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Variations of cingulate sulcal 
organization and link with cognitive 
performance
Céline Amiez, Charles R E Wilson   & Emmanuel Procyk  

The sulcal morphology of the human medial frontal cortex has received marked interest because of (1) 
its remarkable link with the functional organization of this region, and (2) observations that deviations 
from ‘normal’ sulcal morphological variability correlate with the prevalence of some psychiatric 
disorders, cognitive abilities, or personality traits. Unfortunately, background studies on environmental 
or genetic factors influencing the ontogenesis of the sulcal organization in this region are critically 
lacking. We analysed the sulcal morphological organization in this region in twins and non-twin siblings, 
as well as in control subjects for a total of 599 subjects from the Human Connectome Project. The data 
first confirm significant biases in the presence of paracingulate sulci in left vs right hemispheres in the 
whole population (twin: p < 2.4.10−9; non-twin: p < 2.10−6) demonstrating a clear general laterality 
in human subjects. Second, measures of similarity between siblings and estimations of heritability 
suggest significant environmental factors, in particular in-womb environment, and weak additive 
genetic factors influencing the presence of a paracingulate sulcus. Finally, we found that relationships 
between sulcal organization and performance in cognitive, motor, and affective tests depend on the 
twin status (Twins versus Non-twins). These results provide important new insights to the issue of the 
significance of sulcal organization in the human medial frontal cortex.

The sulcal morphology of the human medial frontal cortex is the focus of a good deal of attention for at least three 
reasons. First, the functional organization of this region is remarkably linked to its sulcal organization1–4. Second, 
a number of studies have suggested that some psychiatric diseases considered as having a neurodevelopmental 
origin are statistically linked to specific sulcal morphologies, including schizophrenia and obsessive-compulsive 
disorder5–13. Finally, some cognitive abilities14–17, as well as different personality traits18,19, may be associated with 
different variations of morphological patterns. These studies suggest that ‘abnormal’ morphological variabilities 
in this region might be used as endophenotypes of specific diseases, cognitive abilities, and personality traits.

Medial frontal cortex displays strong inter-individual and inter-hemispheric morphological variability. The 
cingulate sulcus (CGS) is present in 100% of hemispheres. A second sulcus runs parallel to the CGS (the paracin-
gulate sulcus, PCGS), and is present in about 70% of subjects at least in one hemisphere e.g.1,20,21. This variability 
is due to the timing of sulcal ontogenesis: the earlier a sulcus is formed during the development, the weaker the 
inter-individual and inter-hemispheric variability. Primary sulci appear before the 30th week of gestation (such 
as the CGS, the central sulcus, etc.) and their presence is constant across individuals. Secondary sulci such as the 
PCGS appear between the 30th and the 36th week of gestation and show greater variability22–24. The most frequent 
sulcal pattern observed in the cingulate cortex is the presence of a PCGS in the left hemisphere and the absence 
of a PCGS in the right hemisphere. A number of studies have characterized a pattern of “leftward asymmetry” of 
the PCGS, where the PCGS is more prominent in the left hemisphere, and smaller or absent in the right hemisph
ere1,7,13,20,21,25–27. This feature of leftward asymmetry correlates with the involvement of the left cingulate cortex in 
language tasks in right-handed subjects28. A reduction in leftward asymmetry has been reported in schizophrenic 
patients7–9,29. PCGS is also less well developed in the left hemisphere of obsessive compulsive disorder patients10. 
In addition, the absence of PCGS has been linked to altered cognitive abilities13–16,30 and to specific personality 
traits17–19.

These results might seem surprising given that the absence of a PCGS is not linked to a missing cortical area, 
but rather to a re-organization of how the cytoarchitectonic areas cover the cingulate cortex1. Specifically, in the 
mid-cingulate cortex, when the PCGS is absent, the ventral and dorsal banks of the CGS are occupied respectively 
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by areas 24c′ and 32′. In contrast, when the PCGS is present, both banks of the CGS are occupied by 24c′ and 
the PCGS is occupied by 32′1. One can, however, hypothesize that although there is no missing cytoarchitectonic 
area when a PCGS is absent, the axonal tension exerted or the tangential extension of areas may vary depending 
on whether a PCGS is present. In other words, the sulcal organization might alter the connectivity pattern of this 
entire region and consequently its function31. A better understanding of which factors drive the gyrification pro-
cesses and lead to inter-individual sulcal variability is therefore required.

Whether the sulcal ontogenesis in the medial frontal cortex is controlled by genetic and/or environmental 
factors remains unclear32,33. The present study aims to first confirm the statistics of cingulate–paracingulate 
morphologies in a large population, and to estimate whether genetic and/or environmental factors govern the 
morphological organization of the CGS and PCGS. To this end, we used the standard classification method27 to 
describe the morphology of cingulate and paracingulate sulci in 82 monozygotic twin pairs, 52 dizygotic twin 
pairs, 67 pairs of singleton (non-twin) siblings, and a group of 197 individual control subjects (a total of 599 sub-
jects) for whom multidimensional data were acquired and provided in the Human Connectome Project database 
(MGH-USC Consortium, www.humanconnectome.org). Monozygotic twins share 100% of their genotype and 
dizygotic twins and non-twin siblings both share only 50% of their genotype. In this context, we also assessed the 
variance of PCGS presence accounted for by genetic and environmental factors using ACE modelling.

Results
Statistics on sulcal patterns. Patterns of sulci organization. The medial frontal cortex is characterized 
by the consistent presence of the cingulate sulcus (CGS). In addition, there may be a sulcus running dorsal and 
parallel to the CGS, called the paracingulate sulcus (PCGS). Both the CGS and PCGS can be continuous or seg-
mented. The PCGS was considered as ‘present’ if the length of one or more segment(s) was ≥2 cm and <4 cm. It 
was considered as ‘prominent’ if the length of one or more segment(s) was ≥4 cm. It was considered as ‘absent’ 
if no segment >2 cm was observed. This classification procedure has been developed by Yucel et al.27 and is the 
standard in the field (see refs12,13,27 for the detailed description of this classification). Fig. 1 displays examples of 
left and right hemispheres with and without a PCGS.

Four patterns of sulcal organization were observed in the cingulate cortex based on the simple presence or 
prominence of a PCGS: 1) in the left hemisphere only, 2) in the right hemisphere only, 3) in both hemispheres, 
or 4) absent in both hemispheres. These four patterns were observed in the four groups of subjects, as displayed 
in Fig. 2a. The most frequent pattern was PCGS present/prominent on the left hemisphere and absent on the 
right (see Fig. 2a). Across all groups a PCGS was observed in the left hemisphere in 58.3% of cases, against 
36.2% for the right hemisphere (X-squared = 57.47, df = 1, p-value < 1.10−10, 2-sample test for equality of pro-
portions with continuity correction). Taken in isolation, the probabilities to observe a PCGS on the left or on 
the right hemisphere were both significantly different from the 50% chance level (Left: X-squared = 5.89, df = 1, 
p-value p = 0.015; Right: X-squared = 4.33, df = 1, p-value p = 0.037, 1-sample proportions test with continuity 
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Figure 1. Examples of sulcal morphology in the medial wall. On the left panel, the left (LH) and right (RH) 
hemispheres of 2 typical subjects displaying only a cingulate sulcus (CGS, yellow). On the middle panel, the left 
(LH) and right (RH) hemispheres of 2 typical subjects displaying a PROMINENT paracingulate sulcus (PCGS, 
blue). On the right panel, the left (LH) and right (RH) hemispheres of 2 typical subjects displaying a PRESENT 
PCGS. Note that a PRESENT PCGS can be observed in the ACC only (top right panel) or in the MCC only 
(bottom right panel) or at the interface between the ACC and MCC (not shown).

http://www.humanconnectome.org
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correction). In summary, the probability of occurrence and imbalance between right and left hemisphere regard-
ing the frequency of PCGS was different from chance level.

