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Metabolomic Profile Predicts 
Development of Microalbuminuria 
in Individuals with Type 1 Diabetes
Jani K. Haukka 1,2,3, Niina Sandholm  1,2,3, Carol Forsblom  1,2,3, Jeffrey E. Cobb4,  
Per-Henrik Groop  1,2,3,5 & Ele Ferrannini  6

Elevated urinary albumin excretion (microalbuminuria) is an early marker of diabetic nephropathy, but 
there is an unmet need for better biomarkers that capture the individuals at risk with higher accuracy 
and earlier than the current markers do. We performed an untargeted metabolomic study to assess 
baseline differences between individuals with type 1 diabetes who either developed microalbuminuria 
or remained normoalbuminuric. A total of 102 individuals progressed to microalbuminuria during 
a median follow-up of 3.2 years, whereas 98 sex-, age- and body mass index (BMI) matched non-
progressors remained normoalbuminuric during a median follow-up of 7.1 years. Metabolomic 
screening identified 1,242 metabolites, out of which 111 differed significantly between progressors 
and non-progressors after adjustment for age of diabetes onset, baseline glycosylated hemoglobin 
A1c (HbA1c), and albumin excretion rate (AER). The metabolites that predicted development of 
microalbumiuria included several uremic toxins and carnitine metabolism related molecules. Iterative 
variable selection indicated erythritol, 3-phenylpropionate, and N-trimethyl-5-aminovalerate as the 
best set of variables to predict development of microalbuminuria. A metabolomic index based on these 
metabolites improved the prediction of incident microalbuminuria on top of the clinical variables age of 
diabetes onset, baseline HbA1c and AER (ROCAUC = 0.842 vs 0.797), highlighting their ability to predict 
early-phase diabetic nephropathy.

Several hundred million people worldwide suffer from diabetes mellitus. While the majority of them have type 2 
diabetes, also type 1 diabetes is a growing health problem in the Western world1. Roughly one third of individuals 
with type 1 diabetes develop chronic complications such as diabetic nephropathy (DN), diabetic retinopathy and 
cardiovascular disease2. In particular, the presence of DN is the main cause of end-stage renal disease (ESRD) 
in many developed countries, and this complication also predisposes to cardiovascular disease. Notably, these 
complications increase the risk of morbidity and premature mortality manifold3–5.

Although there is currently no cure for DN, interventions aimed at blood pressure reduction and improve-
ment in glycemic control have been shown to slow down the progression of the kidney disease6. Previous stud-
ies have suggested that the slope of the renal function decline is usually linear once the patient has developed 
progressive kidney disease7. Therefore, it would be of utmost importance to identify the individuals at risk early 
enough to be able to initiate treatment that could prevent or at least retard the decline in renal function and ulti-
mately delay the progression to ESRD.

Albumin excretion rate (AER) and estimated glomerular filtration rate (eGFR) are the most widely used meas-
ures to detect DN and to monitor its progression. Attempts to discover novel biomarkers that can identify the 
disease at an even earlier stage than AER, have been ongoing for many years. However, no other biomarker has 
been able to convincingly outperform AER thus far8.

Using a single biomarker may not be sufficient to detect the subtle underlying pathogenic mechanisms of 
complex diseases9. Biological processes are complex networks of genes, proteins and metabolites, which are sub-
ject to tight regulation and feedback loops. Little is known about the metabolic pathways affected in early DN in 
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individuals with type 1 diabetes, especially as previous studies have to a large extent focused on individuals with 
type 2 diabetes and/or more severe kidney disease. Recent advances in high-throughput metabolomic screening, 
computational power and methods have opened up new possibilities to investigate whether certain metabolites 
could better describe the early pathogenic processes leading to progressive kidney failure. Furthermore, if metab-
olites can be shown to be causative, these metabolites could also be targets for drug intervention.

With the aim of discovering potential novel predictors of DN, we studied the metabolomics profile of individ-
uals who either developed incident microalbuminuria or remained normoalbuminuric during follow up.

