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Structural robustness of 
mammalian transcription factor 
networks reveals plasticity across 
development
J. L. Caldu-Primo  1,2, E. R. Alvarez-Buylla1,2 & J. Davila-Velderrain3,4

Network biology aims to understand cell behavior through the analysis of underlying complex 
biomolecular networks. Inference of condition-specific interaction networks from epigenomic data 
enables the characterization of the structural plasticity that regulatory networks can acquire in different 
tissues of the same organism. From this perspective, uncovering specific patterns of variation by 
comparing network structure among tissues could provide insights into systems-level mechanisms 
underlying cell behavior. Following this idea, here we propose an empirical framework to analyze 
mammalian tissue-specific networks, focusing on characterizing and contrasting their structure and 
behavior in response to perturbations. We structurally represent the state of the cell/tissue by condition 
specific transcription factor networks generated using DNase-seq chromatin accessibility data, and 
we profile their systems behavior in terms of the structural robustness against random and directed 
perturbations. Using this framework, we unveil the structural heterogeneity existing among tissues 
at different levels of differentiation. We uncover a novel and conserved systems property of regulatory 
networks underlying embryonic stem cells (ESCs): in contrast to terminally differentiated tissues, the 
promiscuous regulatory connectivity of ESCs produces a globally homogeneous network resulting in 
increased structural robustness. We show that this property is associated with a more permissive, less 
restrictive chromatin accesibility state in ESCs. Possible biological consequences of this property are 
discussed.

A central tenet of systems biology is that cell behavior can be understood in terms of the structure and dynamics 
of underlying complex molecular networks1,2. Under such paradigm, major efforts have been made to system-
atically map and characterize the properties of molecular networks at different levels of organization. Reference 
protein-protein interaction, metabolic, and transcriptional regulatory networks have been constructed and are 
being frequently updated in several model organisms3–5. Initial efforts have largely focused on providing an 
organismal reference for the global network structure.

Network theory provides methods for the systemic description of a network’s structure and its dynamics6–8. 
One of the major results of network biology is the discovery within the reference networks of apparently universal 
organizational properties across the different types of complex biological networks2. While the characterization 
of reference real-world complex networks has uncovered structural similarities among complex networks that are 
believed to underly their systemic properties2,6, much less is known about the degree of structural heterogeneity 
of condition-specific biomolecular networks, and how patterns of variation promote or constrain systems-level 
behaviors.

In cell biology, one intriguing hypothesis is that network heterogeneity emanating from the normal pro-
cess of development might result in differential behaviors underlying the contrasting cellular phenotypes. In 
line with this idea, the field of network biology has recently started shifting towards the characterization of 
condition-specific networks and analysis of circuitry dynamics9,10, presumably due to the increasing availability 
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of functional genomics and epigenomics assays. For example, Neph and collaborators put forward a methodology 
to assemble tissue-specific transcription factor networks with the aid of available chromatin accessibility profiles 
from multicellular genomes9,11–13. The proposed networks connect each transcription factor (TF) to its incoming 
TF regulators, thus representing the regulatory structure of the cell in terms of the main regulators (e.g. TFs) and 
the mutual regulatory interactions among them. More specifically, using digital genomic footprinting (DGF) 
analysis, TF-TF interactions are established by integrating TF motif matching with DNase I hypersensitive sites 
(DHS) and high-resolution genomic footprints. Tissue-specificity comes from the condition-specific accessibility 
of cis-regulatory regions upstream a TF. Using this approach, tissue-specific TF networks have been constructed 
for model organisms and for human9,14. Given that the observed TF interactions reflect tissue-specific activity 
states, we reasoned that the structure and relative systems-level behavior displayed by these networks could pro-
vide insights into the biology and differentiation potential of the corresponding tissues.

In order to begin understanding the link between network structure heterogeneity, behavior, and biolog-
ical phenotypes, here we put forward a computational framework to characterize the structural properties of 
mammalian tissue-specific TF networks and their behavior, emphasizing the degree of deviation from theoret-
ical expectations. We focus on one systems-level behavior which is informative of the latter: the robustness of 
the networks to structural perturbations. We profiled the structural properties of a broad set of TF networks in 
mouse and human, and we compared the observed behavior across tissues and against expectations of theoretical 
models. Interestingly, we discovered that embryonic stem cells (ESCs) posses a distinctive regulatory structure: 
its higher structural similarity to the topological properties expected from a homogeneous network theoretical 
model endows them with a remarkable resilient behavior. We show by analysing chromatin accesibility profiles, 
that the tissue-specific TF network captures at a systems level, the more permissive and less restrictive prop-
erty of the ESC epigenome relative to adult, differentiated tissues. However, unlike previous studies quantifying 
developmental potential with a gene expression-based network entropy framework15,16, we did not find a robust 
distinction between adult stem and differentiated cell populations; which might indicate a limitation of the degree 
of resolution captured by TF networks and, consequently, of the structural robustness measure proposed here. We 
discuss potential biological implications, and future extensions.