The PCGS was absent, present, or prominent in the left and/or right hemispheres in the same proportions in 
the four groups: control (CONTROL group, see Methods), non-twin siblings (SING group), monozygotic (MZ 
group) and dizygotic (DZ group) twins (see Fig. 3a). One important information is the extension of sulci in the 
medial wall as it contains dissociable functional areas along the antero-posterior axis. In the four groups, when 
prominent, the PCGS extended from the ACC to the MCC in the majority of cases (left hemisphere: 97.1%; right 
hemisphere: 97.1%); when present, the PCGS was located in the majority of cases in the ACC (left hemisphere: 
52.1%; right hemisphere: 55.4%). Note however that a present PCGS can also be located in the MCC only (left 
hemisphere: 25%; right hemisphere: 19.6%) or covering parts of both ACC and MCC (left hemisphere: 22.9%; 
right hemisphere: 25%). Finally, the proportion of hemispheres displaying a segmented CGS and PCGS did not 
vary between the four groups (see Table 1; Chi-square, df = 2, ns for CGS and PCGS in right or left hemisphere).

Frequency of PCGS. The probability of displaying a PCGS (prominent or present) in the left hemisphere 
is higher than in the right hemisphere in both twins (MZ + DZ groups, 60.8% in the left vs 39.2% in the right 
hemisphere) and non-twin (CONTROL + SING groups, 56.2% in the left vs 43.8% in the right hemisphere) pop-
ulations (twin: X-squared = 35.6, df = 1, p < 2.4.10−09; non-twin: X-squared = 22.57, df = 1, p < 2.10−6) (Fig. 3a). 
For a more global evaluation of the frequency of a PCGS in the different populations we estimated the probability 
of its occurrence in at least one hemisphere, an approach often used in the literature. Figure 3b shows that the 
percentage of subjects displaying a PCGS at least in one hemisphere is marginally (but not significantly) higher 
in twins -whether monozygotic (76.8%) or dizygotic (75%)- than in the two groups of non-twin subjects (71.6% 
and 70.1% in SING and CONTROL respectively) (Twins vs. Not Twins, X2 = 1.94, df = 1, p < 0.16). Note that the 
values observed for control subjects is the closest to those reported in the literature. In conclusion, the overall 
likelihood of having a PCGS in twins is not significantly different than in other subjects.

According to Yücel et al.27, one main characteristic of the inter-hemispheric variability of PCGS organization 
is a leftward asymmetry which is somewhat reflected in the above description. Such leftward asymmetry was 
defined as brains displaying 1) a prominent PCGS in the left hemisphere and a present or an absent PCGS in the 
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Figure 2. Proportions of subjects with or without a paracingulate sulcus (PCGS). (a) Proportion of subjects 
with no PCGS in either side (none), one pcgs on the right (R) or on the left (L), or a PCGS in both hemispheres 
(both), and for each population (Control: group of single individuals, SING: group of not twin siblings, MZ: 
monozygotic twins, DZ: dizygotic twins). (b) Proportion of subjects with a PCGS on the left (top) or right 
(bottom) hemisphere according to handedness and family status. Note the higher incidence of a PCGS on the 
left hemisphere for both left-handed and right-handed subjects.
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right hemisphere, or 2) a present PCGS in the left hemisphere and no PCGS in the right hemisphere). Using this 
definition, we observed that leftward asymmetry was more frequent in twins (MZ + DZ) (47.4% of subjects) than 
in non-twins (38.4% of subjects) (2-sample test for equality of proportions with continuity, X-squared = 4.57, 
df = 1, p < 0.032). By contrast, the rightward asymmetry is observed similarly in twin (17.5% of subjects) and 
non-twin (18.1% of subjects) populations (X-squared = 0.006, df = 1, ns).

Handedness, gender, and twin status effect on sulci organization. We assessed the handedness, gender, and twin 
status (i.e. Twins versus Non-Twins, see Methods) effects on the leftward PCGS bias. Groups MZ TWIN, DZ 
TWIN, SING, and CONTROL contained respectively, 90.2%, 87.5%, 92.5%, and 91.4% of right-handed subjects. 
The probability of a PCGS in the left hemisphere or in the right hemisphere was similar in both left-handed 
(X-squared = 0.66, df = 1, p < 0.5, ns) and right-handed subjects (X-squared = 0.003, df = 1, p < 0.96, ns) 
(Fig. 2b).

We first evaluated whether the probability of a PCGS in at least one hemisphere was modulated by subjects’ 
gender, handedness, or by twin status. Results show that none of these parameters influenced the probability to 
observe a PCGS at least in one hemisphere (binomial GLM, twin status x gender x handedness, all p > 0.05).

We then assessed whether the probabilities to observe a segmented CGS/PCGS in both hemispheres were 
influenced by subjects’ gender, handedness, or by twin status. Results show that the probability of observing a 
segmented CGS in the right hemisphere was only slightly influenced by an interaction between handedness and 
gender (estimate = 1.3274, std error = 0.5960, Z = 2.227, p < 0.025). There was no influence of handedness and/or 
gender on the presence of segmentation in either the CGS in the left hemisphere or the PCGS bilaterally depend-
ing on the twin status (Twins versus Non-Twins) (Logistic regression, ns).

Impact of CGS/PCGS morphology and twin status on cognitive, motor, and emotional tests.  
Several studies have observed statistical links between specific cognitive abilities14–17 or personality traits18,19, and 
variations of morphological patterns. The HCP database provide a unique opportunity to study these relation-
ships in the case of siblings. We first analysed whether selected behavioural test scores where different between 
Twin and Non-Twin groups. Scores were first cleaned from outliers as described in the Method section. Because 
some scores displayed non-parametric distributions (i.e. Short Penn Continuous Performance Test -SCPT_FN-, 
Mini Mental State Examination -MMSE- Score, Delay Discounting -DDisc_AUC_200), both ANOVA and 
Kruskal-Wallis statistical tests were applied. In both cases, results showed that the scores were identical across the 
2 groups (ANOVA and Kruskal-Wallis rank sum tests at p < 0.05).
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Figure 3. Occurrence of paracingulate sulcus (PCGS). (a) Three levels of PCGS are identified: Prominent, 
Present, and Absent (see Methods). The figure shows the proportion of each case in the different groups of 
individuals. (b) Proportion of individuals with at least one PCGS in one hemisphere.