Results
The present study included 200 Finnish individuals with type 1 diabetes with normal AER and an eGFR above 
60 mL/min/1.73 m2 at the study baseline. We selected 102 individuals (progressors) who had developed microal-
buminuria based on their prospective medical data. A total of 98 individuals (non-progressors), who retained 
normal AER throughout the study, were selected as controls. Both groups had similar sex distribution, age, body 
mass index (BMI), waist-to-hip ratio (WHR), and eGFR at baseline (Table 1). In the progressors, age at diabetes 
onset was higher and diabetes duration shorter. In addition, glycemic control was worse, and diastolic blood pres-
sure, serum triacylglycerols and AER were higher in the progressors than in the non-progressors. The progressors 
developed albuminuria at a median follow-up of 3.2 [inter quartile range (IQR) 3.3] years, and had significantly 
lower eGFR at the last available visit. In the entire cohort, independent clinical predictors of progression were 
baseline AER (odds ratio (OR) 2.29 [95% confidence interval (CI) 1.51–3.65]), glycosylated hemoglobin A1c 
(HbA1c) (OR 2.46 [1.65–3.82]), and age of diabetes onset (OR 2.03 [1.40–3.02]). Multivariable logistic regression 
of these clinical predictors yielded an area under a receiver operating characteristic curve (ROCAUC) of 0.797 for 
progression to microalbuminuria.

Regression analysis of serum metabolites. Metabolomic screening identified 1,242 peaks, of which 770 
were named metabolites and 472 unnamed chemicals. Without adjustment, there were 105 named metabolites 
for which >90% of the samples had detectable concentrations and for which the difference between the progres-
sors and the non-progressors was statistically significant at p ≤ 0.05. In general, many of the carbohydrates were 
elevated in the progressors, as were most of the fatty acid species, nucleotides, amino acids and their derivatives, 
and virtually all circulating dipeptides. In contrast, the γ-glutamyl aminoacids (e.g. γ-glutamylglutamate) were 
all reduced (Supplementary Table 1). After adjustment for age of diabetes onset, baseline HbA1c and AER, there 

Progressors
(n = 102)