Results
Analysis framework. Networks provide a theoretical framework that allows a convenient conceptual rep-
resentation of interrelations among a large number of elements6. Furthermore, it is usually possible to frame 
questions about the behavior of the underlying real system by applying well-established analyses on the network 
representing empirical data17. Here we focus on tissue-specific networks where nodes represent TFs and links 
inter-regulatory interactions, and propose an analysis framework with the goal of characterizing the common-
alities and differences in behavior against structural perturbations across tissues. We ask whether some tissues 
display extreme behaviors, and whether or not such deviations and extreme behaviors highlight aspects of the 
underlying biology. We hypothesize that the differences to be discovered underlie aspects of the observed bio-
logical functionality and of the broad degree of differentiation of the tissues. The proposed framework includes 
the following steps (see Fig. 1). (1) The state of the cell is structurally represented by tissue-specific networks of 
regulatory interactions among transcription factors as proposed in9,14. Briefly, a TF is considered regulator of 
another TF when a motif instance of the former TF occurs within a DNase I footprint contained in the proximal 
regulatory region of the latter TF (10 kb interval centered on the transcription start site [TSS]). (2) The system’s 
behavior of a network is defined as the response of the network against increasing structural perturbations2,18, 
and the response is measured by two metrics: the change in giant component size, and the change in efficiency, 
both relative to the original, unperturbed network (see Methods). The complete behavior is captured by the qual-
itative properties of the change from start until complete disruption; we introduce a simple metric to quantify it 
(Fig. 1a). (3) The structure of each network is numerically characterized by 14 topological measures (Fig. 1b). (4) 
The degree of deviation of each network relative to expectations from homogeneous (Erdős-Rényi) and heteroge-
neous (Barábasi-Albert) random graph models is quantified (Fig. 1c).

After applying these steps to each tissue-specific network, we rank the networks based on the robustness of 
their behavior, we identify those displaying the most extreme response, and we statistically explain the behavior in 
terms of predictive topological features and relative deviation from analogous homogeneous and heterogeneous 
random models. Thus, starting from an input set of tissue-specific networks, our framework produces a structural 
robustness ranking, a set of structural features underlying the behavior, and a mapping of the networks into the 
homogeneous-heterogeneous network space.

Network structural differences reveal plasticity of systems behavior upon perturbation. It 
has been shown that a differential response to random structural perturbations (errors) and directed alterations 
(attacks) enables a concrete distinction between homogeneous and heterogeneous networks in terms of systems’ 
behavior18. A network representing a real complex system is expected to tolerate random failures, but to be more 
vulnerable against directed attacks targeting key, connected components. Taking this well-established frame-
work, we evaluated the robustness behavior of TF networks across tissues. The operational definition of structural 
robustness applied here is based on an intuitive idea: disabling a substantial number of nodes will result in an 
inevitable functional disintegration of a network2, but the degree of tolerance will vary across tissues. We meas-
ured tolerance to random perturbations by randomly removing nodes from the networks and quantifying the 
change in the size of the largest connected component (giant component), and the change in network efficiency 
– an approximation to loss or gain of network connectivity (see Methods). For directed attacks, we repeated the 
experiments but sequentially removing nodes in decreasing order of centrality (degree) (Fig. 1a). We profiled the 
response to perturbations in 41 human and 25 mouse tissue networks.
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Overall, all networks were found to be highly tolerant to random errors. In both mouse and human tissues, the 
size of the giant component (Sf/S0) decreases linearly with f without abrupt transitions (Fig. 2a,c, dashed lines). 
The efficiency of the networks (Ef/E0) also shows consistent behavior across all human and mouse tissues: it shows 
minimal decrease for a large proportion of f until it falls abruptly around f = 0.8 (Fig. 2b,d, dashed lines). The 
observed robustness to random failures is consistent with predictions from percolation theory in complex ran-
dom networks, as it is less likely to perturb key, highly connected components in networks with long-tail degree 
distribution6,18. Also consistent with theory, TF networks were found to be much more vulnerable to directed 
attacks. Interestingly, however, we observed a high degree of variability in the behavior upon attacks across net-
works. Both measures (giant component size and efficiency) revealed transitions at different fractions f of attacked 
nodes (see Fig. 2a–d, solid lines). Interestingly, we found that in both human and mouse the TF networks of 
embryonic stem cells (ESCs) display, relative to differentiated tissues, an extremely robust behavior against both 
failure and attack perturbations, the latter being much more pronounced (see Fig. 2a–d, red lines).

With the goal of quantitatively describing and to analyze the discovered patterns of heterogeneity among tis-
sues, we define the metric error-attack deviation (Δea), which simply quantifies the degree of deviation of a given 
network’s behavior upon directed attack perturbations from that stemming from random errors. We use this 
metric here as a measure of the structural robustness of complex networks to perturbations, as it reflects the 
degree to which attacks and errors are tolerated (see Methods). Intuitively, the smaller the value of Δea the closer 
the global response of the network against attacks relative to that against error, indicating a higher degree of 
robustness. We performed the calculation individually for the two damage measures used in this study: Sf/S0 and 

Figure 1. Structural profiling of cell type specific TF networks. (a) Structural robustness was measured 
simulating attacks (removing high degree nodes (red)) and errors (removing randomly selected nodes). (b) 
Networks characterization was done measuring topological features of every network. (c) Each network was 
compared to random model networks by measuring its dissimilarity to an analogous ensemble of homogeneous 
and scale-free networks.
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Ef/E0 (Supplementary Fig. 1). From these error-attack deviation measures, we defined network structural vulner-
ability (Δea) as the mean Δea for giant component size and efficiency (see Methods). This measure enables the 
quantification of differential structural robustness to attacks displayed by the networks (cell types). The vulnera-
bility measure of human and mouse cell types corroborates the heterogeneity of structural robustness among cell 
types, and the extremely deviating behavior of ESCs (Fig. 2). ESCs have an error-attack deviation significantly 
lower than other cell types, highlighting their significantly higher robustness against attacks relative to more dif-
ferentiated tissues.

