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The multi-level and multi-
dimensional quantum wavelet 
packet transforms
Hai-Sheng Li  1, Ping Fan2, Hai-ying Xia1, Shuxiang Song1 & Xiangjian He  3

The classical wavelet packet transform has been widely applied in the information processing field. It 
implies that the quantum wavelet packet transform (QWPT) can play an important role in quantum 
information processing. In this paper, we design quantum circuits of a generalized tensor product (GTP) 
and a perfect shuffle permutation (PSP). Next, we propose multi-level and multi-dimensional (1D, 2D 
and 3D) QWPTs, including a Haar QWPT (HQWPT), a D4 QWPT (DQWPT) based on the periodization 
extension and their inverse transforms for the first time, and prove the correctness based on the GTP 
and PSP. Furthermore, we analyze the quantum costs and the time complexities of our proposed 
QWPTs and obtain precise results. The time complexities of HQWPTs is at most 6 on 2n elements, which 
illustrates high-efficiency of the proposed QWPTs. Simulation experiments demonstrate that the 
proposed QWPTs are correct and effective.

With the rapid development in the fields of optical imaging, Internet technology, high performance calculation 
etc., the amount of data is increasing explosively, so that it is necessary to find new ways to store and process 
information. Quantum information processing (QIP)1 as new technology of information processing, offers a 
potential solution to store and process massive visual data efficiently. QIP has two outstanding merits: (1) the 
unique computing performance of quantum coherence, entanglement and superposition [1], and (2) quantum 
storage capacity increasing exponentially. Models of quantum image representation2–8 have displayed the enor-
mous storage capacity of QIP. Other popular quantum algorithms, such as the Shor’s discrete logarithms and 
integer-factoring algorithms9, the Deutsch’s parallel computing algorithm10 and the Grover’s quadratic speed up 
algorithm11, have further shown that QIP is more efficient than its classical counterparts. In addition, many algo-
rithms of QIP emerge continually, and these algorithms include quantum geometric transformation12–14, quan-
tum image encryption and decryption algorithms15,16, quantum watermarking17, quantum image compression6, 
quantum edge detection18, and quantum image filtering19.

The classical wavelet packet transform (WPT) has been widely spread to the information processing field for 
image coding20, pattern matching21 and fractional brownian motion decorrelation22. It indicates that the quan-
tum wavelet packet transform (QWPT) plays an important role in QIP. Unfortunately, the research on QWPT is 
rare and still preliminary. For example, two important QWPTs, namely the Haar QWPT (HQWPT) and the D4 
QWPT (DQWPT) proposed in23–26, are still single level quantum wavelet transforms. Up to now, we have not yet 
found any implementation of a multi-level and multi-dimensional QWPT. Therefore, we believe that QWPTs 
deserve further research.

In this paper, we introduce the generalized tensor product (GTP) and the perfect shuffle permutation (PSP), 
and design quantum circuits for them. Then, we propose the iterations and implementation circuits of the 
multi-level and multi-dimensional QWPT and inverse QWPT (IQWPT). QWPTs and the inverse QWPTs being 
considered include HQWPT, DQWPT based on a periodization extension, the inverse HQWPT (IHQWPT), the 
inverse DQWPT (IDQWPT). In addition, we analyze the quantum costs and time complexities of the proposed 
circuits and prove that the multi-level and multi-dimensional HQWPT can be implemented with a complexity of 
O(1). Simulation experiments demonstrate that the proposed QWPTs are correct and effective.
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•	 We analyze precisely the complexities of the simulated networks of controlled NOT gates with multi-con-
trol qubits. Comparing with the methods proposed in the reference27, our proposed simulated networks are 
reduced by 50% approximately.

•	 We design the simplified circuits of the PSP and reduce time complexity to 6 for 2n elements.
•	 We present the multi-level and multi-dimensional QWPTs, including HQWPT, IHQWPT, DQWPT and 

IDQPT for the first time, and prove the correctness by theoretical derivations and simulation experiments.
•	 We design the circuits of the multi-level and multi-dimensional HQWPT with the complexity O(1), which 

has the overwhelming advantage over the classic Haar WPT.

The Quantum Implementation of GTP
Let A be an n × n matrix and B be an m × m matrix, then the tensor product ⊗A B is an mn × mn block matrix 
in the following equation,
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Thus, the tensor product of quantum states are defined as the tensor product of matrices: 
⊗ = ⊗− − u v u u v v[ ] [ ]T T

0 2 1 0 2 1n n , which is also written simply as u  v  or uv .
Then, n fold tensor product ⊗ ⊗ ⊗U U U  is abbreviated as ⊗U n. Similarly, the abbreviation of 
⊗ ⊗ ⊗u u u  is ⊗u n.
A larger vector space can be formed by putting vector spaces together. For instance, suppose that i  is a basic 

state in a 2n dimensional Hilbert space for i = 0, 1, …, 2n − 1, the state i  consists of the tensor products of the n 
computation basis states:
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1 and i1, i2, …, in ∈ {0, 1}. Its dual state is

= ⊗ ⊗ ⊗ = = … .− − − i i i i i i i i i i (3)n n n n n n1 1 1 1 1 1

There are some base gates and their corresponding symbols shown in Fig. 1. In the figure, the identity (I2), 
Hadamard (H), Pauli-X (X) and Swap gates are well-known and can be found in the reference28. The 2n × 2n iden-
tity matrix =⊗I I( ) n

2 2n denotes the circuit of n qubits. V and V+ are two specific examples of U gates where U 
corresponds to a unitary matrix and
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A controlled gate is one of the most useful gates in quantum computing, and we define two controlled gates 
of (n + m)-qubits.

Definition 1. Let U2m be a 2m × 2m unitary matrix, I2m be a 2m × 2m identity matrix. Then, controlled gates C U( )n
j

2m  
and V U( )n

j
2m  with n control qubits and m target qubits are defined by

∑= ⊗ + ⊗
= ≠

−
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Figure 1. Notations for some base gates with their corresponding symbols.
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where = i i i in 2 1  and = j j j jn 2 1  are the basic states in a 2n dimensional Hilbert space shown in Eq. (2), 
and j ∈ {0, 1, …, 2n − 1}. The Notations of C U( )n

j
2m  and V U( )n

j
2m  are shown in (a) and (b) of Fig. 2. Furthermore, 

C X( )j
2  and V X( )j

2  are called Toffoli gates.

Definition 2. An (n + m) qubit controlled gate with n control qubits is named as an +Nn m
n  gate, when the X gate is in 

the target qubit of the controlled gate. An instance of an +Nn m
n  gate is shown in (c) of Fig. 2. In addition, the four N2

1 
gates shown in Fig. 3 are called controlled-NOT gates.

A Swap gate can be simulated by three N2
1 gates, that is, =Swap C X V X C X( ) ( ) ( )1

0
1
0

1
0 .

Next, we introduce a perfect shuffle permutation. Let Pn,m be the mn × mn matrix of a perfect shuffle permu-
tation, then Pn,m satisfies that (Pn,m)k,l = δv,z′δz,v′ where k = vn + z, l = v′m + z′, 0 ≤ v, z′ < m, 0 ≤ v′, z < n, δx,y is the 
Kronecker delta function, that is, δx,y = 0 if x ≠ y, otherwise δx,y = 1. Therefore, Pn,m shuffles n packs of m cards into 
m packs of n cards.