Non-progressors
(n = 98) p

Female/male (%) 51 49 ns

Age (years) 34 ± 12 34 ± 8 ns

BMI (kg/m2) 25.3 ± 3.6 24.9 ± 3.0 ns

Waist/hip ratio 0.87 ± 0.08 0.86 ± 0.07 ns

Age of diabetes onset (years) 15 ± 9 11 ± 7 <0.004

Diabetes duration (years) 19 ± 11 23 ± 7 <0.0001

Baseline

HbA1c (%) 9.34 ± 1.65 8.29 ± 1.30 <0.0001

HbA1c (mmol/L) 78,6 68.2 <0.0001

Insulin dose (IU/kg) 0.77 [0.30] 0.74 [0.35] ns

Systolic BP (mmHg) 130 ± 15 129 ± 12 ns

Diastolic BP (mmHg) 80 ± 10 77 ± 9 <0.05

triacylglycerols (mmol/L) 1.53 ± 1.17 1.12 ± 0.74 <0.001

Total cholesterol (mmol/L) 5.10 ± 1.03 4.81 ± 0.76 ns

HDL cholesterol (mmol/L) 1.31 ± 0.37 1.24 ± 0.33 ns

Serum creatinine (µmol/L) 73 ± 14 72 ± 12 ns

eGFR (mL/min/1.73 m2) 108 ± 19 109 ± 13 ns

AER (mg/24 h) 14 [13] 9 [6] <0.0001

ACEI/AT2RB 12 4 ns

Statins 10 6 ns

Follow up

Follow-up time (years) 6.8 [3.8] 7.6 [4.1] 0.001

Time to progression (years) 3.2 [3.3] NA NA

Last eGFR (mL/min/1.73 m2) 94 ± 28 105 ± 12 <0.01

Time to last eGFR (years) 10.4 [7.0] 10.6 [6.3] ns

Change in eGFR (mL/min/1.73 m2) −9 [27]* −6 [18]* <0.0001

Table 1. Baseline anthropometric and clinical *parameters. *Entries are mean ± SD; AER = albumin excretion 
rate. median [interquartile range]; p values are from c2 or Mann Whitney testing; *p < 0.0001 vs baseline by 
Wilcoxon sign-rank test.
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were 111 metabolites that were nominally significantly (p ≤ 0.05) associated with the progression to microalbu-
minuria and 61 of these metabolites were named ones (Supplementary Table 2). Altogether 10 progressors and 
6 non-progressors were using ACEI/AT2RB medication and 12 progressors and 4 non-progressors were using 
statins at baseline (Table 1). When also adjusted with baseline statin and ACEI/AT2RB usage, 91 metabolites were 
nominally significantly (p ≤ 0.05) associated with the progression to microalbuminuria. In princal component 
analysis the most progressors and non-progressors were grouped together, supporting that groups were well 
matched at the baseline in terms of the majority of the metabolites (Supplementary Fig. 1).

Random Forest analysis of metabolites. In order to identify the most important metabolites and to 
exclude associations by chance, we performed a random forest (RF) analysis. The model performance was esti-
mated in samples not included in the training of the corresponding decision trees. The RF model’s out-of-bag 
error rate was 37.5%. Among the top 30 metabolites identified by RF selection, there were 18 named ones (Fig. 1). 
These metabolites included carbohydrates (erythritol and sorbitol), nucleotides (methylphosphate), six amino 
acid and three dipeptide intermediates, and six lipids including the stress hormone cortisone. The highest rank-
ing amino acid intermediate was the N-trimethyl-5-aminovalerate and the top dipeptide intermediates included 
γ-glutamyl-molecules, of which the γ-glutamylglutamate was the highest ranked one. Within the seven lipids 
among the top 30 RF metabolites, α-hydrocaprocate was the top ranked one. Of the top 30 metabolites only sorb-
itol had more than 10% of observations missing (16.5%).

The top 30 RF-selected metabolites showed weak or modest correlations with age of diabetes onset, base-
line HbA1c and AER (Fig. 2). Notably, HbA1c correlated modestly with N-trimethyl-5-aminovalerate (r = 0.37) 
and sorbitol (r = 0.32). The strongest correlations between the metabolites were seen between X-11440 and 
pregnen-diol disulfate (r = 0.85) as well as between the γ-glutamylglutamate and γ-glutamyllysine (r = 0.71).

Variant selection of Random forest analysis. To find a small set of variables with good prediction per-
formance, we performed variable selection refinement with Variable Selection Using Random Forests software 
(VSURF) including all metabolites. The run was repeated ten times in order to assess the robustness of the selec-
tion. The result showed that three metabolites X-21365 (N-trimethyl-5-aminovalerate; personal communication 

Figure 1. The top 30 metabolites in the RF analysis ordered by Gini-index. Progression to microalbuminuria 
was set as the response variable and all serum metabolites identified by the platform were set as predictors. 
Yellow = carbohydrate/polyol, green = peptide intermediate, blue = amino acid intermediate, orange = lipid, 
violet = nucleotide intermediate, light blue = amino acid, purple = steroid, grey = unknown. The odds ratios for 
individual metabolites adjusted for age of diabetes onset, baseline HbA1c and AER are shown on the right.
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from Metabolon), erythritol and 3-phenylpropionate were included in the final predictive model in all ten runs 
and one additional metabolite, γ-glutamyllysine, in one run (Supplementary Fig. 2). The out-of-bag errors for 
these 10 VSURF models were 0.25–0.27. All these metabolites were also significant in the univariate logistic 
regression analysis after adjustment for the clinical factors (Supplementary Fig. 3).

As a sensitivity test, we performed another ten-fold VSURF run for all metabolites except the three metabo-
lites selected by the VSURF in the first 10 runs. The resulting models needed 8–12 metabolites to reach similar 
out-of-bag error as the models that consisted of N-trimethyl-5-aminovalerate, erythritol and 3-phenylpropionate 
(Supplementary Fig. 2). There was also much greater dispersion of the metabolites included in these models as 
altogether 37 metabolites were selected, suggesting that the three originally selected ones are essential for pre-
dicting microalbuminuria. The three original VSURF-selected metabolites showed modest to strong correlations 
with the 30 other RF-selected metabolites (i.e. 3-phenylpropionate – cinnamoylglycine r = 0.65, N-trimethyl-
5-aminovalerate – carnitine r = 0.40, erythritol – sorbitol r = 0.30) (Fig. 2).