Group

Left hemisphere Right hemisphere

CGS 
segmented

PCGS 
segmented

CGS 
segmented

PCGS 
segmented

Twin MZ 29.3% 35.7% 42.9% 37.5%

Twin DZ 21.8% 26.9% 32.9% 42.2%

SING 33.6% 37.5% 36.6% 27.8%

CONTROL 31% 33.3% 33.5% 32.9%

Table 1. % of hemispheres displaying a segmented CGS and PCGS in the four groups.
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We then assessed whether the probability to observe a PCGS at least in one hemisphere had some relation-
ships with behavioural scores in cognitive, motor, and affective tests depending on the twin status by fitting a 
binomial GLM with PCGS as dependent variable and incorporating the twin status factor interacting over all 
test scores. This basically tested whether any of the test scores would relate to the presence of a PCGS at least in 
one hemisphere differently for the Twin and Non-Twin populations. We tested the full model and also applied a 
model selection. Data revealed that 5 scores displayed some differential values based on the probability to have 
a PCGS at least in one hemisphere and depending on the twin status: Mini Mental State Examination -MMSE-, 
Card sorting -CardSort-, Endurance, Fear Affect -FearAffect-, and Fear somatic -FearSomat- scores. A main effect 
was found for MMSE score and the interaction with twin status was only marginally significant (GLM interac-
tion term zygosity status × MMSE score: z = 1.933 p < 0.053). All other scores revealed significant interactions. 
Specifically, results showed differential relationships between the probability to observe a PCGS at least in one 
hemisphere and test scores for the Twin and Non-Twin groups (Twin status × CardSort: estimate = −0.086, 
standard deviation = 0.029, z = −2.999, p < 0.003; Twin status × Endurance: estimate = −0.035, standard devi-
ation = 0.016, z = −2.198, p < 0.05; Twin status × FearAffect: estimate = −0.11, standard deviation = 0.032, 
z = −3.29, p < 0.001; Twin status × FearSomat: estimate = 0.078, standard deviation = 0.031, z = 2.510, p < 0.02). 
Statistical models showed that the relationship with Fear Affect and MMSE scores were significant only for the 
Non-Twins population (z = 2.93, p < 0.005 and z = −2.37, p < 0.05, respectively for FearAffect and MMSE), and 
that endurance scores effect was significant only for the Twins population (z = −1.96, p < 0.05).

Finally, we assessed whether the leftward or rightward asymmetry of the organization of the CGS/PCGS mod-
ulated tests scores. In that goal, analyses were performed separately for rightward and leftward asymmetry (note 
that, as for the analysis above, PCGS was also entered as dependent variable). None of the tests scores correlated 
with the rightward asymmetry (logistic multiple regression, at p < 0.05). By contrast, the leftward asymmetry 
impacted scores in Penn Progressive Matrices -PMAT24_A_CR- test and DDisc_AUC_200 scores, but the mod-
ulation was inversed in Twins and Non-Twins (see Fig. 4). Note that these scores refer respectively to number of 
correct trials in non-verbal reasoning matrices (Raven’s matrices) and to the area under the curve measured in a 
delay discounting test (see Methods). Specifically, concerning PMAT24_A_CR scores (Fig. 4a), the average scores 
for Twins displaying a leftward asymmetry was 17.75 against 16.54 for Twins displaying no leftward asymmetry 
(i.e. a difference of +1.21); average score for Non-Twins displaying a leftward asymmetry was 16.33 compared 
to 17.41 for Non-Twins displaying no leftward asymmetry (i.e. a difference of −1.08). Note that the scores across 
the whole population range from 5 to 24 correct trials. Regarding DDisc_AUC_200 scores (Fig. 4b), the average 
discounting score for Twins displaying a leftward asymmetry was 0.216 against 0.228 for Twins displaying no left-
ward asymmetry (i.e. a difference of −0.012). By contrast, the average score for Non-Twins displaying a leftward 
asymmetry was 0.244 against 0.205 for Non-Twins displaying no asymmetry (i.e. a difference of +0.039). Note 
that the DDisc scores range from 0.015 to 0.664 in the whole population. DDisc scores correspond to the area 
under the discounting curve. The steeper the discounting (i.e., the lower the subjective value of delayed rewards), 
the smaller the score value.

Similarity of cingulate morphology in monozygotic twins compared to dizygotic twins and 
non-twin siblings. The mere presence of a PCGS (present or prominent) does not seem to vary with the 
family status. However, one can assess whether the similarity of the pattern presence/absence of PCGS in the left 
and right hemisphere between siblings, is influenced by the genetic status. Indeed, dizygotic twins and non-twin 
siblings both share 50% of their DNA, as opposed to monozygotic twins who share 100% of their DNA.

We analysed data from couples of twins and non-twin siblings (i.e. MZ, DZ, and SING groups). We first 
assessed the level of similarity between hemispheres (e.g. if a PCGS is present in the left hemisphere and absent in 
the right hemisphere in one sibling, is it also the case in the other sibling?). The chance level for the 2 hemispheres 
to be identical in 2 subjects is 0.25. Hemispheres taken together were apparently more alike in monozygotic 
(45.1%) than in dizygotic siblings (37.3%) or non-twin siblings (21.2%) (Fig. 5a-left). However, the proportion 
of both hemispheres similarity in MZ and DZ twins did not differ (X2 = 0.51, df = 1, p-value = 0.47) but differed 
from non-twin siblings (MZ: X2 = 8.23, df = 1, p-value < 0.005. DZ: X2 = 2.90, df = 1, p-value = 0.088). Taken as 
a whole these proportions are significantly different from what is expected by chance (X2 = 9.29, df = 2, p < 0.01), 
and they were individually different from 25% chance level for MZ twins (X2 = 16.65, df = 1, p-value < 1e-04), 
marginally different in DZ twins (X2 = 3.45, df = 1, p-value = 0.062), and not different from chance in non-twin 
siblings (X2 = 0.32, df = 1, p-value = 0.56).

For separate hemispheres (Fig. 5a-right), only the similarity of the left hemisphere in MZ subjects was more 
frequent than 50% chance (X2 = 4.40, df = 1, p-value = 0.035).

In assessing the probability that 2 individuals from a given population (for example DZ twins) have identical 
left or right hemispheres, we must take into account the baseline frequency of sulcus occurrence for that popula-
tion. To illustrate this point, we computed the likelihood of finding similarity between any 2 individuals by chance 
(i.e. without any genetic or active environmental factor of influence), across all virtually possible sulcus frequen-
cies. The simulated cases are presented in Fig. 5b. The predicted average similarity is displayed by the solid red 
line in Fig. 5b (calculated on 1000 permutations for each case of sulcus proportion). This line tells us the average 
probability of similarity we should expect by random for each frequency of sulcus, and we can compare this line 
to the actual data. The inverted U shape of the curve simply reflects the fact that very low or very high frequencies 
of a sulcus in a population increases the probability of finding similarity between two unrelated hemispheres. The 
data from the database are the coloured points on this figure. First note the clear Left (disks) / Right (triangles) 
asymmetry detailed above for the probability of presence of a PCGS. The measured proportions of similarity 
between left hemispheres are shown as coloured discs, and they are all above the mean simulated data in Fig. 5b. 
These points are, however, mostly within the range of values of similarity obtained across permutations (transpar-
ency reflects density of points; dashed red lines represent the +/−3 SD limits around the mean).
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We can perform the same comparison for the right hemisphere. All probabilities of similarity were again 
within the range of mean +/−3sd of the simulated data, although the SINGLE data revealed a different trend 
compared to Twins (yellow triangle). Overall the statistics suggest that some properties might be influenced by 
environmental (e.g. in womb) factors and a small fraction might be transmitted genetically (left PCGS in MZ).

Heritability of PCGS: ACE models. The above descriptive and global analyses suggest little influence of 
genetic factors on the presence of PCGS in the medial wall. To specifically address the question of heritability of 
the presence of a PCGS we performed ACE path analyses. The theoretical framework behind these analyses states 
that the variance of a character in a population is linked to the sum of variances from additive genetic effects (A), 
from shared environment effects (C), and from unique or unshared environment effects (E)34. One key element 
for such approach is to compare a phenotypic concordance in MZ and DZ twins that have different proportions 
of identical alleles. Although the approach has some drawbacks it allows the use of complete statistical modelling. 
The analyses were performed using structural equation modelling and path model specifications to estimate 
the contributions of latent variables (A, C, and E) to the variance of the observed variable (here presence of a 
PSCG). The statistical models (see methods) were fit on binary data to study separately the presence-absence of 
PCGS in the left or right hemispheres in the MZ and DZ pairs of subjects. For both hemispheres, we found that 
the major part of variance was explained by the unique environment component (E): 66% and 81% for left and 
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Figure 4. Average scores in the PMAT24 (a) and DDisc (b) tests in the Non-Twin and the Twin populations 
displaying a leftward asymmetry (left panels). On the right panels are displayed the distributions (count) of 
scores for the Non-Twin and the Twin populations displaying a leftward asymmetry.
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right hemispheres respectively. The shared environment accounted for 0.02% and less than 0.001% for left and 
right hemispheres respectively. Finally, the additive genetic component, that can be associated to a heritability 
factor, accounted for 34% and 19% of the variance in the PCGS presence in the left and right hemispheres. The 
imbalance between right and left hemispheres confirms the descriptive observation of similarity reported above.