Network structural rearrangement during differentiation. The observed differences in structural 
robustness among tissues point to the existence of patterns of variation in global network structure. In order to 
characterize the structural heterogeneity of TF networks, we analyzed their topology and asked whether specific 
topological features more predominantly explain the observed robustness patterns. In particular, what structural 
features underlie the extreme robust behavior of ESCs? As a first approximation we simply asked how similar are 
networks among each other? We computed pair-wise dissimilarity scores for every pair of TF networks in mouse 
and human, using a structural dissimilarity (D) approach (see Methods). Network dissimilarity is a useful method 
for network comparison as it quantifies structural topological differences based on node distance probability 
distributions, capturing nontrivial structural differences19 – as opposed to the intuitive counting of presence or 
absence of common links.

Figure 2. TF networks structural robustness. The behavior against errors (dashed) and attacks (solid) of every 
cell type is shown, red lines correspond to the ESCs behavior and blue lines to other cell types. (a) Human giant 
component size decrease. (b) Human efficiency decrease. (c) Mouse giant component size decrease. (d) Mouse 
efficiency decrease. (e) Human and (f) mouse vulnerability measure for each TF network. (g) Human and 
mouse vulnerability measures distribution, red dots correspond to ESC measurements.
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Despite the fact that all TF networks are relatively similar – having average D values of 0.040 and 0.064 in 
human and mouse, respectively – there is variation in the structural similarity among them. D ranges from 0.003 
to 0.160 in human, and from 0.003 to 0.184 in mouse. Considering pair-wise comparisons in human networks, 
ESC is the most dissimilar network for 24 (58.5%) of the tissues. For the remaining 17 tissues, the most dissimilar 
network corresponds to Astrocyte. These two tissues also have the highest D median scores: ESC (0.090) and 
Astrocyte (0.077). Interestingly, these two networks are also the most dissimilar between one another. Thus, the 
undifferentiated ESC localizes at one extreme of the topological space while the highly differentiated Astrocyte 
localizes at the other. We built a dendrogram using network dissimilarity as distance measure among human net-
works. ESC is clearly different from the other tissues as it is placed in a single branch at the bottom of the distance 
dendrogram, separated from all the other cell types (Fig. 3a).

Mouse networks show a similar pattern to that found in human cell types. Pair-wise comparisons show that 
the most dissimilar networks are ESCs and the highly differentiated Brain, with these two tissues occupying the 
extremes in the dissimilarity distribution (Fig. 3b). ESC ZhBTc-6h has the highest D value for 16 of the 25 cell 
types (64%), while the other two ZhBTc ESCs also rank among the most different networks, and in the remaining 
9 cell types the highest D value corresponds to Brain. Unbiased hierarchical clustering aggregates three ESC lines 
(ZhBTc, ZhBTc-6h, and ZhBTc-24h) in a separate basal branch, together with Genital Adipose Tissue and Fetal 
Brain. Fetal tissues are expected to display some degree of similarity with ESCs, due to overlap of developmental 
processes during fetal development. Adipose is an heterogeneous tissue, possibly including undifferentiated adi-
pose stem cells. Overall, the topology of ESCs networks in mouse and human is clearly distinct from adult differ-
entiated tissues such as brain and liver. In both dendrograms, differentiated tissues do not seem to be structured 
according to their lineage. This reflects that from a structural point of view, developmental lineages networks 
are not clearly distinguished and only a significant difference between ESCs and adult differentiated tissues is 
observed (Fig. 3). We reasoned that this observation might stem from a distinctive chromatin accesibility state 
charcaterizing ESCs, which we explore below. Overall, there is a significantly higher dissimilarity between ESCs 
and adult cell types than among those differentiated tissues (Supplementary Fig. 2).

To further explore the topological differences among tissues, we characterized the structure of every network 
using 14 standard measures for network topology description (Table 1, see Methods)6,7. These measures capture 
important characteristics of a network’s global structure, which in part determines its functionality. In particu-
lar, we seek to dissect the structural heterogeneity among tissues, identify features associated with the observed 
robustness, and finally map those structural features that discriminate ESCs’ networks from those of differenti-
ated tissues.

We performed principal components analysis (PCA) using the measured topological features, in order to 
explore network aggregation behavior in the feature space, while at the same time avoiding collinearity. For both 
human and mouse data, the features with highest contribution for the first principal component (PC) are mean 
degree, number of edges, density, efficiency, and modularity. The former four features are highly correlated, all of 
them measuring network degree of connectivity. In spite of mean degree’s high contribution to the first PC, this 
property does not explain the structural difference observed in ESCs: mean degree of ESCs does not deviate from 
the empirical distribution among other tissues (Supplementary Fig. 3, and Fig. 3e,f). The features contributing 
to the second PC are clustering coefficient, assortativity, and degree entropy. Projecting the networks to a 2D 
space based on PCs, we found no apparent clustering (Fig. 3c,d). However, a closer examination shows that, as 
expected, ESCs are separated from the other tissues, having higher values for the second PC. The highly special-
ized networks of Astrocyte and Brain tissue localize at the opposite extreme, evidencing the extreme structurally 
differences relative to ESCs. These differentiated networks are characterized for having extremely low values for 
the first PC. Considering these patterns, ESCs are characterized for having high values of degree entropy and 
assortativity, but low clustering coefficient. On the other hand, Brain and Astrocyte networks have high modu-
larity and average path length, but small density, efficiency, and mean degree. This pattern is confirmed by the 
features distribution (Fig. 3e,f).

