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Simple method for fabricating 
scattering layer using random 
nanoscale rods for improving 
optical properties of organic light-
emitting diodes
Jin Ho Kwack1,2, Junhee Choi1, Cheol Hwee Park1, Ha Hwang1, Young Wook Park3 &  
Byeong-Kwon Ju1

We investigated a low-temperature mask-free process for preparing random nanoscale rods (RNRs) 
as a scattering layer. The process involves spin coating and dry etching, which are already widely 
applied in industry. Our film exhibited 17–33% optical haze at 520 nm wavelength and 95% total 
transmittance in the visible range. Therefore, this film can be used as a scattering layer for improving 
viewing angle characteristics and decreasing substrate mode loss in organic light-emitting diodes 
(OLEDs). Specifically, we focussed on varying the height and density of the RNRs to control the optical 
characteristics. As a result, the OLEDs with RNRs revealed a variation in colour coordinates of Δ(x, 
y) = (0.007, 0.014) for a change in the viewing angle, which was superior to those without the RNRs that 
displayed a variation of Δ(x, y) = (0.020, 0.034) in CIE 1931. Moreover, the OLEDs with RNRs exhibited 
31% enhanced external quantum efficiency compared to those of the OLEDs with the bare substrate. 
The flexibility of the polymer used for the RNRs and the plasma treatment suggests that the RNRs can 
be applied to flexible OLED displays and lighting systems.

Organic light-emitting diodes (OLEDs) are being widely applied in displays for mobiles and televisions owing 
to their self-emitting characteristics, excellent colour gamut, high-speed operation, and applicability in flexi-
ble or stretchable devices1. Practical OLEDs function based on phosphorescence owing to their nearly 100% 
internal phosphorescence efficiency2,3. However, the external quantum efficiency of OLEDs is ~20% because the 
surface plasmon polariton modes at the metal-organic interface, the waveguide mode in the indium tin oxide 
(ITO)/organic layer, and the substrate mode in the glass substrate produce light loss4–8. Generally, light loss in 
the substrate mode is larger than that in the waveguide mode due to small differences in refractive index between 
the ITO/glass interface and the glass/air interface9. In addition, microcavity top-emitting organic light-emitting 
diodes (TEOLED) without the loss of the substrate mode and having the advantage of improved colour purity 
and aperture ratio have been applied to mobile displays. However, microcavity TEOLED originally had a prob-
lem associated with viewing angles due to the blue shift that occurred with the variation of the sight angle, even 
though the light efficiency along the normal direction was amplified. Therefore, researchers have attempted to 
find solutions for improving the light extraction and viewing angle of OLEDs10.

Different approaches have been adopted with the aim of optimizing light extraction and viewing angle, includ-
ing micro lens array (MLA)5,11–16, dielectric Bragg gratings17–19, surface plasmons20, buckling patterns21, periodic 
corrugation8, low-index grids22, and photonic crystals23. Methods that modify the internal or external surfaces 
of the substrate of OLEDs minimize the total internal reflection. Such surface shapes are produced by different 
technologies which traditionally involve photo-lithography or printing, moulding, and embossing methods24–28. 
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Therefore, these technologies employ at least the photo-lithographic step or utilize lithographic templates once. 
They generally end up being considerably complex or expensive for mass production. On the other hand, other 
researchers have reported a simple scattering layer synthesized by competitive and scalable methods. In these 
methods, particles or voids having different refractive indices were embedded in a polymer matrix and utilized 
for the scattering layer29–36. However, because the particles or voids are micro-sized or the pitch between the 
nearest particles or voids is micro-sized, these techniques reveal a small effect of diffraction that is difficult to 
control. In addition, to prevent the loss of the substrate mode, the most representative MLA has larger visibility 
than a nano-sized array because of its size. Alignment is a problem in the case of high-resolution displays with 
very small pixels.