As a useful tool for wavelet transforms, the GTP is defined as follows29. Suppose that  = … −A A A{ , , , }m0 1 1  
and = … −B B B{ , , , }n0 1 1  are two sets of matrices, where Ai is an n × n matrix, 0 ≤ i < m, and Bj is an m × m 
matrix, 0 ≤ j < n. Then, the generalized tensor product = ⊗C A B is an mn × mn matrix and can be calculated by

= ⊗ =C P Diag P Diag( ) ( ), (7)m n n m, ,A B A B

where  = … −Diag Diag A A A( ) ( , , , )m0 1 1  and = … −Diag Diag B B B( ) ( , , , )n0 1 1  are block diagonal matrices.

Definition 3. Let  = … −A A A{ , , , }m0 1 1  and  = … −D D D{ , , , }m0 1 1  be two sets of matrices where Ai and Di are 
n × n matrices. Then, the generalized product is defined as × = = × × … ×− −A D A D A D{ , , , }m m0 0 1 1 1 1A D AD .

Definition 4. The transpose, conjugate transpose and inverse of the matrix set  are defined as follows:
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where (Ai)T, (Ai)+ and (Ai)−1 denote the transpose, conjugate transpose and inverse of matrix Ai, respectively.
The following equations hold by using equation (7) and definitions 3 and 4.

Figure 2. The (n + m) qubit controlled gates and the +Nn m
n  gate. The abbreviation notations are in the right 

parts of (a,b). The dashed box 1 and 2 in (c) implement −C X( )n
j

1  and ⊗− −C X I( )n
j

1 2m 1 where j = jn−1 jn−2 … j1 and 
jn−1, jn−2, … j1, j0 ∈ {0, 1}.

Figure 3. The four N2
1 gates. The numbers 1 and 0 can be replaced by black and white points on control qubits.
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Let  and  be two sets of matrices containing m matrices with size n × n,  and  be two sets of matrices 
containing n matrices with size m × m, and Im and In be m × m and n × n identity matrices, respectively. Then, the 
following equation holds24:

× ⊗ × = ⊗ × ⊗ × ⊗I I( ) ( ) ( ) ( ) ( ), (9)m nA C B D A C B D

and implies

A D A D A D
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Furthermore, calculating by the definition of a GTP, we can implement the following four GTPs using con-
trolled gates:
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The Complexity Analysis of Quantum Circuits
The complexity analysis of quantsssum circuits. Since a quantum circuit can be simulated by basic 
operations referring to single-qubit gates, controlled-NOT gates, controlled-V and controlled-V+ gates12,27,28,30, 
we introduce some definitions and lemmas. Furthermore, ⌊⌋ and ⌈⌉ are the symbols of round down and round up 
respectively, which are used in the following definitions and lemmas.

Definition 5. The quantum cost of a quantum circuit can be regarded as the total number of basic operations which 
simulate the circuit, marked by C().

Definition 6. The time complexity of a quantum circuit is defined by the total number of time steps. In a time step, 
only one basic operation is executed serially, but multiple ones can be performed in parallel. It is marked by C ()p .

Lemma 1. When n ≥ 6 and ∈ … ⌊ ⌋m n{3, 4, , /2 }, an Nn
m gate can be simulated by a network consisting of 2(m − 1) 

Toffoli gates and a basic operation.
For instance, ⊗− −C I X( )m

0
2n m 1  and ⊗ − −V X I( )m

0
2n m 1  gates can be simulated by 2(m − 1) Toffoli gates and a basic 

operation, respectively. The form of the network is shown in (a) and (b) of Fig. 4.

Lemma 2. For any n ≥ 6, = ⌊ ⌋r n/2  and m ∈ {r + 1, r + 2, …, n − 2}, an Nn
m gare can be simulated by two Nn

r gates 
and two − +Nn

m r 1 gates.
For instance, the simulated networks of ⊗C I X( )6

0
23  and ⊗V X I( )6

0
23  gates are shown in (c) and (d) of Fig. 4.

Lemma 3. When n ≥ 5 and = ⌈ ⌉m n/2 , an Nn
m gate can be simulated by a network consisting of 4(m − 2) Toffoli 

gates.
For instance, the simulated networks of ⊗− −C I X( )m

0
2n m 1  and ⊗ − −V X I( )m

0
2n m 1  gates are shown in Fig. 5.

Figure 4. The controlled gate Nn
m illustrated for n = 10 and m ∈ {5, 6}.
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Lemma 4. For any SU(2) matrix D, there exist SU(2) matrices A, B, and C such that ABC = I2 and AXBXC = D, and 
the gates C D( )1

0  and V D( )1
0  can be simulated by networks of the form shown in (a) and (b) Fig. 6. Here, SU(2) is the 

Lie group of 2 × 2 unitary matrices with determinant 1.
More details of Lemmas 2, 3 and 4 are described in the reference27. Next, we derive the following corollaries.

Corollary 1. For any n ≥ 7, = ⌊ ⌋r n/2  and m ∈ {r + 2, r + 3, …, n − 2}, an Nn
m gate can be simulated by 4(m − 1) 

Toffoli gates and four basic operations.

Proof. Applying Lemma 2, an Nn
m gate can be simulated by two Nn

r  gates and two − +Nn
m r 1 gates. Noting that 

≤ ≤ 



r3 n

2
 and ≤ − + ≤ 



m r3 1 n

2
, we apply lemma 1 so that the corollary holds. 

Corollary 2. For any n ≥ 6 and = ⌊ ⌋r n/2 , an +Nn
r 1 gate can be simulated by (4r − 2) Toffoli gates and two basic 

operations when n is even, and 4(r − 1) Toffoli gates when n is odd.

Proof. When n is odd, + = ⌈ ⌉r n1 /2 . Then, applying Lemma 3, we have that an +Nn
r 1 gate can be simulated by a 

network consisting of 4(r − 1) Toffoli gates.

When n is even, by applying Lemma 2, it is derived that an +Nn
r 1 gate can be simulated by two Nn

r gates and two 
Toffoli gates. Then, by applying Lemma 1, it is proved that one can use (4r − 2) Toffoli gates and two basic opera-
tions to simulate the +Nn

r 1 gate. 
From lemma 4, the following corollary holds.

Figure 5. The controlled gate Nn
m illustrated for n = 9 and m = 5.

Figure 6. The simulated networks of the gates −C D( )n 1
0  and −V D( )n 1

0  with n ≥ 2.
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Corollary 3. For any SU(2) matrix D, there exist SU(2) matrices A, B, and C such that ABC = I2 and AXBXC = D, 
and the gates −C D( )n 1

0  and −V D( )n 1
0  can be simulated by networks of the form shown in (c) and (d) of Fig. 6.

To analyze the complexities of the gates −C X( )n 1
0  and −V X( )n 1

0 , we define three matrices:
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θ θ

θ θ
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Lemma 5. Let δ = δ
i 2i , i ∈ {0, 1, 2, …, n}, E0 = Φ(δn−1)Rz(δn−2). Then, the gates δΦ−C ( ( ))n 1

0  and δΦ−V ( ( ))n 1
0  can be 

simulated by networks of the form shown in Fig. 7.

Proof. Note that

δ δ δ δ δΦ =




Φ












 ⊗ = Φ ⊗C R I R I( ( ))

2
( ) ( ( ) ( )) ,

(13)z z1
0

2 1 0 2

δ δ δ δ δΦ = ⊗
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 = ⊗ Φ .V I R I R( ( ))

2
( ) ( ( ) ( ))

(14)z z1
0

2 2 1 0

Then, we have that
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Φ = Φ

= Φ ⊗

= Φ ⊗ .

− −

−

− −
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C R I
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Similarly,

δ δ δΦ = ⊗ Φ .− − −V I V V R( ( )) [ (( ( )) ( ( ))] (16)n n n z1
0

2 2
0

1 2
0

0

Figure 7. The simulated networks of the gates δΦ−C ( ( ))n 1
0  and δΦ−V ( ( ))n 1

0 .
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Therefore, we have the simulated networks of the gates δΦ−C ( ( ))n 1
0  and δΦ−V ( ( ))n 1

0  as shown in Fig. 7. 