To test whether the different parameters of the ACE models were contributing significantly, we compared with 
simpler nested models removing the contribution of A and C. In all cases, the simpler model including only the 
latent variable E for unique environmental variance was equally efficient than the ACE, AE or CE models (Log 
likelihood ratio tests; all p > 0.05). The ACE vs E model comparison for the left hemisphere revealed a marginal 
non-significant difference (Diff in LL = 4.45, p = 0.11).

Discussion
The analyses of the presence of the PCGS in twin and non-twin subjects from the Human Connectome pro-
ject database have 5 main outcomes. First, the likelihood of a PCGS is higher in the left hemisphere than in 
the right hemisphere and with statistics higher than chance levels, suggesting factors influencing the lateral-
ity in all humans. However, the leftward asymmetry of PCGS was more frequent in twins (MZ + DZ) than in 
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Figure 5. Similarity of patterns in the medial wall in siblings. (a) Proportion of cases with identical patterns 
(with or without a PCGS) for both hemispheres (left panel) and individually for the left and right hemispheres 
(panels on the right). Data are presented for the 3 groups of siblings. Note a higher occurrence of similarity for 
monozygotic twins, which is particularly related to a higher similarity for the right hemisphere. (b) Simulations. 
Frequency of similarity between the hemispheric pattern of 2 randomly sampled individuals in simulated 
populations with various basal frequencies of sulcus occurrence. At 0 percent of sulcus in the population the 
probability to find similar patterns (no sulcus) in the population is on average maximal (100%). Same for a 
population in which a PCGS would be present in 100% of cases. If the likelihood of a PCGS is at 50% (x axis) 
then the probability of having two individuals with the same pattern in the same hemisphere is 50%. At that 
level, the variance is maximal. The mean probability of similarity is indicated with the red curve. Real data from 
the human database is represented by single points overlapped on the simulation to show their relationship 
to randomly generated data. Disks and triangles represent data (percent of similarity) for the left and right 
hemispheres respectively. Colors represent the different groups of siblings.
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non-twins. Second, the proportion of similar hemispheres did not differ between MZ and DZ twins but differed 
from non-twin siblings. Both results suggest the influence of weak genetic and stronger environmental factors. 
Third, statistical estimation of heritability with MZ and DZ twin data did not reveal significant additive genetic 
effects on the occurrence of a PCGS in left or right hemispheres. Fourth, results revealed complex relationships 
between the morphology of CGS/PCGS and performance in cognitive, motor, and affective tests depending on 
the twin status (Twins versus Non-twins). Finally, our study shows that several factors govern the ontogenesis of 
the sulcal organization in the medial frontal cortex, and differentially for the two hemispheres.

The finding that two twins have a higher probability to display similar sulcal organizations for both hemi-
spheres supports a genetic influence on gyrification in the medial wall32,33,35–38. However, the proportion of similar 
hemispheres is not different between MZ and DZ twins. The leftward asymmetry was higher in twins (MZ and 
DZ) than in non-twins, suggesting a prevalence of left PCGS in couples which had a common womb environ-
ment. Regarding sulcus emergence and gyrification, the current understanding is that primary sulci are more 
predetermined than secondary sulci, the presence of the latter being influenced by environmental factors39,40. 
Lohman et al.39,41 have shown that the overall folding pattern of the deepest and earliest formed sulci (primary 
sulci) is well preserved in MZ twins, and is therefore under genetic control (for review, see Fernandez et al.42). 
Our findings suggest some predetermined driving influence for a secondary sulcus, the PCGS. First, the increased 
probability of PCGS in the left hemisphere and decrease of probability in the right hemisphere compared to 
chance in all human subject groups suggest a yet-to-be-described human trait that is likely to have some genetic 
basis. However, additive genetic effects estimated from the ACE model using MZ and DZ twin data gave no 
indication of an influence of additive genetic factors. Note, incidentally, that the models led to a higher estimated 
additive genetic variance for the left hemisphere than for the right (34% and 19%). These last results must be taken 
with caution as ACE models, although simple and practical models to estimate heritability, rely on several strong 
assumptions and miss several potentially important factors of influence43.

As mentioned above, some evidence suggests in-womb environmental influences as revealed by differences 
between twins and non-twin subjects. Figure 4b shows that the pattern of twin populations (blue/purple points) 
diverge from the chance level with a higher level of similarity for a PCGS on the right compared to non-twin sub-
jects (yellow points). This, together with the significant differences in leftward asymmetry, provide some evidence 
for the proposition that environmental factors also influence the gyrification process. Specifically, twins may 
display different cortical folding than non-twins because of the presence of two foetuses in the uterus, driving 
the emergence of a secondary sulcus in the form of the PCGS44,45. However, this effect would be differentially 
expressed in the two hemispheres, and other environmental factors might need to be taken into account.

The relationship between CGS/PCGS morphological patterns and the measures of motor and cognitive per-
formance included in our analyses revealed complex relationships depending on the twin status and in some test 
reverses relationships. First, whereas the presence of a PCGS at least in one hemisphere impacted the scores in 
MMSE cognitive test and Fear affect test only in Non-Twins population, this morphological pattern impacted the 
scores of endurance only in the Twins population. Second, whereas Twins displaying a leftward asymmetry have 
better scores in the Penn Progressive Matrices cognitive test (PMAT24_A_CR scores) than Twins displaying no 
asymmetry, Non-Twins displaying this asymmetry have lower scores in this test than Non-Twins displaying no 
asymmetry. The opposite was found in the cognitive Delay Discounting test (DDisc_AUC_200 scores): Twins 
displaying a leftward asymmetry have lower scores than Twins displaying no asymmetry, Non-Twins displaying 
this asymmetry have higher scores than Non-Twins displaying no asymmetry. Note that these inverse effects 
corresponded to relatively small differences in average scores. Our results therefore call into question to what 
extent structural variability of the cingulate cortex may directly influence its function and dysfunction. Indeed, 
our results strongly suggest that the use of the CGS/PCGS morphology as a biomarker for certain characteristics 
requires a-priori knowledge about the twin status of subjects. The presence of a PCGS has been correlated with 
better high-order cognitive abilities14,16,30,46. But our analyses provide new evidence that sulcal organization in 
medial frontal cortex relates differently to the various functions studied in the database, across motor and cog-
nitive domains, depending on the twin status. These include performance in tasks associated with robust fMRI 
activation in the region (e.g. PMAT24). Further, results confirm the leftward asymmetry of the PCGS in all groups 
and show that this asymmetry is not modulated by handedness and gender. Therefore, the leftward asymmetry 
might not be due to the lateralization in the left hemisphere of language areas as previously suggested28. These 
negative results should be treated with the caveats associated with such outcomes. Notably, we are using battery 
tasks, rather than the specific tests used in the studies cited above. Nevertheless, we have analysed a significant 
number of subjects (indeed more than the studies above combined) with a well-respected database, and our 
results suggest that correlation of the sulcus morphological patterns with cognitive abilities varies depending 
on the twin status. It is possible that such measurements are also strongly dependent on the pool and number of 
subjects assessed. It is also reasonable to think that these measurements may depend on the location of the PCGS. 
Indeed, we have shown that the PCGS can be present only in the ACC or only in the MCC, or it can extend from 
the ACC to the MCC when it is prominent (see results). Studies have repeatedly shown that the ACC and the 
MCC are functionally different (for review, see Vogt 201647) and future studies should therefore take into account 
the location of the PCGS. Notably if the presence/absence of a PCGS would influence cognitive functions related 
to specific MCC regions involved in adaptive cognition then it is expected that this would concern cases where 
PCGS morphological variance concerns the corresponding MCC region. Finally, discrepancies with previous 
studies might be due to the statistical analysis. In studies assessing relationships between PCGS/CGS morphology 
and cognitive or motor functions, the morphology is usually considered as an independent variable whereas here 
it was considered as a dependent variable, which allowed us to address complex relationships with zygosity and 
cognitive and motor abilities.