The topological characterization corroborates an extreme difference in network topology between undiffer-
entiated ESCs and differentiated tissues. Analysis of features distribution shows that tissues spread through a 
feature space following two main axes, one going from highly modular to highly efficient networks, and another 
separating highly degree entropic and degree assortative structures from those with high global clustering. ESCs 
are distinguished from differentiated tissues for having more interacting TFs, and these are globally connected 
in a more promiscuous way, as evidenced by higher levels of entropy in the degree distribution. In contrast, dif-
ferentiated networks of Brain and Astrocyte are more structured, as evidenced by high levels of modularity, yet 
low levels of efficiency and density. Taking into account the existence of a trade-off between network efficiency 
and modularity20, this observation hints to a possible path of developmental dynamics of TF network structure 
in which the system transits from a configuration promoting efficiency in information flow and robustness, into 
a highly modular topology suggestive of functional specialization.

Interpretation in terms of theoretical network models. As mentioned above, robustness to directed 
attacks has been linked to homogeneous network topologies, in contrast to the “robust yet fragile” behavior char-
acteristic of heterogeneous (scale-free) networks18. Considering this result, we compared each TF network to 
analogous ensembles of random homogeneous and scale-free networks generated using the Erdős-Rényi (ER) 
and the Barabási-Albert (BA) models, respectively (see Methods). ER networks with high number of nodes 
approach a Poisson degree distribution, symmetric for relatively high average degrees. On the contrary, BA net-
works have a characteristic right skewed power-law degree distribution. We compared the real world networks 
with the theoretical models, with the goal of placing them within a heterogeneity axis by quantifying deviations. 
Given the discovered high robustness to directed attacks and high degree entropy of ESCs, we reasoned that such 
a contrast will help clarify the global structural features underlying such behavior.
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We measured network structural dissimilarity between each network and its ER (DER) and BA equivalents 
(DBA). As expected, all networks are significantly more similar to BA than to ER networks. DER ranges from 0.191 
to 0.285 and from 0.139 to 0.287; whereas DBA ranges from 0.019 to 0.047 and from 0.013 to 0.055, in human and 
mouse respectively (Fig. 4c). The fact that BA networks are more similar to the TF networks is consistent with 
discoveries of other real world complex networks having scale-free topologies21. Interestingly, however, we found 
clear differences among the networks regarding their relative similarity to each theoretical model. For instance, 
ESCs have the lowest DER in both human and mouse (Fig. 4). In the case of DBA, a contrasting pattern emerges: 
ESCs are among the tissues with higher values. Nevertheless, ESC DBA values are not significantly different from 
those of other tissues, falling within the observed distribution of DBA (Fig. 4c). Considering DER and DBA together 
and taking both human and mouse networks, ESCs are separated from the other cell types, as shown in Fig. 4. A 
conserved pattern in both human and mouse emerges in which ESCs have a relatively lower dissimilarity to ER 

Figure 3. Networks structural profiling. (a,b) Dissimilarity among cell types, heatmaps of scaled D values 
among (a) human and (b) mouse cell types. (c) Human and (d) mouse networks topological features PCA. 
(e) Human and (f) mouse topological features distribution, colored dots show the value for each feature of the 
indicated cell type.
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networks and a relatively higher dissimilarity to BA than the other tissues. As with the dendrogram created from 
D among networks (Fig. 3b), dissimilarity to model networks does not recover lineage hierarchies of differen-
tiated tissues, yet it underscores a broad difference in global structure between ESCs and differentiated tissues.

For every model network we measured the same 14 topological properties we used to characterize cell type 
networks, and performed a PCA of their features including the real and model networks. In both human and 
mouse networks, the PCA graph shows a common pattern. The first component separates three clusters corre-
sponding to each model network and the real networks, situating BA and ER networks in the extremes and the 
real networks between them, closer to the BA cluster (Fig. 5a,b). As shown in the structural dissimilarity analysis, 
this pattern confirms that real networks are more similar to scale-free networks than homogeneous networks. 
Real TF networks are situated in between BA and ER clusters, thus creating a feature space between the two model 
networks in which real networks can be situated. The pattern shows that ER networks tend to have higher degree 
entropy and assortativity, while BA networks tend to have higher diameter and clustering coefficient (Fig. 5a,b).

We show that ESC networks have a distinctly higher robustness against directed attacks relative to differen-
tiated tissues. Since scale-free topology explains the fragility against directed attacks in complex networks, we 
analyzed the topological features of ESCs networks that deviate from BA expectations. We calculated the devi-
ation of every real network feature compared to its distribution in the corresponding BA model (see Methods). 
From this analysis we selected features in which the real networks differ significantly from BA models, these are: 
average path length, assortativity, degree entropy, maximum degree, modularity, clique number, and clustering 
coefficient (Fig. 5c). We found extremely high deviation (z-score) on degree entropy, assortativity, and average 
path length in ESCs (Fig. 5d). From our PCA analysis, we know that these features have a high contribution to 
the first PC; in particular, ER networks tend to have higher degree entropy and assortativity. This indicates that, 
even though ESC networks are closer to a BA topology, the features for which they are different from a BA model 
are characteristic of ER networks. This is illustrated by visual contrast of ER expected and empirically observed 
values of the deviating features among cell types (Fig. 5f,g). Thus, we conclude that ESCs have extreme values in 
features characteristic of ER networks.