Metabolic index. To study the combined predictive value of the three VSURF-selected metabolites, we 
formed a metabolomic index (Mtb.index) based on linear combination of the three metabolites N-trimethyl-
5-aminovalerate, erythritol, and 3-phenylpropionate. This Mtb.index was strongly associated with the progres-
sion to microalbuminuria with an OR of 2.96 (p = 2.75 × 10−7). The ROCAUC based on the Mtb.index alone was 
0.736. Importantly, the Mtb.index improved the predictive performance when added on top of the most predic-
tive clinical variables AER, age of diabetes onset and HbA1c. Consequently, the ROCAUC improved significantly 
from 0.797 for clinical variables only, to ROCAUC = 0.842, for the clinical variables plus Mtb.index (DeLong test’s 
p-value = 0.017) (Fig. 3a). Furthermore, the three metabolites improved the prediction of incident microalbu-
minuria when added on top of the clinical model including the long-term mean HbA1c (median 6 [IQR:1.35–10.65]  
measurements per patient by the time of the baseline visit) instead of the baseline HbA1c (ROCAUC 0.82 vs. 0.72) 
(Supplementary Fig. 4).

When individuals in the top quartile of the Mtb.index were compared with the rest of the cohort, the survival 
plot showed that the individuals in the two top quartiles had a more rapid progression to microalbuminuria com-
pared to the individuals at the bottom quartiles (Fig. 3b).

Figure 2. Correlation plot for the top 30 random forest selected metabolites and the three clinical variables age 
of diabetes onset, baseline HbA1c and AER. The values [−100, 100] represent correlation coefficients which were 
multiplied by 100. The clinical variables showed only weak to modest correlations with the top 30 RF selected 
metabolites (highest between HbA1c and N-trimethyl-5-aminovalerate, r = 0.37). The strongest correlations 
between the metabolites can be seen between X-11440 and pregnen-diol disulfate (r = 0.85) and between 
γ-glutamylglutamate and γ-glutamyllysine (r = 0.71).
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Discussion
In the present study, we assessed baseline metabolomic differences between individuals with type 1 diabetes, 
who later developed incident microalbuminuria, and those for whom AER remained normal throughout the 
follow-up. First, we observed that the metabolomic profile of progressors and non-progressors differed signif-
icantly with respect to several metabolites; a logistic regression analysis resulted in 111 nominally significant 
metabolites after adjustment for age of diabetes onset, baseline HbA1c and AER. Second, the metabolites as high-
lighted by RF included molecules from several biochemical groups such as polyols, amino acid-, peptide- and 
nucleotide intermediates, lipids and the stress hormone cortisone (Fig. 1). Notably, among the most important 
metabolites there were also several ones with unknown chemical structure. Ultimately, with the aim to identify 
a minimal set of important metabolites, three variables were selected for a prediction model with the VSURF 
method: namely, two known ones, erythritol and 3-phenylpropionate, as well as an unknown one, X-21365. This 
unknown metabolite has retention index of 973 and molecular mass of 160.133 Da and it has recently been iden-
tified as N-trimethyl-5-aminovalerate (Metabolon, personal communication).