The relationship between sulcal variability of the cingulate cortex and neurodevelopmental pathologies, cog-
nitive processes, and personality traits could be explained by the theory of cortical gyrification driven by white 
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matter fibres tension-based mechanisms31. More tension may therefore be observed when a PCGS is present, 
which could modify neuronal or synaptic density and cortico-cortical connectivity31. This would be linked to 
varying neurodevelopmental processes that might be at the origin of psychiatric diseases, different cognitive 
abilities, and various personality traits. However, this tension-based hypothesis has been recently challenged44,48 
suggesting that the axonal tension is not directly linked to the gyrification process (for review, see refs38,42). Other 
key factors combined like differential expressions of transcription factors and variance in cell proliferations dur-
ing brain development might contribute to variance in cortical morphology49.

In the present study, the ACE model does not distinguish between prenatal and postnatal environments. The 
impact of post-natal environment on sulcal organization cannot be assessed because the HCP database does 
not provide information relative to the post-natal subjects’ living environment. However, since the CGS is a 
primary sulcus and the PCGS is a secondary sulcus (see introduction), they are formed before birth. Therefore, 
it is unlikely that post-natal environmental factors may influence the setup of the sulcal morphology within 
this region. This conclusion is supported by a recent study showing that post-natal environmental factors have 
a limited effect on the depth of sulcal pits, which are the cortical folds appearing first during gestation50. This is 
also supported by studies suggesting that prenatal environment have long-term effects across the life-span on 
cognitive abilities in both twins and non-twins51–53.

To conclude, the morphology of the medial wall and specifically the existence of a PCGS is driven by multiple 
factors, as PCGS laterality seems to be a species-specific trait showing variations in the population, and with weak 
additive genetic effects as suggested by twin data. The statistical laterality of the PCGS is a very stable and repro-
ducible morphological trait at the level of populations. Finally, correlations between the sulcal pattern and motor, 
cognitive, and affective abilities are complex and are modulated by the twin status.

Methods
Subjects. We studied high-resolution anatomical scans of 641 subjects in total. Acquisition parameters of 
T1 anatomical scans are the following: whole head, 0.7 mm3 isotropic resolution, TR = 2.4 s, TE = 2.14 ms, flip 
angle = 8° (more details can be found on https://humanconnectome.org/storage/app/media/documentation/
s1200/HCP_S1200_Release_Appendix_I.pdf). All T1 scans were registered in the MNI stereotaxic space. The 
presence or absence of a PCGS was assessed on these normalized brains.

Analysis of anatomical T1 scans were performed in four groups:

•	 MZ GROUP: 82 monozygotic twin pairs (30/52 M/F)
•	 DZ GROUP: 53 dizygotic twin pairs (19/33 M/F). Note that the subjects in each pair in the DZ group are all 

of same sex. Indeed, most of the twin population recruited in HCP were recruited from previous twin studies 
that specified same gender twins (MZ or DZ) because of potential gender confounds in making comparisons 
between twins and to avoid sex being a confound for heterozygosity.

•	 SING GROUP: 67 pairs of singleton (non-twin) siblings (73/61 M/F)
•	 CONTROL GROUP: 197 subjects with no sibling in the database (93/104 M/F)

All subjects were participants of the Human Connectome Project (HCP) (humanconnectome.org). The par-
ticipants in the HCP study were recruited from the Missouri Family and Twin Registry that includes individuals 
born in Missouri54. The age of monozygotic twins, dizygotic twins, singleton siblings, and control subjects was, 
respectively, 30 ± 3.3 years, 29.2 ± 3.4 years, 28 ± 3.7 years, and 28.8 ± 4 years. Note that the monozygotic twin 
pairs contain 75.7% of females. This bias in the database is coherent with some reports of higher survival rates for 
female monozygotic twins.

The full set of inclusion and exclusion criteria is detailed elsewhere54. In short, the HCP subjects are healthy 
individuals who are free from major psychiatric or neurological illnesses. They are drawn from ongoing longitudi-
nal studies54–56, where they received extensive previous assessments including the history of drug use, emotional, 
and behavioral problems. The experiments were performed in accordance with relevant guidelines and regula-
tions and all experimental protocol was approved by the Institutional Review Board (IRB) (IRB # 201204036; 
Title: ‘Mapping the Human Connectome: Structure, Function, and Heritability’). All subjects provided written 
informed consent on forms approved by the Institutional Review Board of Washington University in St Louis. 
In addition, the present study received approval (n°15-213) from the ethic committee of Inserm (IORG0003254, 
FWA00005831) and from the Institutional Review Board (IRB00003888) of the French institute of medical 
research and health.

Assessed functions. In order to assess the correlation between morphology and functions known to depend on 
the cingulate cortex, we analysed the scores of the different groups of subjects in the following behavioural tests 
(see below for more details):

Motor functions:

•	 Dexterity (Dexterity_AgeAdj in the database): A test of manual dexterity, measured in the time taken by 
participants to accurately place and remove 9 plastic pegs on a plastic pegboard. Participants have a practice 
trial and then the timed trial with each hand. The measure is the time in seconds to complete the task with the 
dominant hand. It is adjusted for age.

•	 Endurance (Endurance_AgeAdj in the database): A test of physical endurance, it is adapted from the Amer-
ican Thoracic Society’s 6-Minute Walk Test Protocol. The measure is the distance a participant can walk on a 
50-foot long course during a 2-minute period. A score is calculated in feet and inches. It is adjusted for age.

https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Appendix_I.pdf
https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Appendix_I.pdf
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Cognitive functions:

•	 Alertness (MMSE_Score in the database): An evaluation of cognitive abilities and mnemonic performance. 
The measure replicates the Mini Mental State Examination or Folstein’s test (1975)57.

•	 Episodic Memory (Picture Sequence Memory, PicSeq_AgeAdj in the database): A test of recall, participants 
are presented with increasingly lengthy series of illustrated objects and activities. The participants must recall 
the sequence of pictures presented in two learning trials. The measure is the number of adjacent picture pairs 
participants correctly place in sequence, up to the maximum value for the sequence, which is one less than 
the sequence length. So if pictures in locations 9 and 10 are placed in that order and adjacent to each other 
anywhere – such as slots 1 and 2 – one point is awarded. If there are 18 pictures in the sequence, the maximum 
score is 17, as there are 17 possible adjacent pairs. The scores are adjusted for age.