Lemma 6. The gates δC R( ( ))m z
0  and δV R( ( ))m z

0  can be simulated by networks of the form shown in Fig. 8.

Proof. Due to − =δ δ( ) ( )R R Iz z2 2 2 and δ− =δ δ( ) ( )R XR X R ( )z z z2 2
, the conclusion is obvious. 

C X( )i
2  (i = 0, 1, 2, 3) can be simulated by five basic operations shown in Fig. 9, i.e., = =C C X C C X( ( )) ( ( )) 5i p i

2 2 .
Similarly, = =C V X C V X( ( )) ( ( )) 5i p i

2 2 . Therefore, the complexity of Toffoli gates is 5. Thus, we obtain the 
complexity of −C X( )n 1

0  and −V X( )n 1
0  as described in theorem 1 below.

Theorem 1. For any n ≥ 7, the gates −C X( )n 1
0  and −V X( )n 1

0  can be simulated by (3.5n2 − 13n − 4) Toffoli gates and 
7n − 4 basic operations when n is even, and by (3.5n2 − 12n − 5.5) Toffoli gates and 7n − 3 basic operations when n 
is odd.

Proof. Let δ = π/2, D = Rz(−π)Ry(π), A = Rz(−π)Ry(π), B = Ry(−π/2)Rz(π/2) and C = Rz(π/2). Then, D, A, B, 
C ∈ SU(2), ABC = I2, AXBXC = D and Φ(δ)D = X.

Note that δ= Φ− − −C X C C D( ) ( ( )) ( )n n n1
0

1
0

1
0 . Then,

δ= Φ + .− − −C C X C C C C D( ( )) ( ( ( ))) ( ( )) (17)n n n1
0

1
0

1
0

From lemma 4 and corollary 3, we obtain

= + .−
−C C D C N( ( )) 2 ( ) 15 (18)n n

n
1

0 2

By lemma 5 and lemma 6, δΦ−C C( ( ( )))n 1
0  can be computed by

∑ ∑δ δΦ = + = + − .−
=

−

− −
=

−
C C C C R C N n( ( ( ))) ( ( ( ))) 1 2 ( ) 2 3

(19)n
i
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i z n i
i
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n
i

1
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1

2
0

2
1

2

Therefore,

∑ ∑= + + + + + +−
= = +

−
− +C C X C N C N C N C N C N n( ( )) 2 ( ) 2 ( ) 4 ( ) 2 ( ) 2 ( ) 2 14,
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i r
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r

1
0

3 2

3
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where = ⌊ ⌋r n/2  and N3
2 is a Toffoli gate.

Applying lemma 1, corollary 1 and corollary 2, we obtain

=







. − − + −

. − − . + − .
−C C X

n n C N n
n n C N n

( ( ))
(3 5 13 4) ( ) 7 4, when n is even,
(3 5 12 5 5) ( ) 7 3, when n is odd (21)

n 1
0

2
3
2

2
3
2

Similarly, we obtain that =− −C V X C C X( ( )) ( ( ))n n1
0

1
0 . 

Figure 8. The simulated networks of the gates δC R( ( ))m z
0  and δV R( ( ))m z

0 .

Figure 9. The simulated networks of the gates C X( )i
2  (i = 0, 1, 2, 3).
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Comparing with the methods proposed in27, the complexities of our proposed simulated networks of these 
gates ≤ ≤ −N i n(3 1)n

i  are reduced by 50% approximately.

The Quantum Circuits of PSP
The perfect shuffle permutation −P2 ,2n 1  and −P2,2n 1 can be expressed as







= ⊗ ⊗
= ⊗ ⊗

− − −

− − −

P P I I P
P I P P I

( ) ( ),
( ) ( ), (22)

2 ,2 2 ,2 2 2 2,2

2,2 2 2,2 2,2 2

n n n

n n n

1 2 2

1 2 2

where P2,2 is a Swap gate, and their implementation circuits are shown in Fig. 10.
Applying −P2 ,2n 1  and −P2,2n 1 to the state − j j j jn n 1 2 1 , we have







=

= .
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−
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P j j j j j j j j
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n

n

1

1

L e t  Γ = ⊗ … ⊗ ⊗− − − −P P I P I P I( ) ( ) ( )2 2 ,2 2 ,2 2 2 ,2 2 2,2 2n n n n n1 2 2 3 2 ,  w e  h a v e  t h a t  Γ = ⊗−
−P I( ) ( )2

1
2,2 2n n 2  

⊗ … ⊗− − −P I P I P( ) ( )2,2 2 2,2 2 2,2n n n2 3 2 1 and

Γ = = Γ− − − −
−

− −  j j j j j j j j j j j j j j j( ) (24)n n n n n n n n n2 1 2 2 1 1 2 2 1 2
1

1 2 2 1n n

Therefore, we conclude that Γ = Γ −( )2 2
1

n n  and design quantum circuits shown in Fig. 11.
The costs of the circuits of Γ2n and Γ −( )2

1
n  are

Γ = Γ = ×











.−C C n( ) (( ) ) 3

2 (25)2 2
1

n n

By parallel computing, we redesign the circuits of Γ2n and Γ −( )2
1

n  shown in Fig. 12 and calculate time complex-
ities by

Γ = Γ = = .−C C C Swap( ) (( ) ) ( ) 3 (26)p p
2 2

1
n n

i.e., complexities of Γ2n and Γ −( )2
1

n  are O(1).
The iterations of Γ2n and Γ −( )2

1
n  are given by







Γ = Γ ⊗

Γ = Γ ⊗ .− −

− −

− −

P I

I P

( ),

( ) (( ) ) (27)

2 2 ,2 2 2

2
1

2
1

2 2,2

n n n

n n n

1 1

1 1

Then, we obtain







= Γ Γ ⊗
= Γ ⊗ Γ .

− −

− −

P I
P I

( ),
( ) (28)

2 ,2 2 2 2

2,2 2 2 2

n n n

n n n

1 1

1 1

Figure 10. The implement circuits of −P2 ,2n 1  and −P2,2n 1. The dotted boxes in (a,b) are the circuits of −P2 ,2n 2  and 
−P2,2n 2, respectively.
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Therefore, we design the simplified circuits of −P2 ,2n 1  and −P2,2n 1 as shown in Fig. 13.
The complexities of −P2 ,2n 1  and −P2,2n 1 are








= = −

= = .

− −

− −

C P C P n

C P C P

( ) ( ) 3( 1),

( ) ( ) 6 (29)
P P

2 ,2 2,2

2 ,2 2,2

n n

n n

1 1

1 1

The reason that the abbreviation notations in Fig. 13 are the same except for the positions of black boxes is due 
to the fact that the circuit in Fig. 13(b) consists of the gates in Fig. 13(a) but rearranged in reverse order. We also 
adopt similar abbreviation notations to denote the circuits that are composed of the same quantum gates with 
reverse order in the following sections.

The iterations of −P2 ,2n m 1 and −P2 ,2m n1  are given by







= ⊗ ⊗
= ⊗ ⊗ .

− − − − −

− − − − −

P P I I P
P I P P I

( ) ( ),
( ) ( ) (30)

2 ,2 2,2 2 2 2 ,2

2 ,2 2 2 ,2 2 ,2 2

n m m n n m

m n m n m n

1 1 1 1 1

1 1 1 1 1

According to (30), we design the implementation circuits of −P2 ,2m n1  and −P2 ,2n m 1 in Fig. 14.
The complicities of the circuits in Fig. 14 are







= = −

= = .