The three metabolites verified by VSURF, as well as several other of the top metabolites selected by RF, have 
previously been highlighted in studies of factors associated with DN such as weight gain, insulin resistance, 
and gut microbiota activity. N-trimethyl-5-aminovalerate (formerly known as trimethyl-N-aminovalerate, 
5-trimethylaminovalerate, Nδ-trimethyl-5-aminopentanoate, 5-N-trimethylaminopentanoate, 
γ-butyrobetaine[GBB]-5 or X-21365 on the Metabolon platform) was the first variable selected by VSURF and the 
metabolite with the highest importance in RF. It was significantly elevated in the progressors. Interestingly, a recent 
study found that, together with citrulline, it was the only serum metabolite that was significantly elevated in met-
formin treated type 2 diabetic patients when compared to non-treated patients10. N-trimethyl-5-aminovalerate 

Figure 3. (a) When the Mtb.index is added to the most significant clinical factors (age of diabetes onset, 
baseline HbA1c and AER), ROCAUC increases to 0.842 compared to 0.797 for clinical variables only. (b) Survival 
plot of progression to microalbuminuria of individuals with type 1 diabetes by quartiles of metabolomics index 
(Mtb.index). Individuals in the two top quartiles (i.e. Mtb.index above median) showed more rapid progresion 
to the microalbuminuria compared to the patients at the bottom quartiles.
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was also found to be the most significant metabolite associated with low-fat milk intake in two recent studies11,12. 
The exact production pathway for the metabolite is currently unknown but N-trimethyl-5-aminovalerate is likely 
methylated from 5-aminovalerate11. 5-aminovalerate is a degradation product of lysine or proline by gut micro-
biota11,13; it has also been linked to the carnitine metabolism. In our study it was moderately correlated with 
carnitine (r = 0.40). Carnitine was significant in the logistic regression and the 20th most important metabolite in 
the RF selection.

The second metabolite selected by VSURF, erythritol, is a polyol that has been used as a low-calorie sweetener. 
Although erythritol has been thought to be a xenobiotic, i.e. a metabolite that is not synthetized or metabolized 
in the human body, a recent study suggests that erythritol is synthesized from glucose in the pentose-phosphate 
pathway and then metabolized to erythronate14. Recently, elevated erythritol concentrations have been found in 
individuals with diabetic retinopathy, cardiovascular events, and weight gain in young adults10,15,16. One of the 
main hypotheses is that increased polyol pathway flux is responsible for vascular complications in diabetes17. 
Furthermore, elevated erythritol levels have been observed in individuals with transaldolase deficiency18. In addi-
tion to erythritol, another carbohydrate sorbitol was also significantly elevated in the progressors, and was also 
one of the most important metabolites selected by RF (Fig. 1).

3-phenylpropionate was the third metabolite selected by VSURF. 3-phenylpropionate was among the top 
metabolites for insulin sensitivity in a non-diabetic population in an earlier RF based study19. It is metabolized 
by gut microbiota such as E. coli, which can process it to 2-hydroxypenta-2,4-dieneoate and succinate, which go 
further into the toluene pathway and the tricarboxylic-acid cycle20. In addition to 3-phenylpropionate, many of 
the other RF selected metabolites, including cis-Cyclo[L-ala-L-Pro] and γ-glutamylglutamate are amino acid 
and peptide intermediates, which suggests that amino acid metabolism also plays a role in the progression to 
microalbuminuria.

Only a few studies have assessed the metabolomic profile for early-stage renal complications in individuals 
with type 1 diabetes. Mäkinen et al. used NMR screening of 50 serum metabolites and the self-organizing map 
method to classify individuals with type 1 diabetes, who either developed microalbuminuria or remained nor-
moalbuminuric, and discovered both protecting and predisposing metabolomic profiles21. Using similar patient 
grouping, van der Kloet et al. studied metabolomics differences in the urine with 130 GC-MS and 89 LC-MS 
identified metabolites22. They found that acyl-carnitine-, acyl-glycine- and tryptophan-metabolism related 
compounds showed the most significant difference between the patient groups. However, these earlier studies 
included a smaller amount of metabolites and employed different analysis methods or medium, making it difficult 
to compare them with the current study.