•	 Executive Function/Cognitive Flexibility (Dimensional Change Card Sort, CardSort_AgeAdj in the data-
base). A measure of cognitive flexibility. Participants must take start from two initial target pictures and 
match a series of subsequent pictures which might match along one of two dimensions (e.g., shape and color). 
Participants will initially match along one dimension (e.g., color). After a number of trials, they must change 
and match according to the other dimension (e.g., shape). In “Switch” trials the participant must change the 
dimension being matched. So having matched to shape for 4 straight trials, the participant may be asked to 
match on color on the next trial and then return to shape matching. The task hence requires the cognitive 
flexibility necessary to move efficiently between rules. The measure is derived form a combination of accuracy 
and reaction time. It is adjusted for age.

•	 Executive Function/Inhibition (Flanker Task, Flanker_AgeAdj in the database). A test of attention and 
inhibitory control. Participants must focus on a target stimulus while inhibiting their attention to flanking 
arrow stimuli. The target stimulus may bet congruent with the flankers by pointing in the same direction, or 
be incongruent. The measure is derived form a combination of accuracy and reaction time. It is adjusted for 
age.

•	 Fluid Intelligence (Penn Progressive Matrices, PMAT24_A_CR in the database). A test of fluid intelli-
gence. This directly uses Raven’s Progressive Matrices58–62, and specifically Form A of the abbreviated version 
developed by Gur and colleagues63. Participants are presented with patterns made up of 2 × 2, 3 × 3 or 1 × 5 
arrangements of squares, with one of the squares missing. The participant has five options from which to pick 
the response that best completes the pattern in the missing location. The task has 24 items and 3 bonus items, 
arranged in order of increasing difficulty. The task discontinues if the participant makes 5 incorrect responses 
in a row.

•	 Self-regulation/Impulsivity (Delay Discounting: DDisc_AUC_200 in the database). A test of impulsivity, 
the delay discounting paradigm measures the phenomenon of undervaluing of rewards that are delayed in 
time. This task identifies ‘indifference points’ at which a participant is equally likely to choose a sooner but 
smaller reward (e.g., $100 now) versus a later but larger reward (e.g., $200 in 3 years). The approach follows 
Green and Myerson64,65: delays are fixed and reward amounts are adjusted on a trial-by-trial basis based on 
the participants’ ongoing choices. This allows rapid identification of indifference points. This approach pro-
vides reliable estimates of delay discounting64. We extract a summary measure in the form of an area-under-
the-curve discounting measure (AUC). This is a valid and reliable index of how steeply individual discounts 
delayed rewards66.

•	 Sustained Attention (Short Penn Continuous Performance Test, SCPT_FN in the database). A test of atten-
tion, this applies the Short Penn Continuous Performance Test (Number/Letter Version)67,68. Participants 
must observe vertical and horizontal red lines as they flash up on a computer screen. Subjects must respond 
when the lines form either a number or a letter. The number/letter rule is changed between blocks. Lines are 
displayed for 300 ms followed by a 700 ms ITI.

Emotional functions - Negative Affect (Sadness, Fear, Anger): The emotional tests assess two specific 
aspects: 1) The NIH Toolbox Fear-Affect Survey (FearAffect_Unadj in the database) uses items from the PROMIS 
Anxiety Item Bank. The measure is self-reported fear and anxious misery. 2) The NIH Toolbox Fear-Somatic 
Arousal Survey (FearSomat_Unadj in the database) provides a 6-item calibrated scale comprised of items from 
the Mood and Anxiety Symptom Questionnaire. It assesses somatic symptoms related to arousal. Scores are not 
corrected for age.

Statistical analysis. GLM analyses were applied to test the impact of 1) the zygotic/sibling status of subjects 
on the organization of the CGS/PCGS, and 2) the behavioural tests that are known to depend on the cingulate 
cortex (see above). Further GLM analyses were performed to assess the impact of the handedness or gender on 
the organization of the CGS/PCGS depending on the Twin status: Twins (including MZ and DZ groups) and 
Non-Twins (including CONTROL and SING groups).

Concerning the analysis of the impact of the organization of the CGS/PCGS impact on behavioural tests, we 
first tested for the presence of multicollinearity. In that goal, we used the Variance Inflation Factor (VIF) calcu-
lated on a GLM with all scores as fixed effects. Although 2 factors (CardSort_AgeAdj and Flanker_Unadj) were 
significantly correlated (R^2 = 0.24, p < 0.001), none of the VIF were higher than 2, a limit of 4 being usually 
taken as problematic. Analyses of relationships between morphology and behavioural scores were performed 
using logistic regressions following the successive steps: model fit, model selection, and deviance analysis. For 
instance, for the analysis of PCGS in one hemisphere we fitted the following model: PCGS_in_One_
Hemisphere = β0 + β1.Twin_Status * (β2.Flanker_AgeAdj + β3.MMSE_Score + β  4.CardSort_AgeAdj + β5.
PMAT24_A_CR + β6.DDisc_AUC_200 + β7.Dexterity_AgeAdj + β8.Endurance_AgeAdj + β9.PicSeq_
AgeAdj + β10.SCPT_FN + β11.FearAffect_Unadj + β12.FearSomat_Unadj) + ɛ. The investigation of links between 
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anatomical traits and behavioral data requires behavioral variability and temporal stability. We therefore first 
verified that the distributions of all the behavioral measures assessed in the present paper were not presenting 
ceiling effect. This analysis revealed that the distributions of several scores had significantly skewed distributions 
(Flanker, MMSE, DDiscount, SCPT, and Fear Somatic; skewness test at p < 0.05) and were therefore not present-
ing ceiling effect. Regarding temporal stability, because the HCP database contains at the current time only a very 
limited number of re-tested subjects, this effect of this aspect on our set of data cannot be interpreted or 
discussed.

Linear models can be sensitive to outliers, even in large samples. Although the identification of so-called 
outlier values are debated and complicated matters, we also fitted all the statistical models (behavioral measures 
and cognitive scores) used in this paper without extreme values of predictors. We reasoned that if, by removing 
extreme points in predictors, the linear model fits would change significantly then this would be an indication of 
biases. In that goal, for each predictor in our statistical models, we used Tukey’s method to identify the outliers 
ranged above and below the 1.5*IQR – interquartile range). Pairs plot were also used to verify the existence of 
outlier values. We then removed subjects with outlier values for at least one of the predictor. With this procedure, 
497 subjects were kept. We then ran all models as in the analysis including the outliers (see above). Finally, we 
ran stepwise model selections on the different full models. Importantly, because the results were identical than 
those obtained while including the outliers, we present only results obtained in the analysis excluding the outliers.

Note that 1) the handedness has been transformed into a binomial factor Hand [Left/Right] to simplify the 
analysis, and 2) in order to incorporate the cognitive score tests in generalized linear models we standardized the 
score values by de-meaning and dividing by standard deviation.

All statistics were performed with R software, R Development Core Team69 under R-Studio70.

Simulation. The probability to have identical hemispheres, e.g. same left hemisphere with or same without a 
PCGS, between two independent populations depends on the base proportion of that sulcus in the population. 
To estimate the probability distribution of similarity expected from random populations, we generated, two ran-
dom samples corresponding to vectors of 0 and 1 s corresponding to with or without PCGS, with the same virtual 
probability of having a sulcus, and measured the proportion of similarity. We permuted the 2 samples 1000 times 
to get the distribution of similarity proportions. This was performed for each frequency of sulcus from 0 to 100%. 
Mean and standard deviations were obtained for each virtual sulcus frequency.

ACE model and structural equation modelling. In order to study whether the variance of presence of a PCGS in a 
hemisphere could be explained by genetic factors, we used Structural Equation modelling to analyse the twin data 
within the framework of ACE models (A = additive genetic effects, C = shared environment effects, E = unshared 
environment effects). The idea is to compare the phenotypic concordance of monozygotic (MZ, identical) twins 
versus dizygotic (DZ, fraternal) twins. Analyses were performed in R using the OpenMX71 and umx library72.