Network homogeneity predicts structural robustness. We show that the topological plasticity of 
tissue-specific TF networks can be characterized by comparing them to model networks. As mentioned before, 
this structural differences are associated with the networks’ response to random and directed perturbations. To 
further understand the structural features underlying the observed structural robustness pattern, we fitted statis-
tical models in an attempt to further uncover explanatory topological features. Using the previously defined net-
work vulnerability (Δea) as the response variable, we fitted two statistical models: linear regressions using the 14 
network features as well as DER and DBA as predictors, and a random forest regression using the 14 topological 
features as predictors. For each model we measured its mean square error, and validated its accuracy through 
five-fold cross validation. The best predictor of network vulnerability is network’s DER with a cross validation 
mean square error of 0.00022. There is a positive relationship between DER and Δea (Fig. 6b), indicating that the 
more a network resembles a homogeneous network, the higher its structural robustness. The topological feature 
with the best predictive performance is degree entropy, a feature correlated with a network similarity to a homo-
geneous network. Thus, the diviation from ER model expectation DER, a measure quantifying the degree of homo-
geneity of a real-world network, and which is distinctively high in ESCs; is predictive of structural robustness.

ESCs TF network structure captures a more accessible and permissive chromatin 
state. Network structural analyses show that ESCs have a distinct network topology, mainly characterized by a 
higher uniformity in the number of interacting partners (degree entropy). Since the networks we analyzed reflect 
both the presence of a TF motif and DNase-seq chromatin accessibility signal9,14, we reasoned that at the global 

Feature

Human Mouse

Range Average
Standard 
Deviation Range Average

Standard 
Deviation

Size [493, 533] 521 9.27 [555, 583] 574.4 7.21

No. of edges [9099, 18906] 14002.97 2272.36 [15392, 36448] 22970.4 5084.83

Mean degree [36.03, 72.02] 53.65 8.33 [54.10, 125.036] 79.816 16.881

Diameter [5, 8] 6.19 0.81 [5, 7] 5.76 0.66

Density [0.034, 0.069] 0.052 0.008 [0.48, 0.10] 0.07 0.014

Average path length [2.30, 2.69] 2.45 0.086 [2.08, 2.41] 2.26 0.086

Clique number [14, 27] 19.39 2.68 [19, 34] 26.44 3.31

Clustering Coefficient [0.24, 0.39] 0.29 0.036 [0.25, 0.37] 0.30 0.027

Assortativity [−0.21, −0.12] −0.17 0.022 [−0.18, −0.13] −0.15 0.015

Efficiency [0.47, 0.54] 0.51 0.017 [0.50, 0.59] 0.54 0.024

Modularity [0.10, 0.17] 0.12 0.014 [0.06, 0.11] 0.09 0.013

Degree Entropy [5.69, 5.94] 5.80 0.052 [5.79, 6.09] 5.93 0.078

Reciprocity [0.03, 0.06] 0.05 0.006 [0.04, 0.09] 0.06 0.01

Maximum degree [266, 416] 348.2 35.6 [334, 574] 436.9 65.2

Table 1. Topological features measured for every human and mouse network.
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level, the distinctive network structure might capture an underlying, more permissive chromatin accessibility 
state, which has been previously hypothesized to underlie ESC behavior14,22. We tested this hypothesis empirically 
by directly analyzing DNase-seq chromatin accessibility data from the Roadmap Epigenomics project23, compar-
ing samples corresponding to ESCs and adult differentiated cell types.

We compared accessibility signal (normalized counts) across all gene promoters, TF promoters only, and 
enhancers, considering these entities key regulatory elements in transcriptional networks (REs). Overall, REs 
display higher median accessibility in ESC than in adult samples (Fig. 7a–c). To test group differences between 
ESCs and adult tissues, we defined for each regulatory region a mean accessibility score, and found that REs are 
significantly more accessible in ESCs than adult tissues in the three cases (Fig. 7d–f).

Figure 4. Networks comparison with ER and BA model networks. (a) Heatmap human and mouse cell types 
dissimilarity to model networks. (b) Scatterplot of cell types dissimilarity to model networks, dashed lines in 
both axis correspond to the 25, 50 and 75 percentiles of both measurements. (c) Distribution of D values for 
ESCs and other cell types in human and mouse, respectively. Distributions correspond to the dissimilarity with 
each of the 100 simulated model networks, black dots correspond to distribution median.
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The accessibility distribution reveals a higher median accessibility in regulatory regions within ESCs and 
shorter tails in the extremes of the distribution, relative to adult samples. This points to a more evenly distributed 
activity among REs, a pattern particularly pronounced in TF promoters. To quantify this observation, we meas-
ured the entropy of the accessibility distribution. TF promoters and enhancers show a significantly higher entropy 
in ESCs compared to adult differentiated cell types (Wilcoxon, p =< 0.023) (Fig. 7h,i). This result indicates that, 
the main elements of the regulatory circuits specifying cell-identity (enhancers and TFs)24, display a distinctive, 
promiscuous activity (as approximated by accessibility) in ESCs. The reduction of uncertainty in RE activity 
observed in adult differentiated cell types evidences a more restrictive epigenomic state, in which some TFs and 
enhancers have high activity and influence on the identity of the cell state. On the other hand, the state of uncer-
tainty in the accessibility of the REs resulting in permissive global activity of TFs and target REs in ESCs may be 
ultimately manifested in the pluripotent, undecided, and promiscuous nature characteristic of ESCs22,25. These 
contrasting permissive and restrictive patterns of accessibility, in particular in the neighborhood of TF TSSs, is 
captured in the network structures analyzed herein.