− −

− −

C P C P n m
C P C P n

( ) ( ) 3 ( 1),
( ) ( ) 6 (31)

p p
2 ,2 2 ,2

2 ,2 2 ,2

m n n m

m n n m

1 1

1 1

Figure 11. The simplified quantum circuits of Γ2n and Γ −( )2
1

n .

Figure 12. The parallel quantum circuits of Γ2n and Γ −( )2
1

n .
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The Implementation of QWPT
Let =W W2

0
2n n be a wavelet kernel matrix. Then, the (k + 1)-th iteration of a discrete wavelet packet transform is 

defined by








= …

= …

−

− − −

Z W W W W
W Diag W W W

,
( , , , ), (32)

k k k

j
2 2 2

1
2
1

2
0

2 2 2 2

n n n n n

n n j n j n j

where j = 1, …, k and …− − −Diag W W W( , , , )2 2 2n j n j n j  is a matrix with 2j blocks of −W2n j on the main diagonal and 
zeros elsewhere.

The following equations








=

=

− −

− −

− −

− −

W Diag W W

Z Diag Z Z W

( , ),

( , ) (33)

j j j

k k k

2 2
1

2
1

2 2
1

2
1

2

n n n

n n n n

1 1

1 1

can be derived by (32).
Since

⊗ =− − −
− − − − −Z I P Diag Z Z P( , ) , (34)k k k

2
1

2 2,2 2
1

2
1

2 ,2n n n n n1 1 1 1 1

the iteration equation of the QWPT is given by

= ⊗−− −Z P Z I P W( ) (35)
k k
2 2 ,2 2

1
2 2,2 2n n n n n1 1

with the initial value =− −Z W
2
0

2n k n k and the implementation circuit shown in (a) of Fig. 15.
Similarly, the inverse of Z k

2n is

= ⊗− − − −
− − −Z W P Z I P( ) ( ) (( ) ) (36)

k k
2

1
2

1
2 ,2 2

1 1
2 2,2n n n n n1 1 1

with the initial value =− −
− −Z W( ) ( )

2
0 1

2
1

n k n k  and the implementation circuit of −Z( )k
2

1
n  shown in (b) of Fig. 15.

Next, we describe the implementations of the Haar QWPT (HQWPT) and the D4 QWPT (DQWPT) in detail.

Figure 13. The simplified circuits of −P2 ,2n 1  and −P2,2n 1. The rights of (a,b) correspond to the abbreviation 
notation of −P2 ,2n 1  and −P2,2n 1, respectively.

Figure 14. The quantum circuits of −P2 ,2m n1  and −P2 ,2n m 1. The dotted boxes in (a,b) are the implement circuits of 
− −P2 ,2m n1 1 and − −P2 ,2n m1 1, respectively.
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The implementation of HQWPT. Substituting the kernel matrix = ⊗− −W P I H( )2 2 ,2 2n n n1 1  into equations 
(35) and (36), the (k + 1)-th iteration of HQWPT and its inverse are








= ⊗ ⊗

= ⊗ ⊗

−

− − −

− − −

− − −

R P R I I H

R I H R I P

( ) ( ),

( ) ( ) (( ) ) (37)

k k

k k

2 2 ,2 2
1

2 2

2
1

2 2
1 1

2 2,2

n n n n

n n n n

1 1 1

1 1 1

with the initial values











= ⊗ ≤ < −

= = −

= ⊗ ≤ < −

= = − .

−

−

− − − − −

− − − − −

R P I H k n

R H k n
R H I P k n

R H k n

( ), 1 1,

, 1,
( ) ( ) , 1 1,

( ) , 1

2
0

2 ,2 2

2
0

2
0 1

2 2,2

2
0 1

n k n k n k

n k n k n k

1 1

1 1

The quantum circuits of −R n
2

1
n  and R k

2n (1 ≤ k < n − 1) are designed in Fig. 16.
Since ⊗ … ⊗ = Γ− − −P P I P I( ) ( )2 ,2 2 ,2 2 2,2 2 2n n n n1 2 2  and ⊗ … ⊗ = Γ Γ −

− − − − − −P P I P I( ) ( ) (( )2 ,2 2 ,2 2 2 ,2 2 2 2
1

n n n k k n n k1 2 1 1  
⊗ +I )2k 1  with 1 ≤ k < n − 2, the quantum circuit of R k

2n, −R n
2

2
n  and −R n

2
1

n  can be simplified and shown in Fig. 17.
Similarly, the quantum circuits of the inverses of R k

2n, −R n
2

2
n  and −R n

2
1

n  can be designed as shown in Fig. 18.
The costs of HQWPT are











= =












+






− − 





+ +

= =












+ −

= =












+

−

− − −

− − −

C R C R n n k k

C R C R n n

C R C R n n

( ) (( ) ) 3
2

3 1
2

1,

( ) (( ) ) 3
2

1,

( ) (( ) ) 3
2

,
(38)

k k

n n

n n

2 2
1

2
2

2
2 1

2
1

2
1 1

n n

n n

n n

where 1 ≤ k < n − 2. Since = = ≤ < −−C R C R k n( ) (( ) ) 6, 1 2p k p k
2 2

1
n n  and = = − ≤−C R C R n( ) (( ) ) 4, 2p k p k

2 2
1

n n  
≤ −k n 1, the time complexity of the HQWPT is O(1).

Figure 15. The implementation circuits of Z k
2n and −Z( )k

2
1

n .

Figure 16. The implementation circuits of −R n
2

1
n  and R k

2n (1 ≤ k < n − 1). The dashed box 1 and box 3 implement 
−
−R n

2
2

n 1  and −
−R k

2
1

n 1, respectively.



www.nature.com/scientificreports/

1 2Scientific REPoRTS |  (2018) 8:13884  | DOI:10.1038/s41598-018-32348-8

The implementation of DQWPT. The kernel matrix of the D4 wavelet transform is defined by the 
reference31

=






















− −

− −

− −

− −






















�
�
�
�

� � � � � � � � � � �
�
�
�
�

D

h h h h
h h h h

h h h h
h h h h

h h h h
h h h h

h h h h
h h h h

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

,

(39)

2

0 1 2 3

3 2 1 0

0 1 2 3

3 2 1 0

0 1 2 3

3 2 1 0

2 3 0 1

1 0 3 2

n

where = +h0
1 3

4 2
, = +h1

3 3
4 2

, = −h2
3 3

4 2
 and = −h3

1 3
4 2

.
D2n and −D( )2

1
n  can be rewritten to











= ⊗ ⊗
= ⊗

= ⊗ ⊗

= ⊗ ⊗

− −

− −

− −

− −

− −

− − −

D I S Q I S
Q Q I I

D I S Q I S
Q Q I I I X

( ) ( ),
({ , } ),

( ) ( ) ( ) ( ),
( ) ({( ) , } ) ( ), (40)

2 2 1 2 2 0

2 2 2 2

2
1

2 0 2
1

2 1

2
1

2
1

2 2 2

n n n n

n n n

n n n n

n n n n

1 1

1 1

1 1

1 1 1

where

π π
π π

π π
π π











=




 −







=





− 





= =−

S

S

Q Q X

sin(2 /3) cos(2 /3)
cos(2 /3) sin(2 /3)

cos( /12) sin( /12)
sin( /12) cos( /12)

( ) ,

0

1

2 2
1

Figure 17. The simplified circuits of R k
2n 1 ≤ k < n − 2, −R n

2
2

n  and −R n
2

1
n .