A modern high-throughput metabolomics platform, such as that used in the present study, is capable of 
discriminating more than a thousand metabolites per serum sample. The same platform was employed in our 
previous study in individuals with type 2 diabetes. That study used RF analysis to investigate the metabolomic 
differences in serum and urine between individuals who developed microalbuminuria and/or eGFR declined 
below < 60 mL/min/1.73 m2 and those in whom AER and eGFR remained normal23. Importantly, the serum 
metabolomic profile from the current cohort of individuals with type 1 diabetes that progressed to microalbu-
minuria differed substantially from the top metabolites of our previous type 2 diabetes study. For example, the RF 
classifier in the previous type 2 diabetes study resulted in three 1-acylglycerol molecules among the top 5 signif-
icant metabolites. The individuals in the type 2 diabetes study were however considerably older when compared 
to the participants in the type 1 diabetes study. These differences in predictors of progression between individuals 
with type 2 and type 1 diabetes could be due, at least in part, to the fact that diabetic kidney disease in individuals 
with type 2 diabetes is more heterogeneous than in type 1 diabetes. In the latter, diabetic kidney disease is nearly 
always DN, while in type 2 diabetes some individuals may have true DN but the majority may have diabetic kid-
ney disease due to other etiologies such as hypertension, obesity and aging.

Using the same platform, Niewczas et al. studied metabolomic differences between individuals with type 2 
diabetes, who progressed to ESRD, and those whose kidney function remained stable, and found increased con-
centrations of uremic metabolites in the progressors24. Interestingly, among the RF selected metabolites in our 
study, there were also uremic solutes, including erythritol and the amino acid intermediates indolepropionate 
and cinnamoylglycine. This could indicate that these metabolites play a role in the disease progression both in 
early- and late stage DN.

The uremic toxin C-glycosyltryptophan has previously been associated with declining eGFR in chronic kidney 
disease in individuals with type 2 diabetes and also with the progression to ESRD in individuals with type 1 and 
type 2 diabetes23–25. Although the C-glycosyltryptophan concentrations were significantly elevated among the 
progressors, the RF classification did not select C-glycosyltryptophan among the most significant metabolites for 
the early DN.

Previous studies have shown that in comparison with other machine learning based classifiers such as projec-
tion to latent structures (PLS), support vector machine (SVM), and linear discriminant analysis (LDA), the RF is a 
robust classifier for metabolomics studies26. For example, biomarker panels consisting of 3–5 top metabolites and 
proteins selected by the RF showed superior performance compared to the currently used single marker Prostate 
Specific Antigen in predicting the progression of prostate cancer at different stages27.

The current study is limited by its relatively small number of samples. However, the progresssors and the 
non-progressors had similar distribution in sex, age, BMI, and waist to hip ratio, and the sample size matches or 
exceeds the size of similar previous metabolomic studies for other diseases. Another limitation is that we did not 
have a replication cohort in which the performance of the Mtb.index could be evaluated. However, as discussed ear-
lier, random forest subsets the dataset during the algorithm run, which diminishes the need for arbitrary division 
of the dataset. The VSURF-selected metabolites erythritol, 3-phenylpropionate and N-trimethyl-5-aminovalerate 
were also consistently ranked among the highest in the RF and they were also highly significant in the logistic 
regression. However, in order to generalize the findings, more research on non-Finnish populations is needed.



www.nature.com/scientificreports/

7SCIeNtIFIC RePoRts |  (2018) 8:13853  | DOI:10.1038/s41598-018-32085-y

The −20 °C storage temperature may also have affected the stability and concentrations of certain metabolites, 
and thus we may have missed some important metabolites. Nevertheless, the storage conditions were similar for 
the case and control samples, and therefore this should not result in false positive findings.

It is also worth highlighting that over one third of all metabolites (and 12 of the top 30) selected by RF were 
unknown. For example, X-11440, the third most important metabolite selected by the RF has been associated 
with serum urate regulation28. Therefore, there is an urgent need for better metabolite identification in order to 
get a more complete picture of disease prediction.

This study has identified a set of metabolites that improves prediction of incident microalbuminuria in indi-
viduals with type 1 diabetes beyond commonly used clinical variables and AER. However, we did not assess 
whether these metabolites also predict the risk of progression from microalbuminuria to macroalbuminuria or 
even to more severe DN with reduced kidney function. This will be an important next step in metabolomic 
research, since there might be different factors involved in the initiation of DN than in the progression of already 
established DN. Nevertheless, based on this study, measuring erythritol, 3-phenylpropionate, and N-trimethyl-
5-aminovalerate could be a useful tool to detect individuals at risk already at an earlier stage. Further research is 
needed to explore if these metabolites are involved in the pathogenesis of DN in a causative manner, and if they 
could serve as potential targets for intervention.