In this paper, we propose a simple method to fabricate random nanoscale rods (RNRs) as scattering layers for 
enhancement of light extraction and improvement of viewing angle characteristics in OLEDs. In our device, there 
is virtually no spectral distortion or shift, which are issues observed in 2D photonic crystal-based OLEDs, and the 
spectral shift according to the change in viewing angle is reduced. This layer is fabricated by a cost-effective and 
scalable procedure that consists of coating and etching the polymer at low temperatures (below 100 °C) without 
photomasks or templates. Additionally, the RNRs can control the diffraction as well as scattering effects in the vis-
ible wavelength range owing to the distance between closest rods and are compatible with high-resolution displays 
for virtual reality because the process of alignment between the individual pixels in the panel and the scattering 
layer is unnecessary. The RNRs can also be applied in flexible displays and lighting owing to the use of etched pol-
ymers. OLEDs equipped with RNRs exhibit superior optical properties such as high external quantum efficiency 
(EQE), high luminance efficiency (LE), and colour variation with changes in viewing angle, to control OLEDs.

Results and Discussion
To investigate the optical effect of RNRs on glass, the electrical field distribution was simulated by the 
finite-difference time domain (FDTD) method. The boundary conditions for the simulation were set for a 
perfect optically matched layer to avoid the reflection of electromagnetic waves at the edges of the struc-
ture on all the sides, except for the metal cathode layer. The simulated structure consisted of an alumin-
ium cathode, N,N’-bis(naphthalen-1-yl)-N,N’-bis(phenyl)-benzidine (NPB; refractive index n = 1.81), 
tris(8-hydroxy-quinolinato)aluminium (Alq3; n = 1.72), ITO (n = 1.9), glass (n = 1.52), SU-8 polymer, and RNRs 
(n = 1.59). A dipole source of visible wavelength was generated in the Alq3 layer, and one transverse electric (TE) 
and two transverse magnetic (TM) modes were used37. To reflect the randomness of RNRs in the simulation, 
their height was varied from 1000 nm to 1200 nm and width from 50 nm to 150 nm (Supplementary Information 
Fig. S1). In the reference structure, most of the light incident at an angle above the critical angle became a wave-
guide because of the difference in refractive index between glass and air (Fig. 1a). In order to confirm the optical 
effect of the SU-8 polymer, a simulation using SU-8 without the pattern was performed (Fig. 1b). As a result, the 
optical path was almost unchanged, and the difference between the refractive indices of glass and air slightly 
increased; this difference seemed to be slightly adversely affected for external light extraction. In contrast, in the 
RNRs present on the glass structure, some portions of the waveguide light were allowed to escape from the glass 
substrate, and light extraction increased below the critical angle (Fig. 1c). Optical phenomena such as refraction, 
diffraction, and interference were produced by the RNRs because the differences in refractive index at the inter-
face between glass and air changed and the random periodic rods revealed distances between each other that were 
similar to the visible wavelength. Figure 2e illustrates the light path in OLEDs. The photons trapped (rays 2 and 
3) within the glass are scattered by the RNRs, increasing the probability of them being emitted from the structure. 
Furthermore, as a result of simulation, in which scattering occurs several times in one rod, it can be inferred that 
scattering occurs more frequently when the height of the rod is greater.

It is desirable to fabricate a nanostructure of proper height and periodicity that is comparable to the wave-
length of the visible range in order to enhance light extraction. For manufacturing RNRs, SU-8 polymer was 
chosen because it is highly transparent to visible light and has a higher refractive index than glass. Figure 2 shows 
the cross-sectional scanning electron microscopy images of the RNRs obtained under different plasma etching 
conditions. Obtained by using only an oxygen plasma for a duration of 9 min (denoted as RNRs 1), the structure 
was random columnar-like with high aspect ratio and density38. The height and density of RNRs 1 were about 
1200 nm and 9.7 ea/µm2, respectively (Fig. 2a, Supplementary Information Fig. S2a). The width of the individual 
rods was observed to be approximately 50 nm. To control the height and density, we applied an additional argon 