Figure 18. The simplified circuits of −R( )k
2

1
n  1 ≤ k < n − 2, − −R( )n

2
2 1

n  and − −R( )n
2

1 1
n .
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and the implementation circuits shown in Fig. 19.
In order to implement a multi-level DQWPT based on the periodization extension, a single-level DQWPT 

and its inverse are given by:











=

=

=

= .

−

− −

− −

−

−

T P D

D D Q

T D P

D Q D

,

( ) ,

( ) ( ) ,

( ) ( ) (41)

p

p

p

p

2 2 ,2 2

2 2 2
1

2
1

2
1

2,2

2
1

2 2
1

n n n

n n n

n n n

n n n

1

1

The implement circuits of the above DQWPT are shown in Fig. 20. Substituting the kernel matrix W2n with T2n 
in (35) and (36), we obtain that the (k + 1)-th iterations of the DQWPT and its inverse based on the periodization 
extension are








= ⊗

= ⊗

−

− − − −

− −

− −

A P A I D

A Q D A I P

( ) ,

( ) ( ) (( ) ) (42)

k k p

k k

2 2 ,2 2
1

2 2

2
1

2 2
1

2
1 1

2 2,2

n n n n

n n n n n

1 1

1 1

with the initial values =− −A T
2
0

2n k n k, =− −
− −A T( ) ( )

2
0 1

2
1

n k n k , 1 ≤ k < n − 1 and their implementation circuits shown 
in Fig. 21.

Using Γ2n, the quantum circuit of A k
2n and −A( )k

2
1

n  can be simplified and shown in Fig. 22.
We analyze the complexity of the above DQWPT and suppose = ⌊ ⌋r n/2 .
From Figs 19 and 20, we calculate the complexity of T2n by

∑= = + + = + .−

=

−
−C T C T C Q C D C P C N( ) (( ) ) ( ) ( ) ( ) 2 ( ) 10

(43)
p p P p P

i

n

n
i

2 2
1

2 2 2 ,2
1

1
n n n n n 1

Applying lemma 1, corollary 1, corollary 2 and theorem 1, we obtain

= =






. − +

. − + . .
−C T C T n n

n n
( ) (( ) ) 52 5 216 38, n is even,

52 5 201 16 5, n is odd (44)
p p

2 2
1

2

2
n n

We calculate the quantum cost of T2n by

Figure 19. The quantum circuits of the kernel matrix of the D4 wavelet transform.
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= = + + = + − .−
−C T C T C Q C D C P C T n( ) (( ) ) ( ) ( ) ( ) ( ) 3 9 (45)p

2 2
1

2 2 2 ,2 2n n n n n n1

Let φ =





= −
≤ < −

k k n
k n

( ) 3, 2
6, 1 2,2  the time complexity of DQWPT is

∑ ∑ φ= = + + − + + + .−

=

− −

= −

−
C A C A k C N n i C N k k( ) (( ) ) 2( 1) ( ) 2( ) ( ) 4( 1) ( )

(46)
p k p k

i

n k

n
i

i n k

n

n
i

2 2
1

1

1 1

2n n

For instance,

Figure 20. The quantum circuits of the single-level DQWPT and its inverse based on the periodization 
extension.

Figure 21. The quantum circuits of A k
2n and −A( )k

2
1

n . The dashed boxes in (a,b) implement −
−A k

2
1

n 1 and − −
−A( )k

2
1 1

n 1 , 
respectively.
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= =






+ − . +
+ . − . +

− − −C A C A n n n
n n n

( ) (( ) ) 5 21 163 5 63, n is even,
5 23 5 168 5 51, n is odd, (47)

p n p n
2

2
2

2 1
3 2

3 2
n n

and

= =






− +
− + .

−C A C A n n
n n

( ) (( ) ) 70 316 115, n is even,
70 296 85, n is odd (48)

p p
2
1

2
1 1

2

2
n n

The costs of A k
2n and −A( )k

2
1

n  are

φ= = − +






− − 





+











.−C A C A C A k n k n( ) (( ) ) ( ) ( ) 1

2 2 (49)
k k p k
2 2

1
2 2n n n

The 2D and 3D QWPTs
Firstly, we briefly describe NASS to represent 2D images and 3D videos. The NASS state ψ| 〉2  of an image can be 
represented by

∑ ∑ψ θ=
=

−

=

−
x y ,

(50)x y
x y m k2

0

2 1

0

2 1

,
m

m

k

k

m k

where = … +x i im n k 1  and = …y i ik k 1  are the X-axis and Y-axis of the image, θx y,m k
 represents the color of 

the pixel in the coordinate xm  yk , and n = m + k.
The NASS state ψ3  of a video can represented by

∑ ∑ ∑ψ θ=
=

−

=

−

=

−
x y t ,

(51)x y t
x y t m k h3

0

2 1

0

2 1

0

2 1

, ,
m

m

k

k

h

h

m k h

where = … + +x i im n h k 1 , = …+ +y i ik h k h 1  and = …t i ih h 1  are the X-axis, Y-axis and time-axis of a video, 
and n = m + k + h.

More details are shown in our previous work6. For instance, the NASS state

∑ ∑ψ θ θ θ= = + +
=

−

=

−
x y 000 00 111 11

(52)x y
x y2

0

2 1

0

2 1

, 3 2 0,0 7,3
3

3

2

2

3 2

represents the color image of 8 × 4 (height multiplies weight) as shown in (a) of Fig. 23.

Figure 22. The simplified circuits of A k
2n and −A( )k

2
1

n  with 1 ≤ k < n − 1.
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The NASS state

∑ ∑ ∑ψ θ θ θ= = + +
=

−

= =

−
x y t 00 0 00 11 1 11

(53)x y t
x y t3

0

2 1

0

1

0

2 1

, , 2 1 2 0,0,0 3,1,3m k h
2

2

1 2

2

represents the video with four frames as shown in (b) of Fig. 23, where each frame is a 4 × 2 image.
The same string can have different meanings corresponding to different data types in classic computers. For 

instance, a binary string 0100001 can represent a char ‘A’ or a number 65. Similarly, using the circuit in6, we can 
store an image (shown in (a) of Fig. 23) or a video (shown in (b) of Fig. 23) in the following state

∑ψ θ= .
=

−
i

(54)i
i

0

2 15

Meanwhile, the priori knowledge ‘x3, y2’ or ‘x2, y1, t2’ is equivalent to a data type, implying an image or a video 
stored in the state ψ| 〉.

A natural image with size of 2n × 2m can be expressed as an angle matrix

θ θ θ
θ θ θ

θ θ θ

Λ =























−

−

− − − −

�
�

� � � �
�

,

(55)

2 ,2

0,0 0,1 0,2 1

1,0 1,1 1,2 1

2 1,0 2 1,1 2 1,2 1

n m

m

m

n n n m

where θx,y is the color information of the pixel on the coordinate (x, y) and an example is shown in Fig. 23.
Thus, the 2D wavelet transform on Λ2 ,2n m is defined as

Λ = × Λ ×wt W W2( ) , (56)T
2 ,2 2 2 ,2 2n m n n m m

where W2n and W2m are 2n × 2n and 2m × 2m wavelet transforms, respectively
An image can be stored in the state NASS ψ| 〉2  in (50) by using a quantum circuit in the literature6. Suppose 

that the function ⋅f ( ) is equivalent to the quantum circuit implementing the storage of the image Λ2 ,2n m, that is,

ψΛ = =



















−



f
B

B
( ) ,

(57)

T

T
2 ,2 2

0

2 1

n m

n

where θ θ θ= −B [ ]j j j j,0 ,1 ,2 1m  is the row vector of Λ2 ,2n m and 0 ≤ j ≤ 2n − 1.
Applying the function ⋅f ( ) on Λ × WT

2 ,2 2n m m, the result is

Λ × = ⊗ Λ .f W I W f( ) ( ) ( ) (58)T
2 ,2 2 2 2 2 ,2n m m n m n m

Using the perfect shuffle permutation P2 ,2m n, we obtain

Λ = Λ .f P f( ) (( ) ) (59)T
2 ,2 2 ,2 2 ,2n m m n n m

Then, we have

Figure 23. The image and the video.
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Λ = ⊗ Λf W W I f( ) ( ) ( ), (60)2 2 ,2 2 2 2 ,2n n m n m n m

Λ = ⊗ Λ .f W W W W f( ) ( ) ( ) (61)T
2 2 ,2 2 2 2 2 ,2n n m m n m n m

Then, the 2D QWPT of Λ2 ,2n m is given by

ψΛ = ⊗ .f wt W W( 2( )) ( ) (62)2 ,2 2 2 2n m n m

A video of 2p frames of size 2n × 2m corresponds to the following angle matrix.

