of this theoretical framework for 
our independent, exclusive, and compatible models are given in Methods. Our approximation is exact in a tree 
structure and produces very good agreement with numerical simulations for sparse tree-like graphs.

Results
In a threshold spreading model of a single technology (n = 2, x = S or x = A), there exists a single well known tran-
sition4,5 from a non-adopting phase to a spreading phase in which, by a global cascade mechanism, a large fraction 
of agents adopt the technology x = A from an initial seed. In our set-up with A initially spread, and an initial seed 
of B, we search for transitions for the spreading of B, as well as for the extinction of A. When these transitions do 
not coincide there will be a phase of coexistence of A and B. Different phases and transitions can be identified 
calculating from Eqs. (1–4) the final fraction of nodes RA and RB in states A and B respectively. We define four pos-
sible phases. (i) Phase S: extinction of A and no spreading of B, (ii) Phase A: survival of A and no spreading of B, 
(iii) Phase B: extinction of A and spreading of B, and (iv) Coexistence phase A + B: survival of A and spread of B.

An example of how these phases can be identified for the compatible and exclusive model is given in Fig. 2 
showing RA and RB for particular parameter values in an Erdös-Rényi (ER) network with 〈k〉 = 4. The values 
chosen for θA and θB are in the range (θ < 1/4) in which there is a spreading phase in the independent model [the 
details in the Supplementary Information (SI)]. Extremely good agreement is found between theory and simu-
lation. The transition between different phases can be accurately identified by a local maximum in the number 
of iteration (NOI) of the recursion equations (Eq. 4), reflecting critical slowing down at the transition point. As 
the initial fraction of nodes in state A, ρA, decreases we can observe two transitions in RA and RB: a transition 
to extinction of A and a transition to spreading of B. For the compatible model, the transitions observed for 
RA and RB coincide when θB = 0.22 (single peak of NOI), but they appear at different values of ρA when θB < 0.2 

Figure 2.  Theory (line) and simulation results (symbol) for the final fraction of A, B and NOI for (a–c) 
compatible and (d–f) exclusive with respect to ρA on ER networks with N = 105, 〈k〉 = 4, θA = 0.2, and ρB = 0.01 
are shown with θB = 0.1 ( ), 0.16 ( ), 0.19 ( ), and 0.22 ◊( ). The local peak of NOI accurately indicates the 
transition of the spread of RB and the extinction of RA.
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allowing for a coexistence phase A + B. Note also that these transitions are discontinuous for θ > 0.2 (θB = 0.22), 
but become continuous for θB < 0.2. For the exclusive model, a coexistence phase (A + B) appears consistently for 
all θB. The spreading transition for RB is also discontinuous here for θB > 0.2 and continuous for θB < 0.2.

Proceeding along these lines we can construct from our analytical solution phase diagrams as a function of 
different parameters: Fig. 3 shows a plot density of RB for the exclusive and compatible models in the plane θB − 
ρA with different transition lines (see Methods for their calculation). Varying θB, the transition lines in the phase 
diagram is discontinuous rather than a continuous curve because the threshold of our model is based on the ratio 
to the degree. Specifically, we can observe sharp transitions at the point where θB = n/k with n being an integer. 
Note that such discontinuity is also found in the prototypical threshold model5. Phase A always exists for θB > 1/4 
larger than the critical value of the independent model (θc = 1/4) since θA is less than 1/4. For θB < 1/4 phase A 
occurs also in both models when ρA is above the critical value for spreading of B in the compatible model. On the 
other hand, also for θB < 1/4, phase B occurs in both models when ρA is below the transition line for spreading 
of B in the exclusive model. In between these two regimes we find three domains of parameters in which results 
are different for the two models. These domains give evidence of the important role of dual users AB in favoring 
the spread of B. In region I we find phase A in the exclusive model and phase B in the compatible model: This 
is an extreme effect of dual users leading to the extinction of A and spreading of B. In region II we find phase 
A + B in the exclusive model and phase B in the compatible model: Dual users destroy coexistence in favor of full 
spreading of B. In region III we find phase A in the exclusive model and phase A + B in the compatible model: 
Dual users spread B allowing for coexistence. In this coexistence regime, there is a large proportion RAB of dual 
users in the final state, while in regions I and II dual users play an important transient role in the spreading of B, 
but essentially disappear in the final state. In summary, dual users behave as an intermediate step in the transition 
from A to B, mitigating the first-mover advantages of A.

We next look at network effects that confirm the important role of dual users in the spreading of B (Fig. 4). We 
consider a point in region II of Fig. 3 and examine the effect of varying the average degree 〈k〉 of the ER network. 