The more accessible, permissive, and promiscuous activity of regulatory elements and regulators (TFs) in ESC 
populations is consistent with both their pluripotent nature and with an increased robustness of the TF networks 
characterizing their state.

Figure 5. Comparison of network features with random model analogs. (a) Human and (b) mouse network 
features PCA including real, ER, and BA networks. (c) Network features p values comparing real features with 
BA model analogs. (d) Human and (e) mouse radar plots of network features z-score compared to BA model 
analogs. (f) Human and (g) mouse features measures, green polygons show ER networks’ range for each feature. 
ESC values are shown in red solid lines, and the other cell types are shown in blue dashed lines.
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Discussion
It has been pointed out that insights into the interplay between network structure and dynamics are needed in 
order to ultimately understand the cell’s functional organization2. Here we studied TF networks’ structure with 
the goal of better understanding the global behavior of different tissues. As a simple operational approxima-
tion, we represented the cell using tissue-specific TF networks. We frame the problem in terms of global struc-
tural robustness, a systemic behavior approximated by the vulnerability of networks to both random failure and 
directed perturbations2,18. We found that structural robustness varies significantly across tissues with different 
levels of differentiation. Interestingly, within the datasets analyzed in both human and mouse, the most robust 
tissue was also the least differentiated: embryonic stem cells.

Complex network theory has shown the coexistence of extremes in robustness and fragility (“robust yet frag-
ile”) in real-world networks, due to the widespread power-law connectivity distribution associated with complex 
networks18,26. The networks underlying ESCs are the most robust against random failure as well as the least fragile 
against directed attacks, somehow being able to negotiate the observed trade-off between robustness and fragility. It 
is known that deviation from the long-tail of theoretical networks with power-law degree distribution reduces the 
effectiveness of an attack strategy based on targeting the highly connected nodes18. Although all the TF networks 
analyzed here do have a long-tailed degree distribution, they deviate from theoretical power-law degree distributions 
(see Supplementary Figs 4 and 5). We analyzed this deviation from a canonical scale-free network by measuring each 
network’s dissimilarity to theoretical model networks with homogeneous and scale-free topologies. This comparison 
further exposed the structural heterogeneity among tissues, and the deviating behavior of both undifferentiated (i.e., 
ESCs) and differentiated tissues. Furthermore, within the proposed analysis framework, the relative (dis)similarity 
between a target network and analogous theoretical networks provides insights into the topological characteristics 
underlying its robustness. For example, the higher structural robustness of ESC networks is explained by its closer 
topological resemblance to an Erdős-Rényi homogeneous random network, relative to differentiated cell types.

In terms of biological properties, our results suggest that ESC state might be able to withstand more and dif-
ferent kinds of errors, due to a more homogeneous network topology. This topological arrangement implies that 
its main regulator TFs act upon a less constrained chromatin landscape, allowing them to explore it more freely 
than in differentiated cell types. We further explored this idea by directly analyzing accessibility data at genome 
REs (TF promoters and enhancers), comparing ESCs and adult differentiated tissues. We found ESCs have a sig-
nificantly higher accessibility at regulatory elements compared with differentiated tissues. ESCs also have a more 
evenly distributed accessibility among REs as shown by a higher entropy in its distribution (Fig. 7). Consistent 
with our results, several studies show that ESCs nuclear DNA is organized in an unusual way, in which chromatin 
appears to be more “open” than in differentiated cells27. Some of these findings are that histones and non-histones 
proteins are more loosely bound to DNA in ESC28, constitutive heterochromatin is more dispersed28,29, modi-
fications associated with silent chromatin are depleted, while those associated with transcriptional activity are 
globally enriched28,29. These data has lead to consider stem and dedifferentiated cells as a state of loose regulation, 
differentiation being considered as a process of increasing chromatin repression27,28,30. Our results that show ESCs 
have a more homogeneous and structurally robust TF network topology can be considered a consequence of this 
loose regulation state in ESCs.

Previous studies have found a correlation between the level of uncertainty in the expression profile of a cell’s 
signaling network and its differentiation potential (pluripotency)15,16. In other words, pluripotent cells can be 
characterized by a state of high uncertainty, where molecules from opposite lineages are promiscuously and 
simultaneously expressed. This uncertain state seems to mechanistically promote a cell-fate decision, due to its 
instability31,32. Entropy-based measures of uncertainty have been shown to capture such degree of instability and 
therefore pluripotency: lineage committed cells would have reduced entropy relative to progenitors, as differenti-
ation is associated with the predominant expression of one of the mutually competing transcriptional programs. 
Consistent with this view, a network entropy measure integrating tissue-specific transcriptomic profiles with a 
protein interaction network, has effectively quantified cellular pluripotency using bulk15 and single-cell data16.