= Λ Λ ΛA ( , , , ), (63)2 ,2 ,2 2 ,2
1

2 ,2
2

2 ,2
2

n m p n m n m n m
p

where the angle matrix Λk
2 ,2n m is the k-th frame.

We firstly define the following DWPTs: ⋅W ( )x , ⋅W ( )y  and ⋅W ( )t .

Figure 24. The quantum circuits of the 2D QWPT and IQWPT with 1 ≤ k ≤ min(m, n) − 1 in (e,f), 
1 ≤ k ≤ min(m, n) − 2 in (f,h).

Figure 25. The quantum circuits of the 2D QWPT and IQWPT with 1 ≤ k ≤ min(m, n, p) − 1 in (e,f), 
1 ≤ k ≤ min(m, n, p) − 2 in (f,h).
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1

2 2 ,2
2

2 ,2 ,2 2 ,2
1

2 2 ,2
2

2

2 ,2 ,2 2 ,2
1

2 ,2
2
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2
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p

n m p n m m n m
p

m

n m p n m n m n m
p

with the row vectors

θ θ θ









= ×

=





C C C u W

u

[ ] ,

[ ], (65)

x y x y x y x y
T

x y x y x y x y

,
1

,
2

,
2

, 2

, ,
1

,
2

,
2

p
m

p

where Cx y
j
,  and θx y

j
,  are the elements of the matrices C j

2 ,2n m and Λ j
2 ,2n m on the position (x, y), respectively.

Next, the 3D DFPT of A2 ,2 ,2n m p can be defined as

= .wt A W W W A3( ) ( ( ( ))) (66)t y x
2 ,2 ,2 2 ,2 ,2n m p n m p

Figure 26. The simulation results of the first 3 levels of HQWPT and DQWPT. The left number i refers to i-
level QWT with 1 ≤ i ≤ 10, and i = 0 refers to the input signal.

level − ×norm M M 0( ) 1k k
1 5

13 − ×norm S M 0( ) 1k
2

13 − ×norm M M 0( ) 1k k
3 6

10 − ×norm S M 0( ) 1k
4

13

1 0 0.0211 0.0057 0.0257

2 0.0228 0.0583 0.0128 0.0511

3 0.0252 0.0643 0.0230 0.0798

4 0.0361 0.0619 0.0374 0.1006

5 0.0311 0.0716 0.0574 0.1371

6 0.0693 0.0736 0.0842 0.1662

7 0.0505 0.1118 0.1168 0.2402

8 0.0960 0.1518 0.1564 0.2575

9 0.1325 0.1874 0.1963 0.3040

10 0.1982 0.2899 0.1560 0.3623

11 0.2497 0.3981 — —

Table 1. The simulation results of the HQWT, IHQWT and HWT.
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Similarly, we utilize the equivalent function of the quantum circuit to create the NASS state of A2 ,2 ,2n m p

ψ = = − − − − −   f A u u u u u u( ) [ ] , (67)T
3 2 ,2 ,2 0,0 0,2 1 1,0 1,2 1 2 1,0 2 1,2 1n m p m m n n m

where the row vector ux,y is shown in equation (65).
Applying the function ⋅f ( ) on F A( )t

2 ,2 ,2n m p , F A( )y
2 ,2 ,2n m p  and F A( )x

2 ,2 ,2n m p  respectively, we have the following 
three equations.

ψ

ψ

ψ










= ⊗

= ⊗ ⊗

= ⊗ ⊗ .

+f W A I W
f W A I W I
f W A W I I

( ( )) ( ) ,
( ( )) ( ) ,
( ( )) ( ) (68)

t

y

x

2 ,2 ,2 2 2 3

2 ,2 ,2 2 2 2 3

2 ,2 ,2 2 2 2 3

n m p n m p

n m p n m p

n m p n m p

Therefore, we derive the 3D QWPT of A2 ,2 ,2n m p

ψ= ⊗ ⊗ .f wt A W W W( 3( )) ( ) (69)2 ,2 ,2 2 2 2 3n m p n m p

Substituting our proposed 1D QWPT into equations (62) and (69), we obtain 2D HQWPT, 2D DQWPT, 3D 
HQWPT and 3D DQWPT. Furthermore, their circuits can be designed in Figs 24 and 25.

Simulation Experiments
In the absence of a quantum computer to implement our proposed QWPTs, experiments of quantum signals are 
simulated on a classical computer. The quantum signals are stored in quantum states (i.e., column vectors) and the 
QWPTs are implemented using unitary matrices in Matlab (the R2010bversion).

Simulation experiments of the 1D HQWPT and DQWPT. Consider a quantum state

=
∑ =

v
v

v v v1

( )
[ ]

(70)i i

T

0
2047 2 0 1 2047

as an input signal of the QWT, where vk = d(k/2048), k = 0, …, 2047, and = − π .
+ .

⁎( )d t t t( ) (1 ) sin
t

2 1 05
0 05

.
For simply, we can take a vector

= S v v v[ ] (71)T
0 1 2047

as the input signal of simulation experiments, which is according with the state | 〉v  without the normalized item.

Figure 27. The simulation results of the first 2 levels of HQWPT and DQWPT.
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For convenience, let the single-level HQWPT and DQWPT be

= ⊗ = .− −R P I H A T( ), (72)2
0

2 ,2 2 2
0

2n n11 1 1 11 11

Applying multi-level HQWPT = …R k, 0, 1, 10k
211  and multi-level DQWPT = …A k, 0, 1, 9k

211  to the input 
signal S in Eq. (71), the simulation results of the first 3 levels are shown in Fig. 26 with multi-windows. Table 1 
shows the comparison of simulation experiments of our proposed QWPT and the function of the WPT in Matlab 
using the 2-norm function norm(). The symbols in this table are listed as follows:











= × ≤ ≤

= × ≤ ≤

= × ≤ ≤

= × ≤ ≤ .
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−

M R S k

M R M k

M A S k

M A M k

, 0 10,

( ) , 0 10,

, 0 9,

( ) , 0 9 (73)

k k

k k k

k k

k k k

1 2

2 2
1

1

3 2

4 2
1

3

11

11

11

11

The function + ′ ′wpdec S k db( , 1, 1 ) in Matlab performs a (k + 1)-level HWPT to return a wavelet packet tree. 
Next, we get the coefficients of the nodes of the wavelet packet tree using the function wpcoef () to construct a 
vector M k

5 . similarly, we obtain a a vector M k
6  of a (k + 1)-level DWPT based on the periodization extension by the 

+ ′ ′wpdec S k db( , 1, 2 ) and wpcoef ().