The occurrence/absence of a PCGS (binary factor) in the left or right hemisphere were the observed variables. 
We use a common path diagram for the ACE model73, with latent variables (A, C, E) for each observed variable 
(T1 and T2, one per member of a couple). In the path diagram, the correlation between the latent variables A1 
and A2 for MZ twins was set to 1, and set to 0.5 for DZ twins. In both DZ and MZ, the path between C1 and C2 
was set to 1. The main paths from latent variables to the respective observed variables were free parameters and 
estimated by fitting the model. To model the ordinal raw data, we defined thresholds using the umx library. We 
obtained from each model, parameter estimates (variance for A, C and E variables), standardized variance com-
ponents (components divided by total variance), and AIC.

To evaluate the significance of each of the model parameters, we fit nested submodels in which the parameters 
of interest were set to zero. Hence, in addition to the ACE model, CE, AE, and E models were fit and compared 
using log-likelihood ratio tests.

References
 1. Vogt, B. A., Nimchinsky, E. A., Vogt, L. J. & Hof, P. R. Human cingulate cortex: surface features, flat maps, and cytoarchitecture.  

J. Comp. Neurol. 359, 490–506 (1995).
 2. Amiez, C. et al. The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. J. Neurosci. Off. 

J. Soc. Neurosci. 33, 2217–2228 (2013).
 3. Amiez, C. & Petrides, M. Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. 

Cereb. Cortex N. Y. N 1991 24, 563–578 (2014).
 4. Procyk, E. et al. Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys. Cereb. Cortex N. 

Y. N 1991 26, 467–476 (2016).
 5. Bradshaw, J. L. & Sheppard, D. M. The neurodevelopmental frontostriatal disorders: evolutionary adaptiveness and anomalous 

lateralization. Brain Lang. 73, 297–320 (2000).
 6. Tibbo, P. & Warneke, L. Obsessive-compulsive disorder in schizophrenia: epidemiologic and biologic overlap. J. Psychiatry Neurosci. 

JPN 24, 15–24 (1999).
 7. Yücel, M. et al. Paracingulate morphologic differences in males with established schizophrenia: a magnetic resonance imaging 

morphometric study. Biol. Psychiatry 52, 15–23 (2002).
 8. Yücel, M. et al. Anterior cingulate dysfunction: implications for psychiatric disorders? J. Psychiatry Neurosci. JPN 28, 350–354 

(2003).
 9. Meredith, S. M. et al. Anterior cingulate morphology in people at genetic high-risk of schizophrenia. Eur. Psychiatry J. Assoc. Eur. 

Psychiatr. 27, 377–385 (2012).
 10. Shim, G. et al. Reduced cortical folding of the anterior cingulate cortex in obsessive-compulsive disorder. J. Psychiatry Neurosci. JPN 

34, 443–449 (2009).
 11. Gay, O. et al. Cognitive control deficit in patients with first-episode schizophrenia is associated with complex deviations of early 

brain development. J. Psychiatry Neurosci. JPN 41, 150267 (2016).



www.nature.com/scientificreports/

1 2Scientific REPORtS |  (2018) 8:13988  | DOI:10.1038/s41598-018-32088-9

 12. Fornito, A. et al. Morphology of the paracingulate sulcus and executive cognition in schizophrenia. Schizophr. Res. 88, 192–197 
(2006).

 13. Fornito, A. et al. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk 
individuals. Biol. Psychiatry 64, 758–765 (2008).

 14. Buda, M., Fornito, A., Bergström, Z. M. & Simons, J. S. A specific brain structural basis for individual differences in reality 
monitoring. J. Neurosci. Off. J. Soc. Neurosci. 31, 14308–14313 (2011).

 15. Cachia, A. et al. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development. Dev. Cogn. 
Neurosci. 19, 122–127 (2016).

 16. Borst, G. et al. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: a longitudinal study. 
Dev. Cogn. Neurosci. 9, 126–135 (2014).

 17. Mériau, K. et al. A neural network reflecting individual differences in cognitive processing of emotions during perceptual decision 
making. NeuroImage 33, 1016–1027 (2006).

 18. Whittle, S. et al. Variations in cortical folding patterns are related to individual differences in temperament. Psychiatry Res. 172, 
68–74 (2009).

 19. Kanai, R. & Rees, G. The structural basis of inter-individual differences in human behaviour and cognition. Nat. Rev. Neurosci. 12, 
231–242 (2011).

 20. Paus, T. et al. Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb. Cortex N. Y. N 
1991 6, 207–214 (1996).

 21. Paus, T. et al. In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: 
hemispheric asymmetries, gender differences and probability maps. J. Comp. Neurol. 376, 664–673 (1996).

 22. Armstrong, E., Schleicher, A., Omran, H., Curtis, M. & Zilles, K. The ontogeny of human gyrification. Cereb. Cortex N. Y. N 1991 5, 
56–63 (1995).

 23. Clouchoux, C. et al. Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct. Funct. 217, 127–139 
(2012).

 24. Tamraz, J. & Comair, Y. Atlas of Regional Anatomy of the Brain Using MRI. With functional correlations. (Springer-Verlag Berlin 
Heidelberg, 2000).

 25. Leonard, C. M., Towler, S., Welcome, S. & Chiarello, C. Paracingulate asymmetry in anterior and midcingulate cortex: sex differences 
and the effect of measurement technique. Brain Struct. Funct. 213, 553–569 (2009).

 26. Palomero-Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S. & Zilles, K. Receptor architecture of human cingulate cortex: 
evaluation of the four-region neurobiological model. Hum. Brain Mapp. 30, 2336–2355 (2009).

 27. Yücel, M. et al. Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex 
in normal volunteers: an MRI morphometric study. Cereb. Cortex N. Y. N 1991 11, 17–25 (2001).

 28. Toga, A. W. & Thompson, P. M. Temporal dynamics of brain anatomy. Annu. Rev. Biomed. Eng. 5, 119–145 (2003).
 29. Le Provost, J.-B. et al. Paracingulate sulcus morphology in men with early-onset schizophrenia. Br. J. Psychiatry J. Ment. Sci. 182, 

228–232 (2003).
 30. Fornito, A. et al. Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy 

males. Cereb. Cortex N. Y. N 1991 14, 424–431 (2004).
 31. Van Essen, D. C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 

(1997).
 32. Bartley, A. J., Jones, D. W. & Weinberger, D. R. Genetic variability of human brain size and cortical gyral patterns. Brain J. Neurol. 

120(Pt 2), 257–269 (1997).
 33. Rakic, P. Neuroscience. Genetic control of cortical convolutions. Science 303, 1983–1984 (2004).
 34. Tenesa, A. & Haley, C. S. The heritability of human disease: estimation, uses and abuses. Nature Reviews Genetics 14(2), 139–149 

(2013).
 35. Bonan, I. et al. Magnetic resonance imaging of cerebral central sulci: a study of monozygotic twins. Acta Genet. Med. Gemellol. 

(Roma) 47, 89–100 (1998).
 36. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).
 37. Régis, J. et al. ‘Sulcal root’ generic model: a hypothesis to overcome the variability of the human cortex folding patterns. Neurol. Med. 

