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. and better therapeutic trials for cancer patients. Many computational approaches have been proposed

to achieve this goal; however, there is room for improvement. Recent developments in deep learning
techniques can aid in the identification of better prognostic genes and more accurate outcome
prediction, but one of the main problems in the adoption of deep learning for this purpose is that data
from cancer patients have too many dimensions, while the number of samples is relatively small.
In this study, we propose a novel network-based deep learning method to identify prognostic gene
signatures via distributed gene representations generated by G2Vec, which is a modified Word2Vec
model originally used for natural language processing. We applied the proposed method to five cancer
types including liver cancer and showed that G2Vec outperformed extant feature selection methods,
especially for small number of samples. Moreover, biomarkers identified by G2Vec was useful to find
significant prognostic gene modules associated with hepatocellular carcinoma.

Accurate identification of cancer prognostic genes is important in that it can lead to improvement in the accu-
racy of outcome prediction and better therapeutic trials for cancer patients. Many computational approaches
have applied various statistical or machine learning methods to gene expression profiles to achieve this goal. For
instance, Emura et al. proposed a copula-based application of Cox regression for selecting prognostic markers
from gene expression data', and Sun et al. exploited support vector machine, which is a renowned machine
learning model, to predict cancer prognosis®. These approaches successfully identify individual genes that can
be used for cancer prognosis, but more recent studies proposed to exploit biological network data to identify
group of interacting genes that can increase the accuracy in the prediction of cancer prognosis. For example,
Langfelder and Horvath explored a gene module in a weighted correlation network and selected prognostic genes
with a trait-based gene significance measure’. Wu and Stein derived prognostic genes using the Markov Cluster
Algorithm and supervised principal component analysis*. Google’s PageRank algorithm, which ranks websites by
counting the number and quality of links to a page, was utilized to evaluate the importance of a gene in prognosis
using the gene network®. Development of these new methods continues to improve the accuracy of outcome
prediction in several cancer types. Moreover, the resulting gene module or sub-networks of genes enables better
understanding of molecular mechanisms of tumor progression. However, we paid attention to the possibility that
deep learning models permit more accurate prediction of cancer outcome and identification of gene networks
with richer information

The recent development of deep learning has been remarkable, and it has outperformed traditional machine
learning methods, especially in image and natural language processing®. A variety of deep learning models have
already been employed in many bioinformatics domains, such as protein structure prediction, biomedical imag-
ing, and biomedical signal processing®. Esteva et al. trained a Convolutional Neural Network (CNN) model using
about 130,000 skin images and was able to diagnose skin cancer as accurately as a dermatologist’. A Recurrent
Neural Networks (RNN) is renowned for analyzing enormous medical documents, and it was utilized to precisely
extract medical information from unstructured text of electronic health record notes®. In view of the previous
results, the application of the deep learning models is also expected to demonstrate excellent performance in ana-
lyzing omics data including gene expression data for identification of better prognostic genes and more accurate
outcome prediction.
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Cancer | #Total #Total | Criterion
type samples | #Good | #Poor |genes | forlabel
BLCA 163 77 86 16151 2 years
BRCA 165 98 67 16603 5 years
CESC 101 55 46 16272 3 years
LAML 104 41 63 14983 1 year
LIHC 135 77 58 15568 2 years

Table 1. Summary of gene expression datasets.

One of the main problems regarding the adoption of deep learning for this purpose is that, different from
image or document data, cancer patient data have too many dimensions for a relatively small number of samples.
Exploiting additional network data can be an efficient solution to this problem, because they can explain depend-
encies between genes, which can result in a similar effect to reduction of a dimension. However, it is impossible to
use biological networks to learn cancer patient data using the existing DNN (Deep Neural Networks), CNN and
RNN based methods without great modification.