Simulation experiments of the 2D HQWPT and DQWPT. An angle matrix Λg is given by

π
Λ =

× −

C
A

2 2 2
,

(74)g
g

g8

where Ag is the 128 × 128 matrix of the gray-scale image shown in Fig. 27(a), and Cg is a constant corresponding 
to the image.

The NASS state ψ = Λf ( )g2  can be regarded as a column vector, where the function ⋅f ( ) is defined in equa-
tion (57). Applying the k + 1 level 2D HQWPT and DQWPT on the image Ag, respectively, the results are

π
ψ

π
ψ











=
× −

⊗

=
× −

⊗

−

−

Q
C

f R R

Q
C

f A A

2 2 2 (( ) ),

2 2 2 (( ) ),
(75)

k

g

k k

k

g

k k

1

8
1

2 2 2

3

8
1

2 2 2

7 7

7 7

where ⋅−f ( )1  is the inverse function of ⋅f ( ), which converts a column vector into a 2-dimension matrix.
The simulation results are shown in Fig. 27 and Table 2. The rest symbols in Table 2 are: ψ= −Q k

2 2  
ψ⊗ ⊗− −R R R R(( ) ( ) )[( ) ]k k k k

2
1

2
1

2 2 27 7 7 7 , ψ ψ= − ⊗ ⊗− −Q A A A A(( ) ( ) ) [( ) ]k k k k k
2 2 2

1
2

1
2 2 27 7 7 7 . Similarly with the 1D 

HQWPT and DQWPT, matrices Q k
5  and Q k

6  are created using the functions + ′ ′wpdec A k db2( , 1, 1 )g , 
+ ′ ′wpdec A k db2( , 1, 2 )g  and wpcoef (), respectively.

Simulation experiments of the 3D HQWPT and DQWPT. An angle matrix Λc is given by

π
Λ =

× −
C V

2 2 2
,

(76)c
c

t8

where Vt is the 64 × 64 × 4 matrix of the video shown in (a) of Fig. 28, and Cc is a constant corresponding to the 
video.

The NASS state ψ = Λf ( )c3  can be regarded as a column vector, where the function ⋅f ( ) is defined in equa-
tion (67). Applying the k + 1 level 3D HQWPT and DQWPT on the video Vt, respectively, the results are

level − ×norm Q Q 0( ) 1k k
1 5

9 ψ − ×| 〉norm Q 0( ) 1k
2 2

13 − ×norm Q Q 0( ) 1k k
3 6

8 ψ − ×| 〉norm Q 0( ) 1k
2 4

14

1 0.0011 0.0041 0.0669 0.0427

2 0.0022 0.0093 0.0128 0.0880

3 0.0026 0.0104 0.2641 0.1837

4 0.0099 0.0125 0.3917 0.2904

5 0.0218 0.0242 0.5851 0.6436

6 0.0679 0.0518 0.9105 0.8180

7 0.1218 0.1079 — —

Table 2. The simulation results of the 2D HQWT, IHQWT and HWT.
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where ⋅−f ( )1  converts a column vector into a 3-dimension matrix.
The simulation results are shown in Fig. 28 and Table 3. Since there are no functions of the 3D WPT, we realize 

wt3 in (66) using the functions wpdec2() and wpdec() and note V k
5  and V k

6  as results of 3D HWPT and DWPT, 

Figure 28. The simulation results of the first 2 levels of the 3D HQWPT and DQWPT.
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respectively. The rest symbols in Table 2 are ψ ψ= − ⊗ ⊗ ⊗ ⊗− − −V R R R R R R(( ) ( ) ( ) ) [( ) ]k k k k k k k
2 3 2

1
2

1
2

1
2 2 2 36 5 3 6 5 3  

and ψ ψ= − ⊗ ⊗ ⊗ ⊗− − −V A A A A A A(( ) ( ) ( ) ) [( ) ]k k k k k k k
4 3 2

1
2

1
2

1
2 2 2 36 5 3 6 5 3 .

Analyzing the above simulation experiments, we conclude that our proposed HQWPT, IHQWPT, DQWPT 
and IDQWPT can implement decompositions and reconstructions of the Haar wavelet and D4 wavelet, respec-
tively. The simulation results of our proposed HQWPT and DQWPT, which are equal to the corresponding WPTs 
without consideration of truncation error on machine computing, show our proposed QWPTs are correct.

Conclusion and Future Works
This article has constructed the iteration equations of multi-level and multi-dimensional QWPTs by GTP and 
PSP. The iteration equations include HQWPT, DQWPT based on the periodization extension and their inverse 
transforms for the first time, which ensure the theoretical correctness of our proposed QWPTs. Next, we have 
designed circuits of the proposed QWPTs. The precise analysis of the quantum costs and the time complexities 
of circuits prove that our proposed QWPTs are of high-efficiency. For instance, the time complexities of the 
multi-level HQWPT and DQWPT at most are 6 and (5n3 + O(n2)) on 2n, respectively. In contrast, the classical 
fast WPTs need O(n2n) basic operations to implement the discrete wavelet transform21,32. Thus, our proposed 
QWPT can exponentially speed up the computation of the wavelet transform in comparison to the one on a 
classical computer. The simulation results show that our proposed QWTs are correct and effective. In summary, 
the proposed QWPTS and IQWPTs can implement effective decompositions and reconstructions of 1D signals, 
2D images and 3D vedio, respectively. Therefore, the article provide a feasible scheme for the WPT to be applied 
in QIP.

Studies of quantum wavelet packet are still in their infancy. Multi-level and multi-dimension wavelet trans-
forms play an important role in classical image and signal processing, therefore, their quantum versions will be 
significant and core tool algorithms for quantum image and signal processing. Our future works are how to use 
these wavelet transforms to implement some complex operations, such as quantum image and signal compres-
sion, and quantum image and signal denoising.

References
 1. Stajic, J. The future of quantum information processing. Sci. 339, 1163–1163 (2013).
 2. Li, H.-S. et al. Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12, 2269–2290 

(2013).
 3. Li, H.-S., Zhu, Q., Zhou, R.-G., Song, L. & Yang, X.-J. Multi-dimensional color image storage and retrieval for a normal arbitrary 

quantum superposition state. Quantum inf. process 13, 991–1011 (2014).
 4. Zhang, Y., Lu, K., Gao, Y. & Wang, M. Neqr: a novel enhanced quantum representation of digital images. Quantum inf. process 12, 

2283–2860 (2013).
 5. Le, P. Q., Dong, F. & Hirota, K. A flexible representation of quantum images for polynomial preparation, image compression. 

Quantum inf. process 10, 63–84 (2011).
 6. Li, H.-S., Zhu, Q., Zhou, R.-G., Li, M.-C. & Ian, H. Multidimensional color image storage, retrieval, and compression based on 

quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014).
 7. Yan, F., Iliyasu, A. M. & Venegas-Andraca, S. E. A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016).
 8.  Li, H.-S., Fan, P., Xia, H.-Y., Peng, H. & Song, S. Quantum implementation circuits of quantum signal representation and type 

conversion. IEEE Transactions on Circuits Syst. I: Regul. Pap. 1–14 (2018).
 9. Shor, P. W. Foundations of computer science. 1994 Proceedings, 35th Annu. Symp. on. IEEE 124–134 (1994).
 10. Deutsch, D. Quantum theory, the church-turing principle and the universal quantum computer. Proc R Soc Lond. A 400, 97–117 

(1985).
 11. Grover, L. A fast quantum mechanical algorithm for database search. Proc. 28th Annu. ACM Symp. on Theory Comput. 212–219 

(1996).
 12. Fan, P., Zhou, R.-G., Jing, N. & Li, H.-S. Geometric transformations of multidimensional color images based on nass. Inf. Sci. 340, 

191–208 (2016).
 13. Zhou, R.-G., Hu, W., Fan, P. & Ian, H. Quantum realization of the bilinear interpolation method for neqr. Sci. Reports 7, 2511 (2017).
 14. Zhou, R., Hu, W., Luo, G., Liu, X. & Fan, P. Quantum realization of the nearest neighbor value interpolation method for ineqr. 