Chir. (Tokyo) 45, 1–17 (2005).
 38. Ronan, L. & Fletcher, P. C. From genes to folds: a review of cortical gyrification theory. Brain Struct. Funct. 220, 2475–2483 (2015).
 39. Lohmann, G., von Cramon, D. Y. & Steinmetz, H. Sulcal variability of twins. Cereb. Cortex N. Y. N 1991 9, 754–763 (1999).
 40. Fischl, B. et al. Cortical folding patterns and predicting cytoarchitecture. Cereb. Cortex N. Y. N 1991 18, 1973–1980 (2008).
 41. Lohmann, G., von Cramon, D. Y. & Colchester, A. C. F. Deep sulcal landmarks provide an organizing framework for human cortical 

folding. Cereb. Cortex N. Y. N 1991(18), 1415–1420 (2008).
 42. Fernández, V., Llinares-Benadero, C. & Borrell, V. Cerebral cortex expansion and folding: what have we learned? EMBO J. 35, 

1021–1044 (2016).
 43. Zyphur, M., Zhang, Z., Barsky, A. & Li, W. An ACE in the hole: Twin family models for applied behavioral genetics research. The 

Leadership Quarterly 572–594 (2013).
 44. Tallinen, T., Chung, J. Y., Biggins, J. S. & Mahadevan, L. Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. USA 

111, 12667–12672 (2014).
 45. Zilles, K., Palomero-Gallagher, N. & Amunts, K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 

36, 275–284 (2013).
 46. Cachia, A. et al. The shape of the ACC contributes to cognitive control efficiency in preschoolers. J. Cogn. Neurosci. 26, 96–106 

(2014).
 47. Vogt, B. A. Midcingulate cortex: Structure, connections, homologies, functions and diseases. J. Chem. Neuroanat. 74, 28–46 (2016).
 48. Xu, G. et al. Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132, 071013 (2010).
 49. Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).
 50. Le Guen, Y. et al. Genetic Influence on the Sulcal Pits: On the Origin of the First Cortical Folds. Cereb. Cortex 1–12 https://doi.

org/10.1093/cercor/bhx098 (2017).
 51. Dubois, J. et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain J. Neurol. 

131, 2028–2041 (2008).
 52. Raznahan, A., Greenstein, D., Lee, N. R., Clasen, L. S. & Giedd, J. N. Prenatal growth in humans and postnatal brain maturation into 

late adolescence. Proc. Natl. Acad. Sci. USA 109, 11366–11371 (2012).
 53. Walhovd, K. B. et al. Long-term influence of normal variation in neonatal characteristics on human brain development. Proc. Natl. 

Acad. Sci. USA 109, 20089–20094 (2012).
 54. Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. NeuroImage 62, 2222–2231 (2012).
 55. Edens, E. L., Glowinski, A. L., Pergadia, M. L., Lessov-Schlaggar, C. N. & Bucholz, K. K. Nicotine addiction in light smoking African 

American mothers. J. Addict. Med. 4, 55–60 (2010).
 56. Sartor, C. E. et al. Reporting bias in the association between age at first alcohol use and heavy episodic drinking. Alcohol. Clin. Exp. 

Res. 35, 1418–1425 (2011).

http://dx.doi.org/10.1093/cercor/bhx098
http://dx.doi.org/10.1093/cercor/bhx098


www.nature.com/scientificreports/

13Scientific REPORtS |  (2018) 8:13988  | DOI:10.1038/s41598-018-32088-9

 57. Folstein, M. F., Folstein, S. E. & McHugh, P. R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for 
the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

 58. Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. Neural substrates of fluid reasoning: an fMRI study of 
neocortical activation during performance of the Raven’s Progressive MatricesTest. Cognit. Psychol. 33, 43–63 (1997).

 59. Christoff, K. et al. Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage 14, 1136–1149 
(2001).

 60. Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid intelligence. Nat. Neurosci. 6, 316–322 (2003).
 61. Conway, A. R. A. et al. Working memory span tasks: A methodological review and user’s guide. Psychon. Bull. Rev. 12, 769–786 

(2005).
 62. Wendelken, C., Bunge, S. A. & Carter, C. S. Maintaining structured information: an investigation into functions of parietal and 

lateral prefrontal cortices. Neuropsychologia 46, 665–678 (2008).
 63. Bilker, W. et al. Development of abbreviated nine-item forms of the Raven’s standard progressive matrices test. Assessment 354–369 

(2012).
 64. Estle, S. J., Green, L., Myerson, J. & Holt, D. D. Differential effects of amount on temporal and probability discounting of gains and 

losses. Mem. Cognit. 34, 914–928 (2006).
 65. Green, L., Myerson, J., Shah, A. K., Estle, S. J. & Holt, D. D. Do adjusting-amount and adjusting-delay procedures produce equivalent 

estimates of subjective value in pigeons? J. Exp. Anal. Behav. 87, 337–347 (2007).
 66. Myerson, J., Green, L. & Warusawitharana, M. Area under the curve as a measure of discounting. J. Exp. Anal. Behav. 76, 235–243 

(2001).
 67. Gur, R. C. et al. Computerized neurocognitive scanning: II. The profile of schizophrenia. Neuropsychopharmacol. Off. Publ. Am. Coll. 

Neuropsychopharmacol. 25, 777–788 (2001).
 68. Gur, R. C. et al. A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: 

standardization and initial construct validation. J. Neurosci. Methods 187, 254–262 (2010).
 69. R, D. C. T. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2008).
 70. R, S. T. RStudio: Integrated Development for R. (RStudio Inc., 2016).
 71. Boker, S. et al. OpenMx: An Open Source Extended Structural Equation Modelling Framework. P. Psychometrika. 306–317 (2011).
 72. Bates, T. umx: A helper package for Structural Equation Modelling in OpenMx. (2017).
 73. Neale, M. & Maes, H. Methodology for genetic studies of twins and families. (Dordrecht, The Netherlands: Kluwer Academic 

Publishers B.V, 2001).

Acknowledgements
This work was supported by the Neurodis Foundation and the French National Research Agency. This work was 
performed within the framework of the LABEX CORTEX (ANR-11-LABX-0042) of Université de Lyon, within 
the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency 
(ANR). Data were provided by the Human Connectome Project, MGH-USC Consortium (Principal Investigators: 
Bruce R. Rosen, Arthur W. Toga and Van Wedeen; U01MH093765) funded by the NIH Blueprint Initiative for 
Neuroscience Research grant; the National Institutes of Health grant P41EB015896; and the Instrumentation 
Grants S10RR023043, 1S10RR023401, 1S10RR019307.

Author Contributions
C.A. and E.P. analysed the data and prepared the figures. C.A., C.R.E.W. and E.P. wrote the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Variations of cingulate sulcal organization and link with cognitive performance
	Results
	Statistics on sulcal patterns. 
	Patterns of sulci organization. 

	Frequency of PCGS. 
	Handedness, gender, and twin status effect on sulci organization. 

	Impact of CGS/PCGS morphology and twin status on cognitive, motor, and emotional tests. 
	Similarity of cingulate morphology in monozygotic twins compared to dizygotic twins and non-twin siblings. 
	Heritability of PCGS: ACE models. 

	Discussion
	Methods
	Subjects. 
	Assessed functions. 
	Statistical analysis. 
	Simulation. 
	ACE model and structural equation modelling. 


	Acknowledgements
	Figure 1 Examples of sulcal morphology in the medial wall.
	Figure 2 Proportions of subjects with or without a paracingulate sulcus (PCGS).
	Figure 3 Occurrence of paracingulate sulcus (PCGS).
	Figure 4 Average scores in the PMAT24 (a) and DDisc (b) tests in the Non-Twin and the Twin populations displaying a leftward asymmetry (left panels).
	Figure 5 Similarity of patterns in the medial wall in siblings.
	Table 1 % of hemispheres displaying a segmented CGS and PCGS in the four groups.