To address this problem, we took inspiration from Word2Vec® and Node2Vec!®. Word2Vec was developed
to measure syntactic and semantic word similarities among words®. There are two models, the continuous
bag-of-words (CBOW) and the skip-gram!’. Both provide a word vector representation that is trained from a
large dataset for vocabulary and context, so the similarity between words can be easily computed by using vector
algebraic operations. Node2Vec, which is a variation of Word2Vec, regards a random path generated by a random
walk as a sentence or set of words. Hence, Node2Vec can capture feature representations of nodes in networks in
the similar way as Word2Vec models generate vector representation of words'’. Node2Vec has been utilized to
predict protein-protein interactions' or to identify disease-associated single nucleotide polymorphisms (SNPs)
by using feature representations learned from networks'2.

In this study, we propose a novel network-based deep learning method, called G2Vec, to identify prognostic
gene signatures. G2Vec is a modified CBOW model and provides distributed gene representations by learning
gene correlation networks regarding good and poor prognosis groups made from the functional interaction (FI)
network!. These random paths generated from correlation networks are thought of as sentences in the context
of the cancer prognosis. G2Vec is trained by predicting whether an input path was generated from a good or
poor network and provides learned distributed gene representations for identifying prognostic markers. Then we
computed gene scores using the gene vector representations and identified 100 biomarker genes with high scores.

We applied the proposed gene selection procedure to gene expression data for five cancer types: bladder
urothelial carcinoma (BLCA), breast invasive cancer (BRCA), cervical and endocervical cancers (CESC), acute
myeloid leukemia (LAML), and liver hepatocellular carcinoma (LIHC), from The Cancer Genome Atlas (TCGA).
For all cancer types, we observed two clearly distinguished gene groups that represent good and poor progno-
sis groups when visualizing distributed gene representations, and biomarkers selected from those gene groups
showed higher prediction accuracy than genes identified by existing feature selection methods when the random
forest classifier was applied!*. Gene-annotation enrichment analysis on the LIHC dataset resulted in gene mod-
ules for biological functions associated with liver cancer prognosis. These gene modules include novel prognostic
biomarkers, INPP4B, RUVBLI, and HDACI, with their roles in the progression of liver cancer. Consequently, we
suggest G2Vec as an effective tool for studying cancer data, and this may form a foundation for application of deep
learning for exploiting gene network data.

Results

Description of datasets. We downloaded five high-throughput sequencing datasets and the corresponding
clinical information for BLAC, BRCA, CESC, LAML, and LIHC from the Broad Institute GDAC Firehose'®. We
used the RSEM genes normalized results (level 3) and normalized the expression values using log2 transforma-
tion after adding an offset of 1. For each cancer type, we set a criterion of survival times to manage a classification
problem. The outcome of patients who survived longer than the criterion and had no death events was defined
as good prognosis. In contrast, we defined the prognosis for patients with reported deaths within the criterion as
poor prognosis. Table 1 shows a summary of gene expression datasets.

We also downloaded FI network data from the Reactome database'® accessed in April 2017. The FI net-
work is derived from curated pathways, protein-protein interactions, gene co-expression, GO annotations, and
text-mined protein interactions'?. After filtering the predicted edges from the network, the number of interac-
tions in the FI network is 298,799. We also downloaded two other gene networks, BioGrid'” and HumanNet's.
The number of edges in BioGrid and HumanNet are 416,692 and 474,620, respectively.

Visualization of distributed gene representations. G2Vec provides numeric representations of genes,
which enable quantitative analysis for genes associated with cancer prognosis. We first visualized distributed gene
representation to design an effective approach for identification of prognostic gene markers by t-distributed sto-
chastic neighbor embedding (t-SNE)'°, which is a broadly used dimensional reduction and visualization method.
Figure 1 shows all distributed gene representations computed by G2Vec. In all cancer types, we confirmed that
there were three distinct gene groups, a large central vector group and two gene vector groups separated from
the center. The gene vectors in the center were initial random vectors that are not updated through the training
process. Gene vectors retain initial vectors because the corresponding genes were not contained in any random
paths. Two trained gene groups appeared to be related to the good and poor prognosis groups, respectively. Each
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Figure 1. Scatter plots of distributed gene representations with t-SNE for 5 cancer types. (A) BLCA, (B) BRCA,
(C) CESC, (D) LAML, and (E) LIHC; blue and red points represent genes more frequently occurred in the paths
of good and poor prognosis groups, respectively. Yellow points indicate genes whose numbers of occurrence in
two prognosis groups were equal. Green points represent genes with no occurrence in any path.