Figure 3.  (a) RB, (b) RAB for the compatible model, (c) RB for the exclusive model, and (d) phase diagram in the 
ρA − θB plane, with 〈k〉 = 4, θA = 0.2, ρA = 0.6, and ρB = 0.01. Transition lines are indicated as: (i) Compatible 
model: Extinction of A (co, RA), spreading of B (co, RB), (ii) Exclusive model: Extinction of A (ex, RA), spreading 
of B (ex, RB), and (iii) Transition for the independent model (ind).
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The compatible model shows three transitions when increasing 〈k〉. Since networks do not form a globally con-
nected component below the percolation threshold (〈k〉pc = 1), spreading of B does not occur when 〈k〉 < 1. A first 
continuous spreading transition for B leads from phase A to the coexistence phase A + B. A second continuous 
extinction transition for A occurs around 〈k〉 ≈ 4 leading from phase A + B to phase B. A final transition from B 
to A occurs for the high connectivity regime ( 〈 〉k 10) where initial fraction of B does not exceed the threshold 
θB, so that the spread of B disappears abruptly. For the exclusive model, phase B between A + B and A no longer 
exists and RA > 0.5 for all values of 〈k〉, indicating a strong preemptive advantage of A. Comparing the two models 
we find again regions I and II with the same characteristics than in Fig. 3 where dual users play a dominant role 
in the spreading of B. Again this transient dynamics affects with only a significant number of dual users in the 
final state (RAB) in the coexistence phase A + B of the compatible model.

Dependence of our results on θB is seen in Fig. 4(c,d) where results for RB are shown in the 〈k〉 − θB plane. 
The range of parameters in which B spreads in the exclusive model is smaller than in the independent model due 
to the hindering effect of a preexisting technology A, but this effect is smaller for the compatible model. More 
importantly, when B spreads, the final fraction RB is much larger in the compatible model than in the exclusive 
model. Note that phase B in Fig. 4(a) is within the RB transition line of the compatible model [Fig. 4(c)], while 
phase A + B in Fig. 4(b) is within the RB transition line of the exclusive model [Fig. 4(d)]. Results for for the full 
range of values of 〈k〉, ρB, θB and θA are further shown in the SI. We find that our main conclusions are consistently 
valid for a broad range of parameters.

Discussion
In summary, we have discussed models of complex contagion for the spreading of a new innovation B competing 
with an established one A. We obtain perfect agreement between theory and simulation. Competition, as com-
pared with the independent model, is shown to have a hindering effect on the spreading of the new technology. 
However, competition can create a gap between the extinction and spreading transitions that allows for a coex-
istence phase. It can also change the nature of the spreading transition from first to second order. Moreover, the 
existence of dual users is found to be a key mechanism to promote the spreading of B in a system dominated by a 
A, allowing to overcome the hindering effect of tightly clustered of agents using A. Dual users create new phases 
in which they either lead to extinction of A in favor of spreading of B, or destroy coexistence in favor of spreading 
of B or create coexistence by B spreading. The role of dual users provides a plausible explanation to reconcile two 
seemingly contradictory factors: the first-mover advantage meaning that the prevalence of A potentially blocks 
the spread of B, and the success of late-mover frequently observed in reality. Practically, our study suggests a 
strategic way of spreading a new technology in a competitive environment by offering it as a good compatible 
alternative instead of promoting changing to the new technology. Further studies may be needed to examine the 
role of dual-users in simple contagion models, opinion dynamics, and coevolutionary dynamics, to name a few.

Methods
Theory of compatible model.  We implement the developed general theory of complex contagion into 
the compatible model. The final fraction of state A, B, AB, and S are defined as RA, RB, RAB, and RS, respectively. 
We further define the initial fraction of A, B, AB, and S as ρA, ρB, ρAB and ρS. These variables are normalized as 
RA + RB + RAB + RS = 1 and ρA + ρB + ρAB + ρS = 1. Note that ρAB = 0 since the coexisting state cannot exist initially. 
Then the main purpose of the theory is to calculate the final fraction of nodes in each state for a given initial con-
dition. Given the initial fraction of each state, the final fraction of each state for the compatible model is given by

ρ= − −R f A AB f A B[1 ( , ) ( , )], (5)A A

Figure 4.  Theory (line) and numerical results (symbol) for the final fraction of A, B, AB nodes, and NOI for 
(a) compatible and (b) exclusive models on ER networks (N = 105) as a function of 〈k〉 with θA = 0.2, θB = 0.16, 
ρA = 0.6, and ρB = 0.01. The phases (A, B, and A + B) and transitions between them are identified by the peak of 
NOI. RB for (c) compatible and (d) exclusive models in the 〈k〉 − θB plane, with θA = 0.2, ρA = 0.6, and ρB = 0.01. 
Transition lines are indicated as in Fig. 3.
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ρ ρ ρ= + +R f S B f A B( , ) ( , ), (6)B B S A

ρ=R f A AB( , ), (7)AB A

where f(x, y) represents the transition probability from state x to y. Then, the transition probability f(x, y) on a 
locally-tree like network can be calculated as

∑ η=
→

.
→

f x y P k T k q x q x q x q x x y( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( , )
(8)k

A
k

B
k

AB
k

S
k

0
A B AB S

Here, kx represents degree of a node for a given state x, k is the degree of a node = ∑ ∈k kx A B AB S x{ , , , } , P(k) is the 
degree distribution of underlying networks, the vector of degree for each state is 

→
=k k k k k( , , , )S A B AB , and mul-

tinomial distribution of them is →
=T k( ) k k k k

k0
! ! ! !