Methods
Patients. This study is part of the ongoing nationwide, multi-center, prospective Finnish Diabetic 
Nephropathy Study (FinnDiane) that aims to identify risk factors for diabetic complications with particu-
lar emphasis on DN. More than 5,000 individuals with type 1 diabetes have thus far been recruited into the 
FinnDiane study at their regular visits to the attending physician. Type 1 diabetes was defined as age at onset of 
diabetes below 40 years and insulin treatment initiated within one year of diagnosis. Data on recruitment and 
clinical characterization of the participants have been presented in detail elsewhere29. The study protocol was 
approved by the Ethical comittee of the Helsinki and Uusimaa Hospital District as well as by the local ethics com-
mittees at each FinnDiane participating center, and all patients signed a written informed consent. The study was 
performed in accordance with the Declaration of Helsinki.

All participants were followed either through a prospective visit carried out in the same manner as the baseline 
visit or alternatively in a small number of individuals by assessing the medical records and all available routine lab-
oratory data, if the patient had not yet participated in a scheduled follow-up visit. At these baseline and follow-up 
visits, the participants underwent a thorough clinical examination and completed a standardized questionnaire 
regarding history of complications, medication, family history, and lifestyle. Serum and urine samples were col-
lected for the determination of biochemical variables such as creatinine, lipids, HbA1c, and urinary AER29.

For the present study, we identified individuals, who at baseline had normal AER and an eGFR above 60 mL/
min/1.73 m2, and for whom follow-up data on kidney status were available. We then selected 102 consecutive 
individuals, who developed microalbuminuria during a median follow-up of 3.2 years (progressors), and matched 
them for sex, age, and BMI with 98 individuals, who remained normoalbuminuric during a median follow-up of 
7.1 years (non-progressors). The clinical characteristics of the two groups are given in Table 1.

The AER value used in the analyses was obtained from a 24-hour urine collection in the absence of symp-
toms and signs of urinary tract infection or other interfering clinical conditions. The urinary albumin concen-
tration of this sample was measured centrally by an immunoturbidimetric method. However, the classification 
of the participants was based on all available data on AER determined locally. Thus, normal AER was defined as 
AER < 30 mg/24 h (or < 20 µg/min) and microalbuminuria as AER ≥ 30 mg/24 h in at least two out of three over-
night or 24 h urine collections. For the metabolomics analysis, a serum sample was taken at baseline between 1998 
and 2006 and labeled with a blinded identification code, which was used to track sample handling, results, and 
data analysis. Blood samples were drawn in the morning after a light breakfast, and the participants were asked 
to avoid smoking and coffee intake in the morning before the sampling. The aliquots were frozen within 4 hours 
after the sampling and were stored at −20 °C until processing. The median storage time before metabolomics 
analysis was 14 years.

Serum creatinine was determined centrally with Jaffé’s method until January 7, 2002 and thereafter by an 
enzymatic method. Based on duplicate measurements of serum creatinine with the two different methods, all 
values were transformed to an IDMS traceable value before estimation of the glomerular filtration rate (eGFR) 
with the CKD-EPI equation30. Serum lipid (triacylglycerols, cholesterol, HDL-cholesterol) concentrations were 
also analyzed centrally by automated enzymatic methods (Hoffmann-LaRoche, Basel, Switzerland). HbA1c was 
determined locally with standard methods.

Metabolomics. Non-targeted metabolomics profiling was performed by Metabolon Inc., as previously 
described and in Supplementary Methods23,31–33. In brief, samples were prepared using an automated MicroLab 
STAR® system (Hamilton Co). Sample preparation included an aqueous methanol extraction process in order to 
remove the protein fraction while allowing maximum recovery of small molecules. The resulting extract was sent 
for global untargeted metabolomics analysis by Ultrahigh performance liquid chromatography/Mass Spectroscopy 
(UPLC/MS/MS) (positive and negative modes) and gas chromatography/Mass Spectroscopy (GC/MS).