gene group was composed mainly of genes whose frequency in the paths generated from good or poor outcome
group (Fig. 1). Genes having same label tended to be agglomerated except for yellow labeled genes, so we thought
that those genes may have important information for distinguishing two prognosis groups. Moreover, these two
groups tended to be far from the center of the initial vectors. Gene vectors of the two groups were tuned to dis-
criminate between two correlation networks comprising good and poor prognosis groups through the optimi-
zation of the deep learning model in G2Vec. Hence, we assumed that the farther a gene vector is from the center,
the more relevant the corresponding gene is to cancer prognosis. We applied K-means clustering algorithm with
K =3 to distributed gene representations and found the initial random vector group and two interesting gene
groups that are distinguishable from the initial random vector group (Supplementary Fig. S1). We named the two
distinguishable vector groups good L-group and poor L-group, respectively.

Identification of biomarkers and outcome prediction. Using distributed gene representations,
we scored genes to identify markers for predicting patient outcomes. We selected prognostic genes from each
L-group using the d-score, which is the distance between vectors and the center, and the t-score, which measures
the difference in gene expression levels between good and poor prognosis groups. We evaluated the power of bio-
markers by comparing the prediction accuracy with three existing feature selection methods, NCPR®, WuStein?*,
and WGCNA?. In addition, we also selected biomarkers with high occurrence frequency in the generated paths.
We named this approach Diff-Freq and selected top 50 genes from each good and poor prognosis group with the
difference of occurrence frequencies in the paths, using Diff-Freq. We applied these feature selection methods to
five sets of gene expression data from TCGA and predicted patient outcomes using the random forest classifier.
We conducted 10-fold cross validation and computed the prediction accuracy in terms of the area under the
receiver operating curve (AUC-ROC). The results of the prediction accuracy are shown in Fig. 2. We confirmed
that the performance of G2Vec was higher than the others (0.009-0.049) in most cancer types, with the exception
of BRCA. In BRCA, G2Vec was not the best, but it still showed good accuracy.

We also applied G2Vec to BioGrid and HumanNet in addition to the FI network. Supplementary Fig. S2
showed the AUC-ROC values using FI were slightly higher than other networks, but differences were not signif-
icant in all cancer types, which means that G2Vec works for any gene network without bias. Following experi-
ments were conducted with FI network.

Effective sample size for G2Vec. Next, we checked the effective sample size of G2Vec to show that G2Vec
is effective for small number of gene expression profiles. For each cancer type, we generated 10 sets of training
and test data. Training data is composed of 10, 20, or 30 samples that are randomly chosen from each prognosis
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Figure 2. Bar plots for the accuracy for predicting patient outcomes for 5 cancer types. The x-axis represents a
cancer type. The y-axis represents the prediction accuracy in terms of AUC-ROC by 10-fold cross-validation.
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Figure 3. Bar plots for the comparison between gene selection methods with small training datasets. The
average AUC-ROC computed from 10 datasets of each cancer type for (A) 20, (B) 40, and (C) 60 training
samples. The significant difference of AUC-ROC between methods was computed using one-tailed t-test.

group, and the remainder samples were used as test data. In the similar way as in the previous experiments, we
computed prediction accuracy of G2Vec and the extant methods on generated small datasets. Figure 3 shows
that G2Vec outperformed the existing methods in most cases. When using 60 samples, G2Vec showed similar
accuracy to the cases when using whole samples. Taken together, we can say that G2Vec has strength in handling
a small number of samples.