Figure 1. FDTD simulation of E-field distribution induced by transverse magnetic and electric dipoles: (a) 
Reference (w/o RNRs), (b) unpatterned SU-8 on a glass structure, and (c) RNRs on the glass structure.
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plasma treatment at higher powers and lower process pressures than the oxygen plasma. The low pressure led 
to an increase in the mean free path of argon ions and reduced the energy loss of these ions as they approached 
the RNRs. In general, the etching process using argon plasma carried out in a reactive ion etcher resulted in 
anisotropic and directional features due to the utilization of the physical bombardment energy38. As a result of 
these features, the height and density were adjusted as much as a target to the little changed width of the RNRs. 
The three treated RNRs shown in Fig. 2b–d corresponded to argon plasma treatment durations of 3, 6, and 9 min 
(denoted as RNRs 2, RNRs 3, and RNRs 4, respectively), while the conditions of the oxygen plasma process 
remained unchanged. As the duration of the argon plasma treatment increased, the height decreased to 950, 580, 
and 440 nm, respectively, and the density of the RNRs reduced (Supplementary Information Fig. S2).

Figure 3 shows the total transmittance and haze as functions of wavelength for the different RNRs. According 
to the material data sheet provided by Micro-Chem., SU-8 is highly transparent with little absorption in the vis-
ible range. The optical properties of unpatterned SU-8 fabricated by spin coating showed that the total transmit-
tance was over 95% while the haze was less than 1%. All the RNRs exhibited total transmittance values above 90%. 
Therefore, the RNRs were thought to be appropriate films for light extraction, with minimal light loss through 
absorption and back scattering. The haze slightly increased from 30.1% (RNRs 1) to 31.5% (RNRs 2) at 520 nm 
for an additional argon plasma time of 3 min and decreased to 19.4% (RNRs 3) and 17.8% (RNRs 4) for treatment 
times of 6 min and 9 min. Haze was calculated using equation (1).

Figure 2. Cross-sectional scanning electron microscopy images of random nanoscale rods (RNRs) obtained 
under different plasma etching conditions: (a) RNRs 1, (b) RNRs 2, (c) RNRs 3, and (d) RNRs 4, and (e) 
schematic illustration of OLED outcoupling enhancement by the RNR scattering layer.

Figure 3. Total transmittance and haze as functions of visible wavelength of different RNRs and unpatterned 
SU-8.
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=
−Haze Total transmittance specular transmittance

Total transmittance (1)

In the case of RNRs 1, haze was affected by the reduced total transmittance, which was attributed to increases 
in back scattering and the amount of trapped light in RNRs when the height of the rod was greater than a specific 
thickness. Besides, as the shapes of rods were longer, it was not perfectly straight, and therefore, back-scattering 
and light trapping seemed to occur more than in the cases of the other RNRs. The density of the rods also had 
an effect on the total transmittance, and RNRs 1, with the highest density, seemed to be one of the reasons for 
the decrease in the total transmittance. In the cases of RNRs 3 and RNRs 4, the lower heights and densities led to 
decreases in haze due to lower scattering probabilities. Considering the total transmittance and haze, the treat-
ment condition of RNRs 2 was expected to produce the optimal height and density of rods for enhanced light 
extraction of OLEDs.