UPLC/MS/MS. The UPLC/MS/MS platform was based on a Waters ACQUITY ultra-performance liquid 
chromatography and a Thermo-Finnigan linear trap quadrupole mass spectrometer, which consisted of an elec-
trospray ionization source and linear ion-trap mass analyzer. All extracts were gradient eluted using water and 
methanol. In addition, 0.1% formic acid was added to extracts reconstituted in acidic conditions, whereas the 
basic contained 6.5 mM Ammonium Bicarbonate.

GC/MS. The samples destined for GC/MS analysis were re-dried under vacuum desiccation for a minimum 
of 24 hours prior to being derivatized under dried nitrogen using bistrimethyl-silyl-triflouroacetamide (BSTFA). 
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GC column was 5% phenyl and the temperature ramp was from 40 °C to 300 °C in a 16-min period. Samples were 
analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron 
impact ionization.

Compound Identification. Raw data were extracted, peak-identified and QC processed using Metabolon’s hard-
ware and software. Compounds were identified by comparison to library entries on retention time/index (RI), 
mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data) for purified standards or 
recurrent unknown entities. The naming of the metabolites was done according to Metabolon’s standards.

Data pre-processing. Metabolite concentrations are expressed as relative intensities. Missing values (if any) were 
imputed to the lowest measured value and metabolite data were scaled proportionately to a median of 1.

Statistical analysis. Values are expressed as mean ± standard deviation (SD). Because of its skewed dis-
tribution, AER is expressed as median [IQR] and was log-transformed for use in the multivariable analyses. 
Group comparisons of clinical variables were carried out with the χ2 or Mann-Whitney test; group differences 
for metabolites were tested by the Welch test for unequal variances. Multivariable logistic analysis was performed 
using the forward elimination method. Results are given as OR with 95%CI (calculated per SD of predictor) along 
with the c statistic (i.e. ROCAUC). Principal component analysis was conducted using prcomp method from R stats 
library. A significance level of p ≤ 0.05 was utilized in all tests. R (v. 3.3.1) and SPSS (v. 24, IBM, USA) were used 
for the analyses.

Random Forest analysis. The data were elaborated by using RF analysis34. This method employs a multistage 
decision process that attempts to identify and rank relationships between the predictive variables and the 
response variable. The RF algorithm is an extension of the decision trees method. In short, the algorithm involves 
generation of a large amount of decision trees, and elements are classified by taking a majority vote among the 
trees. In each tree, random subsets (N = square root of total number) of variables are selected. Furthermore, each 
tree is grown using a particular bootstrap sampling (random sampling with replacement). As about one third of 
the samples left out from each tree is used as test set to estimate the tree’s out-of-the-bag error, there is no explicit 
need for arbitrary separation into training and test sets. We performed the RF classification by using the RF 
R-package v. 4.6–1235. All serum metabolites were set as predictive variables and the progression to microalbu-
minuria was set as the response variable. We set the method to generate 20,001 trees for a RF in order to improve 
the robustness of the classifier. The mean decrease in classification accuracy and the Gini score were used to 
measure variable importance.

Two-step Random Forest Variable Selection. Due to the high amount of metabolites compared to the number of 
samples, we further validated the selection of the most important variables with iterative random forest variable 
selection refining implemented in the VSURF R-package36. When the method is set to aim for small number of 
model predictors, it first generates several random forests, and drops the least important variables from the model 
based on the mean variable importance between the runs. In the second forward selection step, the variables are 
iteratively added to the model starting from the one with the highest importance. A given variable is added to 
the final model only if its addition results in a significant decrease in the out-of-the-bag error in the samples not 
included in the corresponding decision tree in the new RF.

Data Availability Statement
The datasets generated and/or analyzed during the current study are not publicly available as the patients’ written 
consent does not allow data sharing. Data are locally available from the corresponding author on reasonable 
request.
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