Identification of prognostic modules from gene networks. Distributed gene representations can
be used to find significant prognostic gene modules associated with cancer prognosis. We identified prognos-
tic modules associated with liver cancer using 100 biomarkers identified by G2Vec (Supplementary Table S1)
and 9 known oncogenes associated with hepatocarcinoma that were downloaded from the IntOGen database®.
We first created two subnetworks from the entire FI network to investigate good and poor L-groups. All edges
having at least one of the biomarkers or oncogenes were collected, and genes linked with only one among the
biomarkers and oncogenes were removed. The good L-group and poor L-group subnetworks consisted of 280
and 198 genes, respectively (Supplementary Table S2); these subnetworks are shown in Fig. 4. Next, we carried
out gene-annotation enrichment analysis using DAVID 6.8 database®! to explore biological functions or path-
ways in each subnetwork and identified 104 and 60 significant Gene Ontology (GO) terms and KEGG pathways
(Supplementary Table S3) from the good L-group and poor L-groups, respectively. We then conducted the log-rank
test?? on biomarkers contained in these GO terms or pathways to identify prognostic gene modules. For the other
cancer types, the lists of GO terms and KEGG pathways were provided in Supplementary Tables S4-S7.

Using the aforementioned procedure, we found two significant prognostic modules, GO:0043647~inositol
phosphate metabolic process and GO:1904837~beta-catenin-TCF complex assembly from the good L-group and
poor L-group subnetworks, respectively. These modules and their results in terms of survival analysis are shown
in Fig. 5. The Kaplan-Meier plots in Fig. 5 show that the high expressed inositol phosphate module and the low
expressed beta-catenin-TCF complex represent good prognosis in patients with liver cancer. Inositol phosphates
are known to play crucial roles in various cellular functions, such as cell growth, apoptosis, and cell differentia-
tion. In particular, the INPP4B gene, identified as a biomarker of LIHC by G2Vec, has been studied as a tumor
suppressor in various cancer types, such as breast, ovary, and prostate cancers®. The overexpression of INPP4B
suppresses the PI3K/AKT signaling pathway and results in reduced tumor growth, which appears to be associ-
ated with PTEN?%. This result may support our finding that low expression of inositol phosphates with INPP4B is
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Figure 4. Subnetworks with biomarkers and oncogenes for LIHC. (A) Good L-group specific subnetwork of FI
network; (B) Poor L-group specific subnetwork of FI network; Red, green, and blue genes stand for oncogenes,
biomarkers, and the others, respectively. Triangle and V genes represent genes that are expressed higher and
lower in poor prognosis group than in good prognosis group, respectively.

associated with poor prognosis of LIHC. In addition, the beta-catenin-TCF complex has been broadly researched
as a therapeutic target for colorectal and gastrointestinal cancer?>?°. In the liver, the beta-catenin-TCF com-
plex is known to suppress HNF4-alpha, which plays an essential role in development and organogenesis?’, and
HNF4-alpha is suggested to be an inhibitor of hepatocellular carcinoma®. These results may suggest that overex-
pression of the beta-catenin-TCF complex is associated with poor prognosis of liver cancer. Thus, we expect that
the inositol phosphate and beta-catenin-TCF complexes would play key roles in cancer prognosis.

Discussion
In this paper, we propose a network-based deep learning model called G2Vec to identify prognostic biomarkers
and gene modules. G2Vec showed significantly higher prediction accuracy for patient outcomes than existing
gene selection methods. In addition, we found significant prognostic modules associated with hepatocellular
carcinoma using biomarkers identified by G2Vec.

While general deep learning models require a large number of training samples, we showed that G2Vec is
effective for small number of training samples (Fig. 3). This is because G2Vec generates many random paths from
a correlation network. In our experiments, G2Vec generated about 43,000 paths (Supplementary Fig. S3), which
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Figure 5. Significant prognostic gene modules. (A) Subnetwork of GO:0043647 from good L-group specific
subnetwork; (B) Kaplan-Meier graph of GO:0043647; (C) Subnetwork of GO:1904837 from poor L-group
specific subnetwork; (D) Kaplan-Meier graph of GO:1904837; In the Kaplan-Meier graph, High expression
indicates the patient group whose INPP4B (or the mean of RUVBLI and HDACI) expression value is higher
than the average of expression of the gene on the whole patients. Low expression represents the patient group
whose gene expression value is lower than the average. P-values denoted in Kaplan-Meier plots are computed
with log-rank test.

is the number of inputs enough large to train a deep learning model, from gene expression data with sample size
of about 130.