The electrical characteristics of the device with and without the RNRs were almost identical since they were 
placed, where they do not affect the devices (Fig. 4a). The OLED with unpatterned SU-8 showed the identical 
electrical properties and a slightly lower external quantum efficiency (EQE; Supplementary Information Fig. S3). 
The lower EQE is attributed to the fact that the refractive index of the SU-8 film is higher than that of the glass 
and that weak interfacial reflections occur between the glass and the SU-8 film. However, the OLEDs with the 
RNRs exhibited higher efficiencies than those without the RNRs in terms of overall current density. The OLED 
treated with oxygen plasma for 9 min and argon plasma for 3 min (RNRs 2) showed the maximum EQE of 1.42%, 
while the reference device exhibited an EQE of 1.26%. The enhancement in the maximum EQE was 13% in the 
normal direction. Considering the scattering characteristics, the films with RNRs 1 and RNRs 2 were similar, 
but it was estimated that the difference in total transmittance caused a gap in the EQE. The maximum EQEs of 
RNRs 1, 3, and 4 were 1.4%, 1.32%, and 1.34%, respectively, which increased relative to the reference device. The 
current and power efficiencies of RNRs 2 were improved by 3.89 cd/A and 1.63 lm/W, respectively, relative to the 
values of 3.39 cd/A and 1.42 lm/W of the reference device. RNRs 1, 3, and 4 showed values of 3.81 cd/A, 3.58 cd/A, 
3.64 cd/A and 1.71 lm/W, 1.50 lm/W, 1.52 lm/W, respectively.

Table 1 shows the densities and average pitches of the RNRs calculated using image processing software 
(Image-Pro Plus 4.5, Media Cybernetics, Inc.). The densities of RNRs 1, 2, 3, and 4 were 9.7 ea/μm2, 7.1 ea/μm2, 
5.1 ea/μm2, and 3.5 ea/μm2, respectively, and decreased with the increase in argon plasma time. The reduction 
in density from RNRs 1 to RNRs 2 was 2.6 ea/μm2, whereas that from RNRs 3 to RNRs 4 was 1.6 ea/μm2. It was 
presumed that this was due to the initial removal of RNRs that were not straight-shaped among the RNRs etched 
by the oxygen plasma. The average pitch was derived from the density and calculated using the distance between 
the centre of a certain rod and the centre of the nearest rod, assuming that the rod was circular in shape. Though 
the distances between the RNRs were not always identical due to random periods, the calculated average distance 
between closest rods suggested that RNRs 2 more likely produced diffraction than the other rods21.

Figure 5 shows that the OLEDs with RNRs exhibited improved luminance intensities with changes in viewing 
angle from 0° to 70° due to scattering effect. The luminance was measured with a constant current of 7 mA, and 
the reference device had a luminance of 578 cd/m2 in the normal direction. Since the luminance in the normal 

Figure 4. EL characteristics of OLEDs with different RNRs: (a) J-V and L-V characteristics, (b) external 
quantum efficiencies as functions of current density, and (c) current and power efficiencies as functions of 
luminance.

RNRs 1 RNRs 2 RNRs 3 RNRs 4

Density (ea/μm2) 9.7 7.1 5.1 3.5

Calculated Average Pitch (nm) 361 423 500 603

Total Transmittance (%) 92.2 94.5 94.8 95.8

Haze (%) 30.1 31.5 19.4 17.8

Enhancement in EQE (%) 21.0 23.4 9.2 12.5

Table 1. Density, calculated average pitch, total transmittance, haze, and the enhancement in EQE for different 
RNRs.
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direction differed according to the RNR condition, it was normalized based on luminance in the normal direc-
tion. Under the conditions of RNRs 1 and RNRs 2, the normalized luminance intensity increased by 13.6% and 
14.1%, respectively, with respect to the reference device at the angle of 40°, and these two conditions revealed 
nearly similar viewing angle characteristics from 0° to 70°. The devices with RNRs 3 and RNRs 4 also exhibited 
enhanced luminances of 9.0% and 7.5%, respectively, compared to the reference device at 40°. It was observed 
that this viewing angle characteristic showed a similar tendency to the haze values of the RNRs. For the best con-
ditions (RNRs 2), the improvement in the EQE was 23.4% relative to the reference device. The viewing angles of 
RNRs 1, RNRs 3, and RNRs 4 also increased by 21.0%, 9.2%, and 12.5%, respectively. Therefore, it was confirmed 
that the efficiency and viewing angle improved by reducing the loss of the substrate mode based on the scattering 
characteristics of the RNRs. As with the haze properties, the unpatterned SU-8 exhibited almost identical viewing 
angle characteristics as the reference device (Supplementary Information Fig. S4).