!
A B AB S . qx(y) is the probability that a node, connected to a node in 

state y, is in state x. And, threshold η(x, y) is given by the rule of adoption for a pair of state (x, y). Specifically 
η θ= −+S B H( , ) ( )k k

k B
B AB , η θ θ= − −A B H H( , ) ( ) ( )k

k B A
k
k

B A , and η θ θ= − −A AB H H( , ) ( ) ( )k
k B

k
k A

B A  where 
H(x) is the Heaviside step function, H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0.

A set of variables qx(y) can be obtained by introducing the transition probability g(x, y, z) from state x to y for 
a node connected to a node in state z:

ρ= − −q z g A AB z g A B z( ) [1 ( , , ) ( , , )], (9)A A

ρ ρ ρ= + +q z g S B z g A B z( ) ( , , ) ( , , ), (10)B B S A

ρ=q z g A AB z( ) ( , , ), (11)AB A

where ∈z S A{ , }. Furthermore, g(x, y, z) can be calculated by the self-consistency equations with the locally-tree 
like structures

∑ κ η= → .
κ

κ κ κ κ

→ 〈 〉
g x y z T q x q x q x q x x y z( , , ) ( ) ( ) ( ) ( ) ( ) ( , , )

(12)
kP k

k z A B AB S
( )

1
z

A B AB S

where κi is the excess degree of state i, and η(x, y, z) is a threshold function for the transition from state x to y for 
a node connected to a node in state z. η(x, y, z) for our compatible model is given by η η= =S B S S B A( , , ) ( , , )  

θ−+H( )k k
k B

B AB , η θ θ= − −A B S H H( , , ) ( ) ( )k
k B A

k
k

B A , η θ θ= − − +A B A H H( , , ) ( ) ( )k
k B A

k
k

1B A , η =A AB S( , , )  
θ θ− −H H( ) ( )k

k B
k
k A

B A . and η θ θ= − −+A AB A H H( , , ) ( ) ( )k
k B

k
k A

1B A . Note that η(A, B, A) is different from η(A, 
B, S) in θ − +H( )A

k
k

1A  since in η(A, B, A) an additional neighbor with A state should be considered.

Theory of exclusive model.  For the exclusive model, since coexisting AB state is not allowed, the final 
fraction of each state is given by

ρ= −R f A B[1 ( , )], (13)A A

ρ ρ ρ= + + .R f S B f A B( , ) ( , ) (14)B B S A

Similarly, the variables qx(y) are

ρ= −q z g A B z( ) [1 ( , , )], (15)A A

ρ ρ ρ= + +q z g S B z g A B z( ) ( , , ) ( , , ), (16)B B S A

where ∈z S A{ , }. The transition probability f(x, y) and g(x, y, z) can be computed by using the same equations for 
compatible model (Eqs. 8 and 12) but with different η(x, y) and η(x, y, z). To be specific, for the exclusive model, 
η θ= −S B H( , ) ( )k

k B
B , η θ θ= − −A B H H( , ) ( ) ( )k

k B A
k
k

B A , η η θ= = −S B S S B A H( , , ) ( , , ) ( )k
k B
B , η =A B S( , , )  

θ θ− −H H( ) ( )k
k B A

k
k

B A , and η θ θ= − − +A B A H H( , , ) ( ) ( )k
k B A

k
k

1B A .

Theory of independent model.  For the independent model, nodes in A state do not interact with nodes in 
B state and thus the final fraction of nodes is given by

ρ= −R f A B[1 ( , )], (17)A A

ρ ρ ρ= + + .R f S B f A B( , ) ( , ) (18)B B S A

And qx(y) are

ρ= −q z g A B z( ) [1 ( , , )], (19)A A
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ρ ρ ρ= + +q z g S B z g A B z( ) ( , , ) ( , , ), (20)B B S A

where ∈z S A{ , }. The thresholds for the independent model are simply given by η η θ= = −S B A B H( , ) ( , ) ( )k
k B
B  

and η η η η θ= = = = −S B S S B A A B S A B A H( , , ) ( , , ) ( , , ) ( , , ) ( )k
k B
B .
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