G2Vec has a couple of issues in training process. First, optimal parameters of G2Vec were obtained by heu-
ristic approach. G2Vec has three critical parameters: length of random paths, size of embedded representations,
and learning rate. Optimal parameters are ones that results in highest prediction accuracy of modified CBOW.
The optimal maximum length of a random path, the size of projection layer, and learning rate were set to 80, 128,
and 0.005, respectively (Supplementary Fig. S4). Although these values showed the best accuracy in our exper-
iment, optimal parameters can be changed on different datasets. Second, we exploited early stopping to avoid
overfitting”. In all cancer types, the modified CBOW was trained within 30 epochs, which may be too small to
learn network structure completely. However, we confirmed that G2Vec showed good performance using the
small epochs in Figs 2 and 3, which means that the number of epoch is sufficient. In addition, the small number
guarantees fast processing time, which is another merit of G2Vec.

G2Vec is a deep learning-based method that learns the network structure, and we used it to analyze gene
expression data. However, G2Vec can be extended for another omics data such as SNPs, copy number variation,
or DNA methylation data, because G2Vec can be applied to any kinds of data that can be used to make correla-
tion networks. In the future, we plan to apply G2Vec to multiple omics datasets and develop integrative analysis
method for cancer research.

SCIENTIFICREPORTS| (2018) 8:13729 | DOI:10.1038/s41598-018-32180-0 6



www.nature.com/scientificreports/

| Gene Expression data | 10-fold cross
l validation

Training data Test data

Gene selection

( )

Distributed gene
representations

K-means
clustering
Good Poor
L-groups L-groups

Computing
d-score &
t-score

Computing
d-score &
t-score

Top 50 Genes Top 50 Genes
with high score with high score

Biomarkers

\_ J

Random Forest
classifier

Prediction result
for test samples

\_ l./ J

[ rRoCcurvesavc |

Figure 6. Overview of biomarker selection and prognosis prediction. Processes within green box are repeated
for each fold. Processes within red box show our proposed gene selection procedure.

Methods

Overview of gene selection and validation process. The proposed gene selection method consists
of three steps, generating distributed gene representations, finding L-groups, and computing gene scores. Then
prognosis is predicted through 10-fold cross validation using the random forest classifier. Figure 6 shows an
overview of biomarker selection and prognosis prediction. G2vec was implemented in Python3 with tensorflow
and scikit-learn modules. The source code is freely available on GitHub at https://github.com/mathcom/G2Vec.

Distributed gene representations. G2Vec is a modified CBOW model to compute distributed rep-
resentations of genes. From each gene correlation network from the good and poor prognosis groups, random
paths are generated using a random walk algorithm. These random paths are thought of as sentences from the
context of good or poor outcome groups and used for learning distributed gene representations that distinguish
good and poor groups by G2Vec.

G2Vec has three steps, constructing correlation networks, generating random paths, and training a neural
network. An overview of G2Vec is shown in Fig. 7.

First, we created two correlation networks associated with good and poor outcomes from the FI network and
gene expression data. For each outcome group, we computed an absolute value of Pearson’s correlation coefficient
(PCC) between expression levels of two genes linked on the FI network, and the values were used as a weight of
the interaction. Some interactions with weight <0.5 were removed to make the difference between the two cor-
relation networks clearer.

Next, we applied the random walk algorithm to each weighted correlation network, with three constraints.
First, we never revisited a node that was passed. Second, a next destination was determined proportionally to
the weight of edges. Lastly, we stopped when reaching a dead end or when the length of a path is equal to a
pre-defined maximum length of the path. In this study, the maximum length of a path was set to 80. We departed
from all genes 10 times, and paths were collected to learn a neural network. We gathered numerous random paths
from correlation networks of good and poor prognosis groups and removed a redundant path generated in both
networks. Among the filtered paths, 80% and 20% are used as training and validation datasets, respectively.
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Figure 7. Overview of G2Vec. G2Vec has three steps: constructing correlation networks, generating random
path, and training a modified CBOW model. The trained weights Wy, ,, between the input and projection layer
are used as gene vector representations.