We also investigated the light extraction efficiency of green phosphorescent OLEDs to re-verify the effect 
of RNRs due to the low EQE of fluorescent OLEDs with NPB/Alq3. The green phosphorescent OLEDs without 
RNRs, with unpatterned SU-8, and with RNRs 2 (optimal condition) were fabricated. The electrical characteris-
tics of the devices were almost identical (Fig. 6a). However, the OLED with RNRs 2 exhibited higher efficiencies 
than that without the RNRs or with unpatterned SU-8 in terms of overall current density. The maximum EQE 
of the OLED with RNRs 2 was 20.92%, while those of the reference and the OLED with unpatterned SU-8 were 
17.62% and 17.94%, respectively. The enhancement in the maximum EQE was 18.7% relative to that of the ref-
erence device in the normal direction. In addition, the EQEs of the OLEDs with RNRs 2, without RNRs and 
with unpatterned SU-8 were evaluated as 12.5%, 11%, and 10.8%, respectively, at 20 mA/cm2. The enhancement 
in the EQE was 13.6%, which was similar to the 13% enhancement observed in the case of fluorescent OLEDs. 
Moreover, the EQE of the OLED with unpatterned SU-8 was similar to that of the reference device, indicating that 
the SU-8 film did not contribute to the light extraction effect.

Figure 7 shows the variations in the luminance intensities of the green phosphorescent OLEDs for three differ-
ent conditions according to the changes in viewing angle from 0° to 70°. As with fluorescent OLEDs, the different 
intensities were normalized to the luminance in the normal direction, and the reference device displayed a lumi-
nance of 906 cd/m2 at the constant current of 0.9 mA. In the case of the green phosphorescent OLED with RNRs 2, 
the luminance improved relative to that of the reference at all viewing angles due to the scattering effect of RNRs 2. 
However, in the case of unpatterned SU-8, the change in luminance characteristics according to viewing angle was 

Figure 5. Normalized angular luminance distributions of OLEDs operating at 7 mA between 0° and 70°.

Figure 6. EL characteristics of green phosphorescent OLEDs with RNRs 2, without RNRs (reference), and with 
unpatterned SU-8: (a) J-V and L-V characteristics, (b) external quantum efficiencies as functions of current 
density, and (c) current and power efficiencies as functions of luminance.
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almost the same as that of the reference. These results show that the scattering effect of the unpatterned SU-8 film 
is almost non-existent. Considering the viewing angle, the improvement in the EQE of the green phosphorescent 
OLED with RNRs 2 was 31% relative to that of the reference device. The difference between the EQE improvements 
of the fluorescence (23.4%) and phosphorescence (31%) OLEDs is presumed to be due to a deviation in the low 
EQE of the fluorescence device. Furthermore, as a result of the maximum difference in the colour coordinates in 
CIE 1931 for viewing angles varying from 0° to 70°, the reference device exhibited a variation of Δ(x, y) = (0.020, 
0.034), whereas the RNRs 2 device revealed a variation of Δ(x, y) = (0.007, 0.014) (Supplementary Information 
Fig. S5). This result also proved that the RNRs played appropriate roles as scattering layers.

We demonstrated a simple method for fabricating RNRs as a scattering layer at low temperatures without any 
mask. In particular, the height and density could be controlled without changing the width of the rods by utiliz-
ing the anisotropic etching characteristics of argon plasma. The optimal RNRs showed a haze of 31.5% despite 
the total transmittance being 94.5%. As a result, a 31% enhancement in the EQE of the OLED was achieved. 
FDTD simulation and efficiency improvement results indicated that the RNRs were suitable scattering layers that 
reduced the loss of the substrate mode. Moreover, the variations in light intensity and colour coordinates with 
viewing angle could be alleviated by using these RNRs. We thus believe that this study will open a new and prac-
tical approach to improving the performance of high-resolution displays and flexible lightings.