Quantum Inf. Process. 17, 166 (2018).
 15. Zhou, R.-G., Wu, Q., Zhang, M.-Q. & Shen, C.-Y. Quantum image encryption and decryption algorithms based on quantum image 

geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013).
 16. Zhou, R.-G. et al. A novel quantum image steganography scheme based on lsb. Int. J. Theor. Phys. 57, 1848–1863 (2018).
 17. Yan, F. et al. A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14, 1675–1692 (2015).
 18. Yao, X.-W. et al. Quantum image processing and its application to edge detection: Theory and experiment. Phys. Rev. X 7, 031041 

(2017).
 19.  Kai, L., Zhang, Y., Wang, X.-P. & Kai, L. A strategy of quantum image filtering in frequency domain. DEStech Transactions on Eng. 

Technol. Res (2016).
 20. Ramchandran, K., Xiong, Z., Asai, K. & Vetterli, M. Adaptive transforms for image coding using spatially varying wavelet packets. 

IEEE Transactions on Image Process. 5, 1197–1204 (1996).
 21. Ouyang, W., Zhao, T., Cham, W.-K. & Wei, L. Fast full-search equivalent pattern matching using asymmetric haar wavelet packets. 

IEEE Transactions on Circuits Syst. for Video Technol. 28, 819–833 (2016).
 22. Yu, X. Wavelet packet transform for fractional brownian motion: Asymptotic decorrelation and selection of best bases. IEEE 

Transactions on Inf. Theory 63, 4532–4550 (2017).

level − ×norm V V 0( ) 1k k
1 5

10 ψ − ×| 〉norm V 0( ) 1k
2

14
3 − ×norm V V 0( ) 1k k

3 6
8 ψ − ×| 〉norm V 0( ) 1k

4
14

3

1 0.0164 0.0488 0.1787 0.0714

2 0.0702 0.1449 0.3328 0.2005

3 0.2171 0.2044 — —

Table 3. The simulation results of the 3D HQWT, IHQWT and HWT.



www.nature.com/scientificreports/

23Scientific REPoRTS |  (2018) 8:13884  | DOI:10.1038/s41598-018-32348-8

 23. Klappenecker, A. Wavelets and wavelet packets on quantum computers. arXiv preprint quant-ph/9909014 (1999).
 24. Hoyer, P. Efficient quantum transforms. arXiv preprint quant-ph/9702028 (1997).
 25. Fijany, A. & Williams, C. P. Quantum wavelet transforms: Fast algorithms and complete circuits. Lect. Notes Comput. Sci. 1509, 

10–33 (1998).
 26. Terraneo, M. & Shepelyansky, D. L. Imperfection effects for multiple applications of the quantum wavelet transform. arXiv preprint 

quant-ph/0303043 (2003).
 27. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).
 28.  Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. (Cambridge University Press, 2000).
 29. Fino, B. J. & Algazi, V. R. A unified treatment of discrete fast unitary transforms. SIAM J. on Comput. 6, 700–717 (1977).
 30. Smolin, J. A. & DiVincenzo, D. P. Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Phys. Rev. A 53, 

2855 (1996).
 31. Ruch, D. K. & Van Fleet, P. J. Wavelet theory: an elementary approach with applications. (John Wiley & Sons, 2011).
 32. Noskoski, O. A., Bermudez, J. C. & de Almeida, S. J. Region-based wavelet-packet adaptive algorithm for identification of sparse 

impulse responses. IEEE Transactions on Signal Process. 61, 3321–3333 (2013).

Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant No. 61462026, No. 
61762012, No. 61763014 and No. 61762014, Project of Science and Technology of Jiangxi province Grant No. 
20161BAB202065, the key research project of Guangxi Normal University Grant No. 2016ZD008 and an award of 
China Scholarship Council, Science and technology research project of Jiangxi Provincial Education Department 
under Grant No. GJJ170382, Project of International Cooperation and Exchanges of Jiangxi Province under 
Grant No. 20161BBH80034, Project of Humanities and Social Sciences in colleges and universities of Jiangxi 
Province under Grant No. JC161023, the Fund for Distinguished Young Scholars of Jiangxi Province under Grant 
No.2018ACB2101.

Author Contributions
Li H.S. and Fan P. conceived the core theme, Xia H.Y. conducted experiments, Song S. drew many figures, He X. 
reviewed and corrected the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	The multi-level and multi-dimensional quantum wavelet packet transforms
	The Quantum Implementation of GTP
	The Complexity Analysis of Quantum Circuits
	The complexity analysis of quantsssum circuits. 

	The Quantum Circuits of PSP
	The Implementation of QWPT
	The implementation of HQWPT. 
	The implementation of DQWPT. 

	The 2D and 3D QWPTs
	Simulation Experiments
	Simulation experiments of the 1D HQWPT and DQWPT. 
	Simulation experiments of the 2D HQWPT and DQWPT. 
	Simulation experiments of the 3D HQWPT and DQWPT. 

	Conclusion and Future Works
	Acknowledgements
	Figure 1 Notations for some base gates with their corresponding symbols.
	Figure 2 The (n + m) qubit controlled gates and the gate.
	Figure 3 The four gates.
	Figure 4 The controlled gate illustrated for n = 10 and m ∈ {5, 6}.
	Figure 5 The controlled gate illustrated for n = 9 and m = 5.
	Figure 6 The simulated networks of the gates and with n ≥ 2.
	Figure 7 The simulated networks of the gates and .
	Figure 8 The simulated networks of the gates and .
	Figure 9 The simulated networks of the gates (i = 0, 1, 2, 3).
	Figure 10 The implement circuits of and .
	Figure 11 The simplified quantum circuits of and .
	Figure 12 The parallel quantum circuits of and .
	Figure 13 The simplified circuits of and .
	Figure 14 The quantum circuits of and .
	Figure 15 The implementation circuits of and .
	Figure 16 The implementation circuits of and (1 ≤ k < n − 1).
	Figure 17 The simplified circuits of 1 ≤ k < n − 2, and .
	Figure 18 The simplified circuits of 1 ≤ k < n − 2, and .
	Figure 19 The quantum circuits of the kernel matrix of the D4 wavelet transform.
	Figure 20 The quantum circuits of the single-level DQWPT and its inverse based on the periodization extension.
	Figure 21 The quantum circuits of and .
	Figure 22 The simplified circuits of and with 1 ≤ k < n − 1.
	Figure 23 The image and the video.
	Figure 24 The quantum circuits of the 2D QWPT and IQWPT with 1 ≤ k ≤ min(m, n) − 1 in (e,f), 1 ≤ k ≤ min(m, n) − 2 in (f,h).
	Figure 25 The quantum circuits of the 2D QWPT and IQWPT with 1 ≤ k ≤ min(m, n, p) − 1 in (e,f), 1 ≤ k ≤ min(m, n, p) − 2 in (f,h).
	Figure 26 The simulation results of the first 3 levels of HQWPT and DQWPT.
	Figure 27 The simulation results of the first 2 levels of HQWPT and DQWPT.
	Figure 28 The simulation results of the first 2 levels of the 3D HQWPT and DQWPT.
	Table 1 The simulation results of the HQWT, IHQWT and HWT.
	Table 2 The simulation results of the 2D HQWT, IHQWT and HWT.
	Table 3 The simulation results of the 3D HQWT, IHQWT and HWT.