Last, we trained a modified CBOW neural network model with one hidden layer, called a projection layer. A
path was represented as a binary vector whose size was equal to the number of genes. The value of a binary vector
indicates whether a gene is contained in a random path or not. A neural network predicts whether an input path
is generated from good or poor prognosis groups. The neural network is trained using the cross entropy objective
function and Adam optimization algorithm®. Early stopping with validation set was used to avoid overfitting. We
heuristically set the optimal parameters of a neural network, such as number of projection neurons and learning
rate (Supplementary Fig. S4). In this study, we used 128 projection neurons and learning rate of 0.005. The trained
weights between the input and projection layer (Wy,,in Fig. 7) were used as gene vector representations.

L-group and gene scores. Distributed gene representations generated by G2Vec were used to group genes
and to compute gene scores for identification of prognostic biomarkers. Gene vectors formed two gene groups
associated with either good or poor outcome groups (Fig. 1). These groups named L-groups could be detected
with K-means clustering algorithm (Supplementary Fig. S1). We then selected prognostic biomarkers from
each L-group with gene scores. A gene score was defined by the means of d-scores and t-scores. A d-score is the
Euclidean distance between a gene vector and the center of initial gene vectors (zero vector). A t-score is the
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absolute value of t-statistics measuring the difference of gene expression levels between good and poor outcomes.
Both scores were normalized from 0 to 1 by min-max transformation. We selected 50 genes with high gene scores
from each L-group, resulting in 100 biomarkers. For each fold, 100 biomarkers were identified using training data
and validated with test data using the random forest classifier.

References
1. Emura, T. & Chen, Y. H. Gene selection for survival data under dependent censoring: A copula-based approach. Statistical methods
in medical research 25, 2840-2857, https://doi.org/10.1177/0962280214533378 (2016).
2. Sun, B.Y,, Zhu, Z. H,, Li, ]. & Linghu, B. Combined feature selection and cancer prognosis using support vector machine regression.
IEEE/ACM transactions on computational biology and bioinformatics 8, 1671-1677, https://doi.org/10.1109/tcbb.2010.119 (2011).
3. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 9, 559, https://
doi.org/10.1186/1471-2105-9-559 (2008).
4. Wu, G. & Stein, L. A network module-based method for identifying cancer prognostic signatures. Genome biology 13, R112 (2012).
5. Choi, J., Park, S., Yoon, Y. & Ahn, J. Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers.
Bioinformatics (Oxford, England) 33, 3619-3626, https://doi.org/10.1093/bioinformatics/btx487 (2017).
6. Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Briefings in bioinformatics 18, 851-869, https://doi.org/10.1093/bib/
bbw068 (2017).
7. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115-118, https://doi.
org/10.1038/nature21056 (2017).
8. Jagannatha, A. N. & Yu, H. Bidirectional RNN for Medical Event Detection in Electronic Health Records. Proceedings of the
conference. Association for Computational Linguistics. North American Chapter. Meeting 2016, 473-482 (2016).
9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing systems, 3111-3119 (2013).
10. Grover, A. & Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 855-864 (2016).
11. Mikolov, T., Chen, K., Corrado, G. & Dean, ]. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013).
12. Wu, M. et al. Integrating embeddings of multiple gene networks to prioritize complex disease-associated genes. In 2017 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), 208-215 (2017).
13. Wu, G,, Feng, X. & Stein, L. A human functional protein interaction network and its application to cancer data analysis. Genome
biology 11, R53, https://doi.org/10.1186/gb-2010-11-5-r53 (2010).
14. Breiman, L. Random forests. Machine learning 45, 5-32 (2001).
15. Broad Institute TCGA Genome Data Analysis Center. Analysis-ready standardized TCGA data from Broad GDAC Firehose
2016_01_28 run. Broad Institute of MIT and Harvard. Dataset, https://doi.org/10.7908/C11GOKM? (2016).
16. Fabregat, A. et al. The Reactome pathway Knowledgebase. Nucleic acids research 44, D481-487, https://doi.org/10.1093/nar/gkv1351
(2016).
17. Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2017 update. Nucleic acids research 45, D369-D379 (2017).
18. Lee, L, Blom, U. M., Wang, P. I, Shim, J. E. & Marcotte, E. M. Prioritizing candidate disease genes by network-based boosting of
genome-wide association data. Genome research, gr. 118992.118110 (2011).
19. Maaten, L. V. D. & Hinton, G. Visualizing data using t-SNE. Journal of machine learning research 9, 2579-2605 (2008).
20. Rubio-Perez, C. et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer
cell 27, 382-396 (2015).
21. Huang da, W, Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional
analysis of large gene lists. Nucleic acids research 37, 1-13, https://doi.org/10.1093/nar/gkn923 (2009).
22. Bland, J. M. & Altman, D. G. The logrank test. BM] (Clinical research ed.) 328, 1073, https://doi.org/10.1136/bm].328.7447.1073
(2004).
23. Kofuji, S. et al. INPP4B is a PtdIns (3, 4, 5) P3 phosphatase that can act as a tumor suppressor. Cancer discovery 5, 730-739 (2015).
24. Gewinner, C. et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling.
Cancer cell 16, 115-125 (2009).
25. Chen, H.-J., Hsu, L.-S., Shia, Y.-T., Lin, M.-W. & Lin, C.-M. The 3-catenin/TCF complex as a novel target of resveratrol in the Wnt/3-
catenin signaling pathway. Biochemical pharmacology 84, 1143-1153 (2012).
26. Kolligs, E. T., Bommer, G. & Goke, B. Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion
66, 131-144 (2002).
27. Gougelet, A. et al. T-cell factor 4 and 3-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology
(Baltimore, Md.) 59, 2344-2357 (2014).
28. Ning, B.-F. et al. Hepatocyte nuclear factor 4a suppresses the development of hepatocellular carcinoma. Cancer research 70,
7640-7651 (2010).
29. Caruana, R,, Lawrence, S. & Giles, C. L. Overfitting in neural nets: Backpropagation. conjugate gradient, and early stopping. In
Advances in neural information processing systems. 402-408 (2001).
30. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education [NRF-2016R1D1A1B03934135] and Incheon National University
(International Cooperative) Research Grant in 2016 [2016-1913].