Figure 6. Predictive models. (a) Mean square error for linear regressions of network vulnerability using 
each feature as predictor and random forest using 14 topological features. (b) Linear regression of network 
vulnerability predicted by networks’ dissimilarity to Erdős-Rényi model network.
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In the present study we found that the structural robustness of a transcription factor network clearly discrim-
inate ESCs from differentiated cell types. Unlike transcriptomic analyses, however, this property does not seem 
to correlate with cellular differentiation potential within specific lineages. One potential interpretation for this 
observation is that the analyzed networks may highlight differences in chromatin organization that might antic-
ipate transcriptional differences between cell types. On the other hand, the inability of these measures to distin-
guish between multipotent and fully differentiated cell types could stem from a lack of resolution to capture more 
subtle differences in network arrangement, or from the loss of information during TF networks inference due to 
the averaging intrinsic to bulk DNA-seq data. Nonetheless, our results do highlight an association between pluri-
potency and uncertainty of the regulatory network state, as measured by the entropy of chromatin accessibility 
profiles. This observation is consistent with the general model of a molecularly promiscuous cellular state under-
lying pluripotency. Here uncertainty is measured from chromatin accessibility profiles, while previous, higher 
resolution studies used transcriptomic data15,16. An interesting research direction would be to study the precise 
relation between the two measures of entropy, linking epigenomic structural data with transcriptomic profiles. In 
particular the recent development of single-cell resolution chromatin accessibility33 and transcriptomic34 profiling 
technologies might enable disentangling associations between multiple levels of regulation, perhaps overcoming 
the limitations of inferring TF networks based on bulk data alone.

Figure 7. Chromatin accessibility in ESCs and adult tissue samples from Roadmap Epigenomics data23. 
Number of DNase-seq tags per million reads in (a) gene promoters, (b) TF promoters, and (c) enhancers for 
each sample. Group mean accessibility distribution in (d) gene promoters, (e) TF promoters, and (f) enhancers. 
Boxplot of groups accessibility distribution entropy in (g) gene promoters, (h) TF promoters, and (i) enhancers. 
Horizontal lines inside violin plots correspond to the distribution median.
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It is well know that network topology plays a central role in dynamical behavior. In the cellular context, gene 
regulatory networks orchestrate cellular behavior35. Theoretical studies have previously analyzed the interplay 
between structure and dynamics using random Boolean networks36,37. Networks with a homogeneous topology 
and relatively high connectivity require fine tuned activation parameters in order to have a stable behavior, and to 
avoid chaotic dynamics36,37. This result seems inconsistent with the nature of real biological systems, which have 
a stable behavior despite fluctuations in surrounding environmental parameters. In other words, resilience is a 
characteristic of biological systems. Interestingly, for networks with a scale-free topology stable behavior emerges 
without the fine tunning requirement36,37. Considering our results in this structure/dynamics context, the higher 
homogeneity found in the ESC networks is likely to produce less ordered dynamics than more differentiated 
tissues, which, at the same time would allow them to explore more freely the state space and to reach multiple 
different network states. Interestingly, this view is consistent with the observed high heterogeneity in gene expres-
sion and with the balance between robustness and plasticity characteristic of ESCs15,25,38,39. Although we did not 
consider dynamical analysis in this study, but rather limited ourselves to the empirical, structural characterization 
of the networks and their behavior, disentangling structure and dynamics will be the focus of future work.

Summarizing, in light of the amount of data on biological interactions being generated in the post-genomic 
era, a systems level perspective is required to gain understanding of the biological systems as a whole. Our struc-
tural analysis of tissue specific TF networks aims at that objective, trying to find a connection between transcrip-
tional networks structural heterogeneity and biological phenotypes. Our treatment of structural robustness as 
a network systems-level behavior revealed differences among cell types that could be dissected further through 
topological analyses and related to chromatin accessibility profile at REs. We want to stress the applicability of our 
comparison of real world complex networks not only for a structural characterization, but also as an approxima-
tion to their possible dynamic behaviors. Finally, the empirical analysis framework proposed here can be applied 
to any set of related networks whose structural heterogeneity is suspected to underly differential real life behavior.

Methods
Transcription Factor Networks. Human and mouse transcription factor networks (TFNs) were con-
structed based on DNase-seq data and digital genomic footprinting as shown in9,14. Human networks set include 
41 distinct cell and tissue specific networks composed of 493 to 533 sequence-specific transcription factors. 
Mouse networks set include 25 cell and tissue specific networks composed of 555 to 583 sequence-specific tran-
scription factors. For simplicity, we use the term tissue-specific through the text to refer to both cell type and 
tissue. Network data were downloaded from https://www.regulatorynetworks.org/. Most current versions for 
human (v09162013) and mouse (v12032013) were used.

Modeling topological robustness. Topological robustness was approximated by profiling the network’s behavior 
in response to random and directed structural perturbations. Site percolation was used as a process to model 
component failure using computer simulations6. Increasing fractions of a network’s vertices were removed, along 
with the edges connected to those vertices. Following6,40 a percolation process was considered in the general sense 
– i.e., including different ways of vertex removal. The error experiments performed correspond to the simplest 
percolation process where a fraction of vertices was chosen uniformly at random and removed. For every net-
work, error experiments were repeated 1000 times and the mean error behavior was calculated. Directed (Attack) 
experiments were simulated by removing vertices in decreasing order of centrality based on vertex degree. Nodes 
were progressively removed from one to a hundred percent of nodes.