Methods
Numerical simulation. The optical effects of OLEDs with RNRs were simulated using a FDTD software 
(Lumerical Solutions, Inc.). Each layer had a different refractive index that was measured by a thin-film analyser 
(F-20, Filmetrics, Inc.). The simulation domain condition involved a perfectly matched layer on all sides, except 
for the metal cathode layer, where the metal boundary condition was used. The three dipoles (x-, y-, and z-polar-
ized) were placed inside the emitting layer. The optical enhancement image of the OLEDs with RNRs relative to 
the reference structure was calculated as the ratio of the integrated electric field intensities of the two devices that 
were measured by a fixed far-field monitor.

Fabrication. The fabrication process of the RNRs as the scattering layer is shown in Fig. 8. The polymer SU-8 
(SU-8 2010, Micro-Chem.) was mixed with a thinner in the ratio 1:1 by weight to achieve the target thickness. 
The mixed material was spin-coated, baked at 95 °C using a hot plate, and exposed at 130 mJ/cm2 to conven-
tional UV radiation (350 nm–400 nm). As a result, the thin film was highly transparent to visible light39. The 
film was etched in a reactive ion etcher (RIE) by using oxygen plasma at the RF power of 150 W, process pres-
sure of 70 mtorr, and gas flow of 50 sccm. After the first etching of the polymer, the structures were random 
columnar-like, with high aspect ratios and densities40. A second plasma treatment with argon gas at the high RF 
power of 200 W and process pressure of 25 mtorr was applied to the structure to reduce the aspect ratio and den-
sity. To investigate the properties of the RNRs, organic light-emitting devices were fabricated. To obtain devices 
with different properties, the duration of argon plasma treatment was altered while the other conditions were 
unchanged. After the RNRs were formed on glass substrate, ITO was deposited on the opposite side by radio 
frequency sputtering. The following layers were then thermally evaporated onto the ITO under vacuum condi-
tions (2 × 10−6 Torr): a 60 nm thick NPB layer for hole transport, an 80 nm thick Alq3 layer for light emission, a 
0.7 nm thick lithium fluoride layer for electron injection, and a 100 nm thick aluminium layer that acted as the 
cathode. In the case of green phosphorescent OLEDs, the following layers were utilized: a 40 nm thick NPB(N,N’- 
bis(naphthalen-1-yl)-N,N’-bis(phenyl)-benzidine) layer and a 10 nm thick TCTA (4,4′,4′′-Tris(carbazol-9-yl)
triphenylamine) layer for hole transport, a 30 nm thick CBP(4,4′-bis(carbazol-9-yl)biphenyl) doped with 
10 wt% Ir(ppy)3(Tris(2-phenylpyridine)iridium(III)) served as the phosphorescent green emitting layer; and 
55-nm-thick B3PyMPM(bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine) as used as the electron-transport 
layer, a 0.4 nm thick lithium fluoride layer for electron injection, and a 100 nm thick aluminium layer that acted 
as the cathode.

Figure 7. Normalized angular luminance distributions of green phosphorescent OLEDs operating at 0.9 mA.
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Measurements. The surface morphologies and cross-sections of the RNRs were measured by scanning elec-
tron microscopy (S-4800, HITACHI High Technology Inc.). The haze and total transmittance were evaluated 
by UV-vis-NIR spectroscopy (Cary 5000, Agilent Technologies Inc.). The current–voltage characteristics were 
measured using a Keithley 237 High Voltage Source-Measure Unit (Keithley Instruments, Inc.) and the elec-
troluminescence intensity was measured in a dark box using a spectroradiometer (PR-670 Spectra Scan, Photo 
Research, Inc.).
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