Author Contributions
J.C. and J.A. designed the research. J.C., I.O. and S.S. carried out the experiments, wrote the program, and
analyzed the data. J.C. and J.A. wrote the manuscript. All authors read and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-32180-0.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

SCIENTIFICREPORTS| (2018) 8:13729 | DOI:10.1038/s41598-018-32180-0 9


http://dx.doi.org/10.1177/0962280214533378
http://dx.doi.org/10.1109/tcbb.2010.119
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.1093/bioinformatics/btx487
http://dx.doi.org/10.1093/bib/bbw068
http://dx.doi.org/10.1093/bib/bbw068
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1186/gb-2010-11-5-r53
http://dx.doi.org/10.7908/C11G0KM9
http://dx.doi.org/10.1093/nar/gkv1351
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1136/bmj.328.7447.1073
http://dx.doi.org/10.1038/s41598-018-32180-0

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
CE | jcense, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

SCIENTIFICREPORTS| (2018) 8:13729 | DOI:10.1038/s41598-018-32180-0 10


http://creativecommons.org/licenses/by/4.0/

	G2Vec: Distributed gene representations for identification of cancer prognostic genes

	Results

	Description of data sets. 
	Visualization of distributed gene representations. 
	Identification of biomarkers and outcome prediction. 
	Effective sample size for G2Vec. 
	Identification of prognostic modules from gene networks. 

	Discussion

	Methods

	Overview of gene selection and validation process. 
	Distributed gene representations. 
	L-group and gene scores. 

	Acknowledgements

	Figure 1 Scatter plots of distributed gene representations with t-SNE for 5 cancer types.
	Figure 2 Bar plots for the accuracy for predicting patient outcomes for 5 cancer types.
	Figure 3 Bar plots for the comparison between gene selection methods with small training datasets.
	Figure 4 Subnetworks with biomarkers and oncogenes for LIHC.
	Figure 5 Significant prognostic gene modules.
	Figure 6 Overview of biomarker selection and prognosis prediction.
	Figure 7 Overview of G2Vec.
	Table 1 Summary of gene expression datasets.