Quantifying network structural robustness. Two quantitative measures of network damage were used to 
characterize the phenomenology associated to the damage process applied to each TF network. As a first approx-
imation, the macroscopic (systemic) behavior of the networks in response to damage was characterized by the 
evolution of the giant component size relative to its initial value as a function of the fraction of removed vertices f 
(Sf/S0). As an additional approximation, the global efficiency E of a network was used to quantify how communica-
tion becomes less efficient as damage increases, this measure was also calculated relative to its initial value and as a 
function of the fraction of removed vertices f. The latter measure assumes that the efficiency for sending informa-
tion between two vertices i and j is proportional to the reciprocal of their distance, and is calculated as follows7,8:

∑=
−

.
≠

E
N N d

1
( 1)

1

(1)i j ij

The measure E corresponds to the average inverse geodesic length – i.e., the harmonic mean of the geodesic 
distances7:

= .h
E
1
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Error-Attack Deviation and vulnerability calculation. The measure error-attack deviation Δea intro-
duced herein, was used to quantify the degree of robustness to attacks relative to that against errors. The metric is 
simply the root mean square deviation between the observed error and the attack behaviors:
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where ef (af) represents the a normalized measured of damage behavior under the random or (directed) removal 
of a fraction f of nodes. In this study Sf/S0 and Ef/E0 were used as damage measures (see Results).

We defined network vulnerability (Δea) as the mean between error-attack deviation to giant component size 
and efficiency:

Δ =
Δ + Δ

ea
ea ea

2 (4)
Sf S Ef E/ 0 / 0

Networks Topological Characterization. Networks’ topology was analyzed by quantifying topological dissimilar-
ity and measuring 14 structural features commonly used in complex network theory6,7.

Network dissimilarity. Network dissimilarity measurement was done following the approach proposed by 
Shieber et al.19. This method compares networks topology based on quantifying differences among node distance 
probability distributions, representing all nodes connectivity distances, extracted from the networks. It returns 
non-zero values only for non-isomorphic graphs, and quantifies structural topological differences that have an 
impact on information flow through the network. We measured network dissimilarity following the algorithm 
proposed in19, using the suggested parameters.

Networks structural characterization. We described networks’ topology by measuring 14 features: num-
ber of nodes, number of edges, mean degree, diameter, maximum degree, average path length, density, clustering 
coefficient, assortativity, efficiency, modularity, degree entropy, clique number, and reciprocity. Following the 
measurement definitions in7.

Null models. To compare cell type networks with random models, we generated random networks with 
the same number of nodes and links. Two sets of random networks were created: one set following Erdős-Rényi 
model (ER networks) with exponential degree distribution, and the second set following Barabási-Albert model 
of growing networks with power-law degree distribution (BA networks). In order for the BA networks to have an 
equivalent number of edges to its real counterpart, the number of outgoing edges added to each new node in the 
network was taken from the out degree distribution of the real network.

For each real network, 100 ER and BA random networks were created. Every random network was structur-
ally characterized measuring the 14 topological features measured in the real networks, and dissimilarity to its 
real equivalent was quantified. Mean values for the dissimilarity and topological features were estimated for each 
ensemble of random networks.

Features significance with respect to BA analogs. For each cell type, we constructed a feature BA 
analog expected distribution from the feature’s value in the 100 analog random BA networks. We then calcu-
lated the real feature z-score with respect to the BA expected distribution and using this z-score we obtained the 
p-value for each feature in every network.

Predictive modeling. Predictive models were fitted using networks’ vulnerability as a response variable and 
structural features as predictors.

First we fitted a linear regression predicting Δea using the 14 statistical features we measures, plus the net-
work’s dissimilarity to its ER analogs (DER) and to its BA analogs (DBA) as predictors. The second model we fitted 
was a random forest regression, predicting Δea from the 14 topological features measured above, this model was 
was created with 1000 trees. Features’ influence on the random forest model was measured by the mean decrease 
in mean square error. As a way to evaluate the models’ accuracy, we performed a five-fold cross validation of both 
models, keeping the test mean square error as accuracy measurement.

Comparing DNase-seq data chromatin accessibility. DNase-seq alignment files were downloaded from the 
Roadmap Epigenomics data portal at https://egg2.wustl.edu/roadmap/web_portal/processed_data.html 23. Only 
samples corresponding to ESC and Adult anatomical groups were kept. Aligned reads were mapped to promot-
ers, and enhancers. Gene promoters were defined as 5 kb regions surrounding the TSS from Genecode data-
base www.gencodegenes.org/releases/current.html, from these gene promoters we extracted 600 TFs present at 
HOCOMOCO database https://autosome.ru/hocomoco/ 41 to define the TF promoters. Enhancers regions were 
defined based on Roadmap ChromHMM segmentations data, considering only the distal, non-genic enhancer 
state from the 15-state model. Reads mapping target regions were aggregated using bedops with the bedmap com-
mand42. A group mean accessibility score was defined among all ESC and adult samples in every genomic region 
by calculating mean accessibility across samples of the same group.

Implementation. All the methods presented here were implemented using the R statistical programming envi-
ronment www.R-project.org and the igraph package43.
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